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Abstract

In this paper we show a new way of constructing deterministic polynomial-time
approximation algorithms for computing complex-valued evaluations of a large class of
graph polynomials on bounded degree graphs. In particular, our approach works for
the Tutte polynomial and independence polynomial, as well as partition functions of
complex-valued spin and edge-coloring models.

More specifically, we define a large class of graph polynomials C and show that
if p ∈ C and there is a disk D centered at zero in the complex plane such that p(G)
does not vanish on D for all bounded degree graphs graphs G, then for each z in the
interior of D there exists a deterministic polynomial-time approximation algorithm for
evaluating p(G) at z. This gives an explicit connection between absence of zeros of
graph polynomials and the existence of efficient approximation algorithms, allowing us
to show new relationships between well-known conjectures.

Our work builds on a recent line of work initiated by Barvinok [2, 3, 4, 5], which
provides a new algorithmic approach besides the existing Markov chain Monte Carlo
method and the correlation decay method for these types of problems.
Keywords: approximation algorithms, Tutte polynomial, independence polynomial, partition

function, graph homomorphism, Holant problem.

1 Introduction

Computational counting is an important area of computer science where one seeks to
find efficient algorithms to count certain combinatorial objects such as independent
sets, proper colourings, or matchings in a graph. More generally, each combinato-
rial counting problem has an associated generating function, namely the independence
polynomial for independent sets, the chromatic and more generally Tutte polynomial
for proper graph colourings, and the matching polynomial for matchings. Such graph
polynomials are studied in mathematics and computer science, but also in statistical
physics where they are normally referred to as partition functions. A fundamental
question asks for which graphs and at which numerical values one can approximately
evaluate these polynomials efficiently. Indeed the counting problems correspond to
evaluating these graph polynomials or partition functions at particular values.
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Many of these counting problems are known to be computationally hard in the sense
of being #P-hard, even when one restricts to graphs of maximum degree at most three
[10, 19]. On the other hand several efficient randomized approximation algorithms exist
for some of these #P-hard problems via the use of the powerful Markov chain Monte
Carlo technique. In a major breakthrough, Weitz [46], inspired by ideas from statistical
physics, developed the so-called correlation decay method allowing him to obtain the
first efficient deterministic approximation algorithm for counting independent sets in
graphs of maximum degree at most five. (One expects no such algorithm for graphs of
maximum degree larger than five [40], while previously the best known (randomized)
algorithm worked only for graphs of maximum degree at most four.) The correlation
decay method has subsequently been refined and applied to various other problems;
see e.g. [1, 22, 34, 39] and references therein.

In this paper we consider a different approach. The approach is quite robust in
that it can be applied to a large class of graph polynomials and gives the first gen-
eral polynomial-time method to approximate graph polynomials at complex values for
bounded degree graphs. Very recently complex evaluations have also been considered
by Harvey, Srivastava, and Vondrák [27] for the special case of the independence poly-
nomial. Complex evaluations of graph polynomials, aside from being the natural exten-
sions of real evaluations, arise as interesting counting problems e.g. counting restricted
tensions or flows can be modelled as the partition functions of a complex spin system
(see [23]) and the number of homomorphisms into any fixed graph can be modelled as
the partition function of a complex edge-coloring model (see [43, 44]).

A further important aspect of our work is to highlight the explicit relation between
the (absence of complex) roots of a graph polynomial and efficient algorithms to evalu-
ate it. Indeed, in Remark 1.3 below we give the explicit connection between a conjecture
of Sokal on zero-free regions of the chromatic polynomial and the notorious algorith-
mic problem of efficiently approximating the number of proper colourings in a bounded
degree graph.

Our approach combines a number of ingredients including ideas from sparse graph
limits [17], results on the locations of zeros of graph polynomials and partition functions
[38, 37, 29, 7, 8, 36] and an algorithmic development due to Barvinok [2]. The Taylor
approximation technique of Barvinok has been used to construct deterministic quasi-
polynomial-time approximation algorithms for evaluating a number of graph partition
functions (for general graphs); see e.g. work by Barvinok [2, 3, 4, 5], by Barvinok and
Sobeŕon [7, 8], and by the second author [36].

The approach can be roughly described as follows. First the problem of evaluating
the partition function or graph polynomial is cast as the evaluation of a univariate
polynomial. Next, a region is identified where this polynomial does not vanish; hence
in this region the logarithm of the polynomial is well-approximated by a low-order
Taylor approximation (of order log n, where n in the degree of the polynomial). Finally
we must compute this Taylor approximation by efficiently computing the first O(log n)
coefficients of the polynomial. So far this approach has only resulted in algorithms that
run in quasi-polynomial time. The main technical contribution of the present paper is a
polynomial-time algorithm for computing (essentially) the first O(log n) coefficients of
a large class of graph polynomials whenever we work with bounded degree graphs cf.
Theorem 3.1, and we believe it to be of independent interest.

