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1 A very simple sampling procedure

Let G be an undirected graph of maximum degree � = �(G) on vertex set V =

f0; : : : ; n� 1g, and C = f0; : : : ; k� 1g be a set of k \colours." Let X

0

: V ! C be

a proper colouring of the vertices of G, i.e., one in which every edge has endpoints

of di�erent colours. (In this note, vertex colourings will generally be proper, so we

often drop the adjective \proper" in what follows.) Such a colouring always exists

if k � �+ 1, as can be appreciated by considering a simple sequential colouring

algorithm. Indeed Brooks' theorem asserts that a colouring exists when k � �,

provided � � 3 and G does not contain K

�+1

as a connected component [2, 3].

Consider the Markov chain (X

t

) whose state space 
 = 


k

(G) is the set of

all k-colourings of G, and whose transition probabilities from state (colouring) X

t

are modelled by the following procedure:

(1) choose a vertex v 2 V and a colour c 2 C uniformly at random (u.a.r.);

(2) recolour vertex v with colour c; if the resulting colouring X

0

is proper

then let X

t+1

= X

0

, otherwise let X

t+1

= X

t

.

This procedure describes what would be termed, by the statistical physics com-

munity, the \Glauber dynamics" of an antiferromagnetic Potts model at zero tem-

perature. The Markov chain (X

t

) | which we refer to in the sequel asM(G; k) |

is ergodic provided k � �+2, in which case the stationary distribution is uniform

over 
. (Precise de�nitions of various technical terms used in this section will be

provided in Section 2.)

We show thatM(G; k) is \rapidly mixing," i.e., converges to a close approxim-

ation of the stationary distribution in time polynomial in n, provided k � 2�+1.

This result provides us with a simple and e�cient sampling procedure for k-

colourings: simulate the Markov chain M(G; k), starting at an arbitrary state,

for a su�ciently large (but polynomial) number of steps, and return the current

state as result. As a corollary we obtain a so-called fully polynomial randomised

approximation scheme (fpras) for the number of k-colourings of a graph in the

case k � 2�+ 1.

2 Sampling and approximate counting

For t 2 N, let P

t

: 


2

! [0; 1] denote the t-step transition probabilities

1

of the

Markov chainM(G; k) de�ned in Section 1, so that P

t

(x; y) = Pr(X

t

= y j X

0

= x)

for all x; y 2 
. It is easily veri�ed that M(G; k) is (a) irreducible, i.e., for all

x; y 2 
, there is a t such that P

t

(x; y) > 0, and (b) aperiodic, i.e., gcdft :

P

t

(x; y) > 0g = 1 for all x; y 2 
. Irreducibility of M(G; k) follows from the

observation that any colouring x may be transformed to any other colouring y by

sequentially assigning new colours to the vertices V in ascending sequence; before

1

We drop the superscript t in the case t = 1.
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assigning a new colour c to vertex v it is necessary to recolour all vertices u > v

that have colour c, but there is always at least one \free" colour to allow this to

be done, provided k � � + 2. Aperiodicity follows from the fact that the loop

probabilities P (x; x) are non-zero for all x 2 
.

A �nite Markov chain that is irreducible and aperiodic is ergodic; i.e., there is

a stationary distribution � : 
 ! [0; 1] such that lim

t!1

P

t

(x; y) = �(y) for all

x; y 2 
. Computation of the stationary distribution is facilitated by the following

observation: if �

0

: 
 ! [0; 1] is any function satisfying \detailed balance"

�

0

(x)P (x; y) = �

0

(y)P (y; x); for all x; y 2 
;

and the normalisation condition

P

x2


�

0

(x) = 1, then �

0

is indeed the station-

ary distribution. Using this observation, it is easy to verify that the stationary

distribution of M(G; k) is uniform.

The e�ciency of our approach to sampling k-colourings depends crucially on

rate of convergence of M(G; k) to stationarity. There are a number of ways of

quantifying \closeness" to stationarity, but they are all essentially equivalent in

this application. The variation distance at time t with respect to the initial state x

is de�ned to be

�

x

(t) = max

S�


jP

t

(x; S)� �(S)j =

1

2

X

y2


jP

t

(x; y)� �(y)j;

where P

t

(x; S) =

P

y2S

P

t

(x; y), and �(S) =

P

x2S

�(x). Note that the variation

distance provides a uniform bound, over all events S � 
, of the di�erence in

probabilities of occurrence of event S under the stationary and t-step distributions.