Below we shall state and discuss some concrete results that can be obtained by com-
bining this approach with (known) results on the location of roots of graph polynomials
and partition functions. In particular, we obtain new deterministic polynomial-time al-
gorithms (FPTAS) for evaluating the independence polynomial, the Tutte polynomial,
and computing partition functions of spin and edge-coloring models in the case of
bounded degree graphs. Before we state our algorithmic results, we first need a def-
inition. Since we will approximate polynomials at complex values, we define what it
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means to be a good approximation.

Definition 1.1. Let q be a complex number and let ε > 0. We call a complex number ξ

a multiplicative ε-approximation to q if e−ε ≤ |q|/|ξ| ≤ eε and if the angle between ξ and
q (as seen as vectors in C = R2) is at most ε.

1.1 The independence polynomial

The independence polynomial of a graph G = (V, E) is denoted by Z(G) and is defined as

Z(G)(λ) := ∑
I⊆V

I independent

λ|I|. (1)

In [46] Weitz proved, based on the correlation decay method, that if 0 ≤ λ < λc, where

λc =
(∆ − 1)∆−1

(∆ − 2)∆
,

then there exists a deterministic algorithm, which given a graph G = (V, E) of max-
imum degree at most ∆ and ε > 0, computes a multiplicative ε-approximation to
Z(G)(λ) in time (|V|/ε)O(1). Sly and Sun [40] proved this is tight by showing that,
as soon as λ > λc, one cannot efficiently approximate Z(G, λ) unless NP=RP.

In Section 4 we prove the following result.

Theorem 1.1. Let ∆ ∈ N and let λ ∈ C be such that |λ| < λ∗(∆) := (∆−1)∆−1

∆∆ . Then there
exists a deterministic algorithm, which, given a graph G = (V, E) of maximum degree at most
∆ and ε > 0, computes a multiplicative ε-approximation to Z(G)(λ) in time (|V|/ε)O(1).

Remark 1.1. From the proof of Theorem 1.1 it follows that we can take O(1) to be

D (1 − |λ|/λ∗(∆))−1 ln(∆) + D′ for some absolute constants D, D′.

For positive valued λ our result is weaker than Weitz’s result since λc > λ∗. However
our result works for negative1 and even complex2 λ. The case λ < 0 is relevant due to
its connection to the Lovász local lemma, cf. [37].

The value λ∗ in Theorem 1.1 originates from a paper of Scott and Sokal [37]; they
showed that for graphs of maximum degree ∆, the independence polynomial does not
vanish at any λ ∈ C satisfying |λ| ≤ λ∗. Also the value of λ∗ is tight, as there exists a
sequence of trees Tn of maximum degree at most ∆ and λn < −λ∗ with λn → −λ∗ such
that Z(Tn, λn) = 0, cf. [37, Example 3.6].

It would be very interesting to know whether the result of Weitz can be proved
using the approach we take here. This would in fact follow from a confirmation of a
version of a conjecture of Sokal [41] (the conjecture is stated below Question 2.4 in [41]);
see Question 8.2 in the concluding remarks for the exact version that we would need. It
would also be very interesting to know if it is hard to approximate Z(G, λ) for λ < −λ∗.
Some recent progress has been made on this by Harvey, Srivastava and Vondrák [27,
Theorem 4.4], showing that it is hard unless NP=RP for λ that are far away from −λ∗,
but as far as we are aware, there are no results known when λ is very close to −λ∗.

As an extension to Theorem 1.1, we are able to efficiently approximate the indepen-
dence polynomial on almost the entire complex plane for the special class of claw-free
graphs. We make use of a result of Chudnovsky and Seymour [16] stating that the

1In an unpublished note [42] Srivastava notes that the correlation decay method of Weitz in fact also applies

to negative λ as long as λ > −λ∗.
2Very recently Harvey, Srivastava and Vondrák [27] used the correlation decay method to obtain efficient

approximation algorithms for the multivariate independence polynomial. In fact, our method also applies to

the multivariate independence polynomial.
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independence polynomial of a claw-free graph has only negative real roots. We prove
the following result in Section 4.

Theorem 1.2. Let ∆ ∈ N and let λ ∈ C be such that λ is not a real negative number. Then
there exists a deterministic algorithm, which, given a claw-free graph G = (V, E) of maximum
degree at most ∆ and ε > 0, computes a multiplicative ε-approximation to Z(G)(λ) in time
(|V|/ε)O(1).

Note that when G is the line graph of some graph H we have that ZG(λ) is equal to
the matching polynomial of H. So in particular, Theorem 1.2 implies a result of Bayati,
Gamarnik, Katz, Nair, and Tetali [1]. Our proof of it however is entirely different from
the proof in [1].

1.2 The Tutte polynomial

The random cluster formulation of the Tutte polynomial of a graph G = (V, E) is a
two-variable polynomial, which is denoted by ZT(G) and is defined by

ZT(G)(q, w) := ∑
A⊆E

qk(A)w|A|, (2)

where k(A) denotes the number of components of the graph (V, A). In particular, if
w = −1, ZT(G)(q,−1) is equal to the chromatic polynomial of G.

Jerrum and Sinclair [31] showed that when q = 2 and w > 0 there exists a ran-
domized polynomial-time approximation algorithm for computing evaluations of the
Tutte polynomial in general. In [25] Goldberg and Jerrum showed that approximating
evaluations of the Tutte polynomial on general graphs for q > 2 and w > 0 is as hard as
counting independent sets in bipartite graphs and in [26] Goldberg and Jerrum showed
that for several choices of real parameters (q, w) it is even #P-hard to approximate the
evaluation of the Tutte polynomial on general graphs. Goldberg and Guo [24] looked
at the complexity of approximately evaluating the Tutte polynomial for general graphs
at complex values.

When w = −1 and q ∈ N, ZT(G)(q, w) gives the number of q-colorings of G. Lu
and Yin [34] showed that when q > 2.58∆ there exists a deterministic polynomial-time
algorithm for approximating the Tutte polynomial at (q,−1) on graphs of maximum
degree at most ∆. There are many randomized algorithms of the sort above with sharper
bounds on q; see e.g. Jerrum [30] and Vigoda [45]. As far as we know there are no
general results known for the Tutte polynomial on bounded degree graphs.

We will consider the Tutte polynomial as a univariate polynomial by considering w
to be constant. In Section 5 we prove the following result.

Theorem 1.3. Let ∆ ∈ N and let w ∈ C. Then there exists a constant K (depending on ∆ and
w) such that if q ∈ C is such that |q| > K, then there exists a deterministic algorithm, which,
given a loopless multigraph G = (V, E) of maximum degree at most ∆ and ε > 0, computes a
multiplicative ε-approximation to Z(G)(q, w) in time (|V|/ε)O(1).

Remark 1.2. From the proof the Theorem 1.3 it follows that we can take O(1) to be

D (1 − K/|q|)−1
∆ ln(∆) + D′ for some absolute constants D, D′.

The constant K in the theorem above comes from a paper of Jackson, Procacci and
Sokal [29] and unfortunately takes half a page to state exactly. However, when w sat-
isfies |1 + w| ≤ 1 (this includes the chromatic polynomial), then the constant K may be
taken to be 6.91∆.

Remark 1.3. Sokal [28, Conjecture 21] conjectured that ZT(G)(q,−1) 6= 0 as long as
ℜ(q) > ∆(G). Combined with our results (and the technique from Section 4.2) a con-
firmation of the conjecture would imply an efficient approximation algorithm for com-
puting the number of (∆ + 1)-colorings of any graph G of maximum degree at most ∆,
a notorious problem in computational counting.
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1.3 Partition functions of spin models

Le A ∈ C
k×k be a symmetric matrix. In the context of statistical physics A is often called

a spin model cf. [18]. For a graph G = (V, E), the partition function of A is defined as

p(G)(A) = ∑
φ:V→[k]

∏
{u,v}∈E

Aφ(u),φ(v). (3)

If A is the adjacency matrix of some graph H, then p(G)(H) is equal to the number of
graph homomorphisms from G to H. In [7] p(G)(A) is called the graph homomorphism
partition function.

Building on a line of research started by Dyer and Greenhill [20] and Bulatov and
Grohe [11], a full dichotomy theorem has been proved for the complexity of exactly
computing the partition function of a complex spin model by Cai, Chen and Lu [12].
This dichotomy essentially says that computing the partition function of A exactly is #P
hard unless the matrix A has some special structure.

Lin, Liu and Lu [33] proved, using the correlation decay approach, that for fixed
∆ ∈ N, if a real matrix A is sufficiently close to the all ones matrix (i.e. |Ai,j − 1| ≤

O(1)/∆ for all i, j = 1, . . . k), then there exists a (|V(G)|/ε)O(1)-time algorithm for com-
puting a multiplicative ε-approximation to P(G)(A) on graphs of maximum degree
at most ∆. Barvinok and Sobéron [7] showed that there exists a (|V(G)|/ε)O(ln |V(G)|-
time algorithm for complex-valued matrices A that satisfy |Ai,j − 1| ≤ O(1)/∆ for all
i, j = 1, . . . , k.