The rate of convergence to stationarity from initial state x may be measured by

the function

�

x

(") = minft : �

x

(t

0

) � " for all t

0

� tg:

Finally, we need to formalise the notion of e�cient approximation algorithm.

A randomised approximation scheme for k-colourings in a graph G is a probabilistic

algorithm that takes as input a graph G and an error bound " > 0, and produces

as output a number Y (a random variable) such that

2

Pr

�

(1� ") j


k

(G)j � Y � (1 + ") j


k

(G)j

�

�

3

4

:

A randomised approximation scheme is said to be fully polynomial [8] if it runs in

time polynomial in n (the input length) and "

�1

. We shall abbreviate the rather

unwieldy phrase \fully polynomial randomised approximation scheme" to fpras.

2

There is no signi�cance in the constant

3

4

appearing in the de�nition, beyond its lying strictly

between

1

2

and 1. Any success probability greater than

1

2

may be boosted to a value arbitrarily

close to 1 by making a small number of trials and taking the median of the results [7].

3



3 An fpras for k-colourings

Our aim is to construct an fpras for the number of k-colourings of a low-degree

graph. The key tool is the following result, to the e�ect that the Markov chain

M(G; k) is rapidly mixing.

Lemma 1 Let G be a graph of maximum degree � on n vertices. Assuming

k � 2� + 1, the convergence time � (") of the Markov chain M(G; k) is bounded

above by

�

x

(") �

k

k � 2�

n ln

�

n

"

�

;

regardless of the initial state x.

We defer the proof of Lemma 1 to Section 4, and press on to investigate its

consequences. An immediate observation is that we have an polynomial-time

almost uniform sampler

3

for k-colourings in a graph, provided k � 2�+1. There

is a close connection between almost uniform sampling and approximate counting,

which has been discussed at some length by Jerrum, Valiant, and Vazirani [7]. In

the light of this connection, it is not surprising that Lemma 1 leads fairly directly

to the main result.

Theorem 2 There is a fully polynomial randomised approximation scheme for the

number of k-colourings in a graph G of maximum degree �, under the assumption

k � 2�+ 1. The time complexity of the approximation scheme is bounded above

by

50k

k � 2�

�

nm

2

"

2

ln

�

4nm

"

�

;

where n and m are the numbers of vertices and edges in G, and the time unit is a

single simulation step of the Markov chain M(G; k).

Proof The techniques we employ are standard in the area [6]. Recall that 


k

(G)

is the set of all k-colourings of G. Let m denote the number of edges in G, and let

G = G

m

> G

m�1

> � � � > G

1

> G

0

= (V;?) be any sequence of graphs in which

each graph G

i�1

is obtained from the previous graph G

i

by removing a single edge.

We may express the quantity we wish to estimate as a product of ratios:

j


k

(G)j =

j


k

(G

m

)j

j


k

(G

m�1

)j

�

j


k

(G

m�1

)j

j


k

(G

m�2

)j

� � � � �

j


k

(G

1

)j

j


k

(G

0

)j

� j


k

(G

0

)j; (1)

where, it will be observed, j


k

(G

0

)j = k

n

. Our strategy is to estimate the ratio

%

i

=

j


k

(G

i

)j

j


k

(G

i�1

)j

3

A precise de�nition of this phrase is not essential for what follows, and the reader is directed

to [7], where the concept goes under the title almost uniform generator.
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for each i in the range 1 � i � m, and by substituting these quantities into

identity (1), obtain an estimate for j


k

(G)j.