Building on the work of Barvinok and Sobéron we prove in Section 6 the following
result.

Theorem 1.4. Let ∆, k ∈ N. Then there exists a deterministic algorithm, which, given a graph
G = (V, E) of maximum degree at most ∆, a (complex-valued) symmetric k × k matrix A
such that |Ai,j − 1| ≤ 0.34/∆ for all i, j = 1, . . . , k, and ε > 0, computes a multiplicative

ε-approximation to p(G)(A) in time (|V|/ε)O(1).

Remark 1.4. The constant 0.34 can be replaced by 0.45 if ∆ ≥ 3, and by 0.54 if ∆ is large
enough, cf. [7].

In [8] Barvinok and Soberón introduced partition functions of graph homomor-
phisms of G with multiplicities and gave a quasi-polynomial-time algorithm for com-
puting them for certain matrices. In Section 6 we will show that our results also apply
to these partition functions.

1.4 Partition functions of edge-coloring models

Edge-coloring models originate in statistical physics and their partition functions have
been introduced to the graph theory community by de la Harpe and Jones [18] (where
they are called vertex models). We call any map h : Nk → C a k-color edge-coloring model.
For a graph G = (V, E), the partition function of h is defined by

p(G)(h) := ∑
φ:E→[k]

∏
v∈V

h(φ(δ(v))), (4)

where δ(v) denotes the set of edges incident with the vertex v and φ(δ(v)) denotes the
multiset of colors that the vertex v ‘sees’, which we identify with its incidence vector in
Nk so that we can apply h to it.

Partition functions of edge-coloring models form a rich class of graph parameters
including the number of matchings (take h : N2 → C defined by h(α) = 1 if α1 ≤ 1
and 0 otherwise), as well as partition functions of spin models, as has been proved by
Szegedy [43, 44]. These partition functions can be seen as Holant problems; see e.g.
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[14, 15, 13]. They can also be seen as tensor network contractions. We refer the reader
to [35] for more background.

Just as for partition functions for spin models much work has been done to establish
a complexity dichotomy result for exactly computing Holant problems; see [14, 15,
13]. Not much is known about the complexity of approximating partition functions
of edge-coloring models except for a few special cases. As already mentioned, Bayati,
Gamarnik, Katz, Nair, and Tetali [1] found an efficient approximation algorithm for
counting matchings in bounded degree graphs and Lin, Liu and Lu [33] found efficient
approximation algorithms for counting edge covers. Both of these algorithms are based
on the correlation decay method.

Building on work of the second author [36] we will prove the following result in
Section 7.

Theorem 1.5. Let ∆, k ∈ N. Then there exists a deterministic algorithm, which, given a
multigraph G = (V, E) of maximum degree at most ∆, a k-color edge-coloring model h such
that |h(φ) − 1| ≤ 0.35/(∆ + 1) for all φ ∈ Nk, and ε > 0, computes a multiplicative ε-
approximation to p(G)(h) in time (|V|/ε)O(1).

Remark 1.5. The constant 0.35 may be replaced by 0.47 if ∆ ≥ 3 and by 0.56 if ∆ is large
enough; see [36]. Moreover, for readers familiar with the orthogonal group invariance of
these partition functions, it is interesting to note that one can use Corollary 6b from [36]
to find a much larger family of edge-coloring models for which the partition function
can be efficiently approximated.

1.5 Organization

In the next section we shall consider an algorithm due to Barvinok [2] to approximate
evaluations of polynomials. Section 3 contains our main technical contribution: we will
introduce a class of graph polynomials and give an efficient algorithm for computing
their low order coefficients on bounded degree graphs. These two algorithms (or varia-
tions of them) will then be combined in Sections 4–7 to prove the results above. These
sections can be read independently of one another. Finally, we conclude in Section 8
with some remarks and questions.

2 Approximating evaluations of polynomials

In this section we present an algorithm due to Barvinok [2] to approximate evaluations
of polynomials. We take a slightly different approach and give full details for the sake
of completeness.

Let p ∈ C[z] be a polynomial p(z) = a0 + a1z + · · ·+ adzd of degree d and suppose
that p(z) 6= 0 for all z in an open disk D of radius M. Define the function f on this disk
by

f (z) := ln p(z), (5)

(where we fix a branch of the logarithm by fixing the principal value of the logarithm at

p(0)). Recall by Taylor’s Theorem that for each t ∈ D, f (t) = ∑
∞
j=0

tj

j! f (j)(0). In order to

approximate p at t ∈ D, we will find an additive approximation to f at t by truncating
the Taylor expansion around z = 0. For each m ∈ N, let

Tm( f )(t) := f (0) +
m

∑
j=1

tj

j!
f (j)(0). (6)

This can then be transformed to give a multiplicative approximation to p. It will be
more convenient for us to use a slightly different form of (6) which we derive below.
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Let ζ1, . . . , ζd ∈ C be the roots of p. Then we can write p(z) = ad(z − ζ1) · · · (z − ζd)
and f (z) = ln(ad) + ln(z − ζ1) + · · ·+ ln(z − ζd). From this we see that f ′(z) = (z −
ζ1)

−1 + · · ·+ (z − ζd)
−1 and hence for j ≥ 1,

f (j)(0) = −(j − 1)!
d

∑
i=1

ζ
−j
i .

Thus defining the jth inverse power sum to be pj := ζ
−j
1 + · · ·+ ζ

−j
d we see that

Tm( f )(t) = f (0)−
m

∑
j=1

pjt
j

j
= ln(a0)−

m

∑
j=1

pjt
j

j
. (7)

In the next proposition we derive a variant of the Newton identities that relate the
inverse power sums and the coefficients of the polynomial.

Proposition 2.1. For the polynomial p(z) = a0 + · · ·+ adzd as above and its inverse power
sums pj as defined above, we have for each k = 1, 2, . . . that

kak = −
k−1

∑
i=0

ai pk−i.

(Here we take ai = 0 if i > d.)

Proof. From (7) we know that for z ∈ D we have ln(p(z)) = ln(a0)− ∑
∞
j=1

p jz
j

j . Differ-

entiating both sides and multiplying by p(z) we obtain

p′(z) = −p(z)
∞

∑
j=1

pjz
j−1

and so
d

∑
k=1

kakzk−1 = −
d

∑
i=0

aiz
i

∞

∑
j=1

pjz
j−1.

Comparing coefficients of zk−1 on each side gives the desired identity.

The next lemma shows that the quality of the approximation (6) and hence (7) de-
pends on the location of the complex roots of p.

Lemma 2.2. Given M > 0 and t ∈ C satisfying |t| < M, there exists a constant C =
C(t, M) ≤ (1 − |t|/M)−1 such that the following holds. Suppose p is a polynomial of degree
d with no roots in the open disk D of radius M. Then for every ε > 0, exp(Tm( f )(t)) is a
multiplicative ε-approximation to p(t), where m = C ln(d/ε).

Proof. Let q := |t|/M. Then, as |t| < M, we have q < 1. We will first show that

| f (t)− Tm( f )(t)| ≤
dqm+1

(m + 1)(1− q)
. (8)

By (7) we have

| f (t)− Tm( f )(t)| ≤

∣

∣

∣

∣

∣

∞

∑
j=m+1

pjt
j

j

∣

∣

∣

∣

∣

≤
1

m + 1

∞

∑
j=m+1

|pjt|
j. (9)

By assumption we know that |ζi| ≥ M for each i = 1, . . . , d. Hence |pj| ≤ d/Mj and so

|pjt
j| ≤ dqj. Substituting this in into (9) and using that q < 1 we obtain (8).
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Take m = C ln(d/ε), where C is chosen such that C ≥ (ln 1/q)−1 and 1/m ≤ 1 − q
(so it is easy to check that e.g. C = (1 − q)−1 suffices). Then the right-hand side of (8)
is at most ε. Write z = Tm( f )(t). Then we have |e f (t)−z| ≤ e| f (t)−z| ≤ eε and similarly
|e−z+ f (t)| ≤ eε. (This follows from the fact that for a complex number y = a + bi,
we have |ey| = ea ≤ e|y|.) Moreover, the angle between ez and e f (t) is bounded by
|ℑ ln ez− f (t)| ≤ | ln ez− f (t)| ≤ ε. This shows that ez = exp(Tm( f )(t)) is a multiplicative
ε-approximation to p(t).

From (7) and Lemma 2.2, if we have an efficient way of computing the inverse
power sums pj from j = 1 up to O(ln(deg(p))) (which by Proposition 2.1 is essentially
equivalent to computing the first O(ln(deg(p))) coefficients of p), then we have an
efficient way of approximating evaluations of p at points in the disk around zero where
p is nonvanishing. We formalize this in the corollary below. In the next section we will
show that for certain types of graph polynomials we can compute the inverse power
sums efficiently.