Suppose that the graphs G

i

and G

i�1

di�er in the edge fu; vg, which is present

in G

i

but absent from G

i�1

. Clearly, 


k

(G

i

) � 


k

(G

i�1

). Any colouring in




k

(G

i�1

) n 


k

(G

i

) assigns the same colour to u and v, and may be perturbed to

a colouring in 


k

(G

i

) by recolouring vertex u with one of at least k �� � �+ 1

colours. On the other hand, each colouring in 


k

(G

i

) can be obtained in at most

one way as the result of such a perturbation, and hence

�+ 1

�+ 2

� %

i

� 1: (2)

To avoid trivialities, assume 0 < " � 1, n � 3, and � � 2. Let Z

i

2 f0; 1g

denote the random variable obtained by simulating Markov chainM(G

i�1

; k) from

a certain �xed initial state for

T =

&

k

k � 2�

n ln

�

4nm

"

�

'

steps and returning 1 if the �nal state is a member of 


k

(G

i

), and 0 otherwise.

Let �

i

= ExpZ

i

be the expectation of Z

i

. By Lemma 1,

%

i

�

"

4m

� �

i

� %

i

+

"

4m

; (3)

or, noting inequality (2),

�

1�

"

3m

�

%

i

� �

i

�

�

1 +

"

3m

�

%

i

; (4)

so the mean of a su�ciently large number of independent copies of Z

i

will provide

a good estimate for %

i

. Note that, by inequalities (2) and (3), �

i

�

1

2

.

So let Z

(1)

i

; : : : ; Z

(s)

i

be a sequence of s = d37"

�2

me independent copies of the

random variable Z

i

obtained by simulating the Markov chainM(G

i�1

; k) from the

�xed initial state s times, and let Z

i

= s

�1

P

s

j=1

Z

(j)

i

be their mean. Since Z

i

is

a random variable taking values from f0; 1g, it follows easily that �

�2

i

VarZ

i

=

�

�1

i

� 1 � 1, and hence �

�2

i

VarZ

i

� s

�1

. As our estimator for j


k

(G)j, we use

the random variable Y = k

n

Z

1

Z

2

: : :Z

m

. Note that ExpY = k

n

�

1

�

2

: : : �

m

.

The performance of this estimator is characterised by its variance, which is

bounded as follows:

VarZ

1

Z

2

: : :Z

m

(�

1

�

2

: : : �

m

)

2

=

m

Y

i=1

�

1 +

VarZ

i

�

2

i

�

� 1

�

�

1 +

1

s

�

m

� 1

� exp

�

"

2

37

�

� 1

�

"

2

36

;
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since e

x=37

� 1 + x=36 provided 0 � x � 1. Thus, by Chebychev's inequality,

�

1�

"

3

�

�

1

�

2

: : : �

m

� k

�n

Y �

�

1 +

"

3

�

�

1

�

2

: : : �

m

with probability at least

3

4

. But from inequality (4), we have

�

1�

"

2

�

%

1

%

2

: : : %

m

� �

1

�

2

: : : �

m

�

�

1 +

"

2

�

%

1

%

2

: : : %

m

;

which, combinedwith the previous inequality, implies that the estimator Y satis�es

the requirements of an fpras for the number of colourings j


k

(G)j.

The computation of the estimator involves ms Markov chain simulations, and

each simulation is for T steps, a total ofmsT steps in total. The constant factor 50

appearing in the statement of the theorem is chosen large enough to absorb the

various ceiling functions.

4 Rapid mixing

This section is devoted to a proof that the Markov chain M(G; k) de�ned in

Section 1 is rapidly mixing.

Proof of Lemma 1 Our strategy is to construct a coupling for M = M(G; k):

that is to say, a stochastic process (X

t

; Y

t

) on 
�
 such that each of the processes

(X

t

) and (Y

t

), considered in isolation, is a faithful copy of M . We shall arrange

a joint probability space for (X

t

) and (Y

t

) so that, far from being independent,

the two processes tend to couple, so that X

t

= Y

t

for all su�ciently large t. If

it can be arranged that coupling occurs rapidly | independently of the initial

states X

0

and Y

0

| we may deduce that M is rapidly mixing. The key result

we use here is that the variation distance of the distribution of (X

t

) from the

stationary distribution is bounded above by the probability that (X

t

) and (Y

t

)

have not coupled by time t; see, for example, Aldous [1, Lemma 3.6], or Diaconis [4,

Chap. 4, Lemma 5].

The transition (X

t

; Y

t

)! (X

t+1

; Y

t+1

) in the coupling is de�ned by the follow-

ing experiment:

(1) select a vertex v 2 V , u.a.r.;

(2) compute a permutation g = g(G;X

t

; Y

t

) of C according to a procedure

to be explained presently;

(3) choose a colour c 2 C, u.a.r.;

(4) in the colouring X

t

(respectively Y

t

), recolour vertex v with colour c

(respectively g(c)) to obtain a new colouring X

0

(respectively Y

0

);

6



(5) if X

0

(respectively Y

0

) is a proper colouring then let X

t+1

= X

0

(re-

spectively Y

t+1

= Y

0

), otherwise letX

t+1

= X

t

(respectively Y

t+1

= Y

t

).

Whatever procedure is used to select the permutation g in step (2), the distribution

of g(c) is uniform; thus (X

t

) and (Y

t

) are both faithful copies of M .

Let A = A

t

� V be the set of vertices on which the colourings X

t

and Y

t

agree,

and D = D

t

� V be the set on which they disagree. Let d

0

(v) denote the number

of edges incident at vertex v that have one endpoint in A and one in D. Observe

that

X

v2A

d

0

(v) =

X

v2D

d

0

(v) = m

0

; (5)

where m

0

is the number of edges of G that span A and D. The procedure for

computing g = g(G;X

t

; Y

t

) is as follows.

(a) If v 2 D then g is the identity.

(b) If v 2 A then proceed as follows. Denote by N be the set of neighbours

of v in G. De�ne C

X

� C to be the set of all colours c such that some

vertex in N receives c in colouring X

t

, but no vertex in N receives c in

colouring Y

t

. Let C

Y

be de�ned analogously, with the roles ofX

t

and Y

t

interchanged. Observe that C

X

\ C

Y

= ? and jC

X

j; jC

Y

j � d

0

(v).

Suppose without loss of generality that jC

X

j � jC

Y

j. Choose any

subset C

0

Y

� C

Y

with jC

0

Y

j = jC

X

j, and let C

X

= fc

1

; : : : ; c

r

g and

C

0

Y

= fc

0

1

; : : : ; c

0

r

g be arbitrary enumerations of the sets C

X

and C

0

Y

.

Finally let g be the permutation (c

1

; c

0

1

) � � � (c

r

; c

0

r

), which interchanges

the colour-sets C

X

and C

0

Y

and leaves all other colours �xed.

It is clear that jD

t+1

j � jD

t

j 2 f�1; 0; 1g. Consider �rst the probability that

jD

t+1

j = jD

t

j+1. For this event to occur, the vertex v selected in line (1) must lie

in A, and hence the permutation g is selected by procedure (b) above. If the new

colourings X

t+1

and Y

t+1

are to disagree at vertex v, then the colour c selected in

line (3) must be an element of C

Y

. (If c 2 C

X

then vertex v remains the same

colour in both X

t+1

and Y

t+1

.) But we have observed that jC

Y

j � d

0

(v), and hence

Pr

�

jD

t+1

j = jD

t

j+ 1

�

�

1

n

X

v2A

d

0

(v)

k

=

m

0

kn

; (6)

where the right-hand equality is by equation (5). Now consider the probability

that jD

t+1

j = jD

t

j � 1. For this event to occur, the vertex v selected in line (1)

must lie in D, and hence the permutation g selected in line (2) is the identity.

For the new colourings X

t+1

and Y

t+1

to agree at vertex v, it is enough that the

colour c selected in line (3) is di�erent from all the colours that X

t

and Y

t

assign

to neighbours of v. The number of colours c that satisfy this condition is at least

k � 2�+ d

0

(v), and hence

Pr

�

jD

t+1

j = jD

t

j � 1

�

�

1

n

X

v2D

k � 2�+ d

0

(v)

k

=

(k � 2�)

kn

� jDj+

m

0

kn

: (7)
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De�ne

a =

k � 2�

kn

and � = �(m

0

) =

m

0

kn

;

so that Pr

�

jD

t+1

j = jD

t

j+1

�

� � and Pr

�

jD

t+1

j = jD

t

j�1

�

� ajD

t

j+�. Provided

a > 0, i.e., k > 2�, the size of the set D

t

tends to decrease with t, and hence,

intuitively at least, the event D

t

= ? should occur with high probability for some

t � T with T not too large. Since D

t

= ? is precisely the event that coupling has

occurred, it only remains to con�rm this intuition, and quantify the rate at which

D

t

converges to the empty set. From equations (6) and (7),

Exp jD

t+1

j � �(jD

t

j+ 1) + (ajD

t

j+ �)(jD

t

j � 1) + (1� ajD

t

j � 2�)jD

t

j

= (1� a)jD

t

j;

providedD

t

6= ? and D

t

6= V ; it may easily be checked by separate arguments that

the conclusion Exp jD

t+1

j � (1 � a)jD

t

j holds also in these boundary situations.