Corollary 2.3. Given M > 0 and t ∈ C satisfying |t| < M, there exists a constant C =
C(t, M) ≤ (1 − |t|/M)−1 such that the following holds. Suppose p is a polynomial given by
p(z) = a0 + a1z + · · ·+ adzd with no roots in the open disk D of radius M. Suppose further
that we are able to compute a0 and the inverse power sums p1, . . . , pr in time τ(r) for each
r = 1, . . . , d. Then we can compute a multiplicative ε-approximation to p(t) in time O(τ(m)),
where m = C ln(d/ε).

Proof. The corollary is immediate from (6), (7) and Lemma 2.2.

3 Computing coefficients of graph polynomials

In this section we present our main technical contribution, which is an efficient way to
compute the inverse power sums (and hence the coefficients) of a large class of graph
polynomials for bounded degree graphs. Throughout, we will focus on graph polyno-
mials whose coefficients can be expressed as linear combinations of induced subgraph
counts. The results in this section are stated only for graphs, but are in fact valid for
multigraphs. So the reader could read multigraph instead of graph everywhere in this
section. (The degree of a vertex in a multigraph is the number of edges incident with the
vertex, where a loop is counted twice.)

We start with some definitions after which we state the main result of this section.
By G we denote the collection of all graphs and by Gk for k ∈ N we denote the collection
of graphs with at most k vertices. A graph invariant is a function f : G → S for some
set S that takes the same value on isomorphic graphs. For graphs H, G we denote by
ind(H, G) the number of induced subgraphs of G that are isomorphic to H. Note that
if H is equal to the empty graph we have ind(H, G) = 1 for all G. A graph polynomial
is a graph invariant p : G → C[z], where C[z] denotes the ring of polynomials in the
variable z over the field of complex numbers. Call a graph invariant f multiplicative if
f (∅) = 1 and f (G1 ∪ G2) = f (G1) f (G2) for all graphs G1, G2 (here G1 ∪ G2 denotes the
disjoint union of the graphs G1 and G2).

Definition 3.1. Let p be a multiplicative graph polynomial defined by

p(G)(z) :=
d(G)

∑
i=0

ei(G)zi (10)

for each G ∈ G with e0(G) = 1. We call p a bounded induced graph counting polynomial
(BIGCP) if there exists constants C1, C2 ∈ N such that the following two conditions are
satisfied:

8



(i) for every graph G, the coefficients ei satisfy

ei(G) := ∑
H∈GC1i

λH,iind(H, G) (11)

for certain λH,i ∈ C;

(ii) for each H ∈ GC1i, the coefficients λH,i can be computed in time O(C
|V(H)|
2 ).

If, for example, for each i, the coefficient ei(G) in (10) is equal to the number of
independent sets of size i in G, then it is easy to see that p (which is of course the
independence polynomial) is a BIGCP. In this case the obvious brute force algorithm to
compute the coefficient ei(G) for an n-vertex graph G runs in time O(ni) (by checking all
i-subsets of V(G)) and if i = O(ln n) then this is quasi-polynomial time. Our main result
of this section is a general algorithm for computing inverse power sums of BIGCPs
(and hence the coefficients of BIGCP’s by Proposition 2.1), which when applied to this
example, computes ei(G) in polynomial time even when i = O(ln n) as long as the
maximum degree of G is bounded.

Theorem 3.1. Let C > 0 and ∆ ∈ N and let p(·) be a bounded induced graph counting
polynomial. Then there is a deterministic (n/ε)O(1)-time algorithm, which, given any n-vertex
graph G of maximum degree at most ∆ and any ε > 0, computes the inverse power sums
p1, . . . , pm(G) of p(G) for m = C ln(n/ε).

Remark 3.1. The O(1) term in the exponent in the theorem above can crudely be taken
to be 10(CC1 + 1) ln(C2∆), where C1 is the constant from the definition of BIGCP.

Before we prove Theorem 3.1 we will first gather some facts about induced subgraph
counts and the number of connected induced subgraphs of fixed size that occur in a
graph which we will need for the proof.

3.1 Induced subgraph counts

Define ind(H, ·) : G → C by G 7→ ind(H, G). So we view ind(H, ·) as a graph invariant.
We can take linear combinations and products of these invariants. In particular, for two
graphs H1, H2 we have

ind(H1, ·) · ind(H2, ·) = ∑
H∈G

cH
H1,H2

ind(H, ·), (12)

where for a graph H, cH
H1,H2

is the number of pairs of subsets of V(H), (S, T), such that

S ∪ T = V(H) and H[S] = H1 and H[T] = H2. In particular, given H1 and H2, cH
H1,H2

is
nonzero for only a finite number of graphs H.

Computing the parameter ind(H, G) is generally difficult, but it becomes easier if H
is connected (and V(H) is not too large) and G has bounded degree.