Thus Exp jD

t

j � (1 � a)

t

jD

0

j � n(1 � a)

t

, and, because jD

t

j is an non-negative

integer random variable, Pr(jD

t

j 6= 0) � n(1 � a)

t

� ne

�at

. Note that Pr(D

t

6=

?) � ", provided t � a

�1

ln(n"

�1

), establishing the result.

Alan Frieze has pointed out to me that the Markov chain M(G; k) also mixes

rapidly (i.e., in time polynomial in n) when k = 2�, though the exact rate of

convergence may be slower in this case.

5 Open questions

For � � 4, it is NP-complete to determine whether a graph of maximum degree �

is (� � 1)-colourable (see Garey, Johnson, and Stockmeyer [5]), and hence there

can be no fpras for k-colourings when k < �, unless RP = NP. Thus there is a

range of k, namely � � k � 2�, in which the existence of an fpras is in question.

The Markov chain M(G; k) presented in Section 1 is ergodic provided k � �+ 2,

and there is no evidence against the view that this condition is also su�cient for

M(G; k) to be rapidly mixing. Thus the fpras presented here might conceivably

be valid down to k = �+ 2.

When k = �+1, the Markov chainM(G; k) is not ergodic, as Lubin and Sokal

have observed [9], and designing an fpras for this case would present a distinct

challenge. An fpras for the case k = � may be too much to hope for, as the

corresponding existence problem is no longer trivial; however, the possibility still

cannot be ruled out.

A natural extension to consider is to the k-state antiferromagnetic Potts model

at non-zero temperature. Let

b


 =

b




k

(G) denote the set of all k-colourings of G,

including those that are not proper; these are the con�gurations of a k-state Potts

system with interaction graph G. For x 2

b


, let the Hamiltonian H(x) be the

number of edges in G both endpoints of which receive the same colour. Thus the

8



proper colourings x of G are precisely those for which H(x) = 0. The key problem

is to evaluate the partition function Z =

P

x2

b




exp(��H(x)) of this system, where

� � 0 is a parameter known as inverse temperature. The signi�cance of Z is that

it is the normalising factor in the Gibbs distribution, which assigns probability

Z

�1

exp(��H(x)) to each con�guration x in the stationary distribution. Observe

that the Potts model generalises colouring, in the sense that the number of proper

k-colourings of G is the limit of Z as � !1, i.e., as temperature tends to zero.

The Markov chain presented in Section 1 is easily generalised to allow sampling

according to the Gibbs distribution at non-zero temperature. Transition probab-

ilities from state X

t

are modelled by the following procedure:

(1) choose a vertex v 2 V and a colour c 2 C u.a.r.;

(2) recolour vertex v with colour c to obtain a new colouring X

0

, and let

p

acc

= min

n

1; exp

�

� �(H(X

0

)�H(X

t

))

�o

;

(3) with probability p

acc

let X

t+1

= X

0

, and with probability 1 � p

acc

let

X

t+1

= X

t

.

The acceptance condition used here is theMetropolis rule, familiar in the computer

simulation of models in statistical physics, and in combinatorial optimisation by

simulated annealing. This generalised Markov chain is ergodic for all �.

4

Intuitively, evaluation of the partition function Z ought to become easier as

� ! 0, i.e., as temperature increases. However the coupling argument used in the

proof of Theorem 2 breaks down; the obstacle to be faced is that the coupling

may visit states (X

t

; Y

t

) such that the event jD

t+1

j = jD

t

j + 1 occurs with high

probability. These pairs (X

t

; Y

t

) involve non-proper colourings, and do not arise

in the zero-temperature limit.
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