Lemma 3.2. Let H be a connected graph on k vertices and let ∆ ∈ N. Then

(i) there is an O(n∆k−1)-time algorithm, which, given any n-vertex graph G with maximum
degree at most ∆, checks whether ind(H, G) 6= 0;

(ii) there is an O(n2∆2(k−1))-time algorithm, which, given any n-vertex graph G with maxi-
mum degree at most ∆, computes the number ind(H, G).

Note that Lemma 3.2 (i) enables us to test for graph isomorphism between bounded
degree graphs when |V(G)| = |V(H)|.

Proof. Let us list the vertices of V(H), v1, . . . , vk in such a way that for i ≥ 1 vertex vi has
a neighbour among v1, . . . , vi−1. Then to embed H into G we first select a target vertex
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for v1 and then given that we have embedded v1, . . . , vi−1 with i ≥ 2 there are at most
∆ choices for where to embed vi. After k iterations, we have a total of at most n∆k−1

potential ways to embed H and each possibility is checked in the procedure above.
Hence we determine if ind(H, G) is zero or not in O(n∆k−1) time.

The procedure above gives a list (of size at most n∆k−1) of all sets S ⊆ V(G) such
that G[S] = H, although the list may contain repetitions. It takes time O(n∆k−1)2 =
O(n2∆2(k−1)) to eliminate repetitions, and the length of the resulting list gives the value
of ind(H, G).

Next we consider how to enumerate all possible connected induced subgraphs of
fixed size in a bounded degree graph graph. We will need the following result of Borgs,
Chayes, Kahn, and Lovász [9, Lemma 2.1]:

Lemma 3.3. Let G be a graph of maximum degree ∆. Fix a vertex v0 of G. Then the number of

connected induced subgraphs of G with k vertices containing the vertex v0 is at most
(e∆)k−1

2 .

As a consequence we can efficiently enumerate all connected induced subgraphs of
logarrithmic size that occur in a bounded degree graph G.

Lemma 3.4. There is a O(n2k5(e∆)2k)-time algorithm which, given k ∈ N and an n-vertex
graph G = (V, E) of maximum degree ∆, outputs Tk, the set of all S ⊆ V satisfying |S| ≤ k
and G[S] connected.

Proof. By the previous result, we know that |Tk| ≤ nk(e∆)k−1 for all k.
We inductively construct Tk. For k = 1, Tk is clearly the set of singleton vertices and

takes time O(n) to output.
Given that we have found Tk−1 we compute Tk as follows. We first compute the

multiset
T ∗

k = {S ∪ {v} : S ∈ Tk−1 and v ∈ NG(S)}.

Here |NG(S)| ≤ |S|∆ ≤ k∆ and takes time O(k∆) to find (assuming G is given in
adjacency list form). Therefore computing T ∗

k takes time O(|Tk−1|k∆) = O(nk2(e∆)k).
Finally we compute the set Tk by removing the repetitions in T ∗

k (by comparing each

element with all previous elements), which takes time O(n2k4(e∆)2k).
Starting from T1, we perform the above iteration k times, requiring a total running

time of O(n2k5(e∆)2k).
It remains only to show that Tk contains all the sets we desire. Clearly Tk−1 ⊂ Tk

and assume by induction that Tk−1 contains all T ⊂ V of size k − 1 with G[T] connected.
Given S ⊆ V such that |S| = k and G[S] is connected, take any tree of G[S], remove a
leaf v and call the resulting set of vertices S′. Then it is clear that S′ ∈ Tk−1 and this
implies S = S′ ∪ {v} ∈ Tk.

We call a graph invariant f : G → C additive if for each G1, G2 ∈ G we have f (G1 ∪
G2) = f (G1) + f (G2). The following lemma is a variation of a lemma due to Csikvári
and Frenkel [17]; it is fundamental to our approach.

Lemma 3.5. Let f : G → C be a graph invariant given by f (·) := ∑H∈G aHind(H, ·) (where
only finitely many of the aH are nonzero). Then f is additive if and only if aH = 0 for all graphs
H that are disconnected.

Proof. Let H be connected. Then for G1, G2 ∈ G we have ind(H, G1 ∪G2) = ind(H, G1)+
ind(H, G2), as H is connected. Thus ind(H, ·) is additive. Clearly, linear combinations
of additive graph parameters are again additive. This implies that if f is supported on
connected graphs, then f is additive.

Suppose next that f is additive. We need to show that aH = 0 if H is disconnected.
By the previous part of the proof, we may assume that aH = 0 for all connected graphs
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H. Let now H = H1 ∪ H2 with both H1 and H2 nonempty. We may assume by induction
that for all graphs H′ of order strictly smaller than k := |V(H)| we have aH′ = 0. Now,
by additivity we have

f (H) = f (H1) + f (H2) = ∑
H′ :|V(H′)|≥k

aH′(ind(H′, H1) + ind(H′, H2)) = 0,

since |V(Hi)| < k for i = 1, 2. On the other hand we have

f (H) = ∑
H′ :|V(H′)|≥k

aH′ ind(H′, H) = aHind(H, H).

As ind(H, H) 6= 0, this implies that aH = 0 and finishes the proof.

3.2 Proof of Theorem 3.1

Recall that p(·) is a bounded induced graph counting polynomial (BIGCP). Given an
n-vertex graph G with maximum degree at most ∆, we must show how to compute the
first m inverse power sums p1, . . . , pm of p(G) in time (n/ε)O(1), where m = C ln(n/ε).
To reduce notation, let us write p = p(G), d = d(G) for the degree of p, and ei =
ei(G) for i = 0, . . . , d for the coefficients of p (from (10)). Recall that pk := ζ−k

1 +

· · ·+ ζ−k
d , where ζ1, . . . , ζd ∈ C are the roots of the polynomial p(G). Noting e0 = 1,

Proposition 2.1 gives

pk = −kek −
k−1

∑
i=1

ei pk−i, (13)

for each k = 1, . . . , d. By (11), for i ≥ 1, the ei can be expressed as linear combinations
of induced subgraph counts of graphs with at most C1i vertices. Since p1 = −e1, this
implies that the same holds for p1. By induction, (12), and (13) we have that for each k

pk = ∑
H∈GC1k

aH,kind(H, G), (14)

for certain, yet unknown, coefficients aH,k.
Since p is multiplicative, the inverse power sums are additive. Thus Lemma 3.5

implies that aH,k = 0 if H is not connected. Denote by Ci(G) the set of connected graphs
of order at most i that occur as induced subgraphs in G. This way we can rewrite (14)
as follows:

pk = ∑
H∈CC1k(G)

aH,kind(H, G). (15)

The next lemma says that we can compute the coefficients aH,k efficiently for k =
1, . . . , m, where m = C ln(n/ε).

Lemma 3.6. There is an (n/ε)O(1)-time algorithm, which given a BIGCP p and an n-vertex
graph G, computes and lists the coefficients aH,k in (15) for all H ∈ CC1k(G) and all k =
1, . . . , m = C ln(n/ε).

Proof. Using the algorithm of Lemma 3.4, we first compute the sets TC1k consisting of
all subsets S of V(G) such that |S| ≤ C1k and G[S] is connected, for k = 1 . . . , m. This
takes time bounded by (n/ε)O(1). (Note that the algorithm in Lemma 3.4 computes and
lists all the sets Ti for i = 1, . . . , C1m.) We next compute and list the graphs in CC1k(G)
by considering the set of graphs {G[S] | S ∈ TC1k} and removing copies of isomorphic

graphs using Lemma 3.2 (i) to test for isomorphism. This takes time at most (n/ε)O(1)

for each k, so the total time to compute and list the CC1k(G) is bounded by (n/ε)O(1).
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To prove the lemma, let us fix k ≤ m and show how to compute the coefficients aH,k,
assuming that we have already computed and listed the coefficients aH,k′ for all k′ < k.
Let us fix H ∈ CC1k(G). By (13), it suffices to compute the coefficient of ind(H, ·) in
pk−iei for i = 1, . . . , k (where we set p0 = 1). By (11), (12) and (14) we know that the
coefficient of ind(H, ·) in pk−iei is given by

∑
H1 ,H2

cH
H1,H2

aH2,(k−i)λH1 ,i = ∑
(S,T):S∪T=V(H)

aH[T],(k−i)λH[S],i. (16)

As |V(H)| ≤ C1k = O(ln(n/ε)), the second sum in (16) is over at most 4C1k = (n/ε)O(1)

pairs (S, T). For each such pair, we need to compute λH[S],i and look up aH[T],(k−i). We

can compute λH[S],i in time bounded by C
|S|
2 = (n/ε)O(1) since p is a BIGCP.

Looking up aH[T],(k−i) in the given list requires us to test isomorphism of H[T]
with each graph in CC1(k−i)(G) (noting that aH[T],(k−i) = 0 if H[T] 6∈ CC1(k−i)(G) by
Lemma 3.5). Using Lemma 3.2(i) to test for graph isomorphism, this takes time at most

O(|CC1(k−i)(G)|C1(k − i)∆C1(k−i)−1) = O(n/ε)O(1).

Here we use Lemma 3.3 to bound |CC1(k−i)(G)|. Together, all this implies that the

coefficient of ind(H, ·) in pk−iei can be computed in time bounded by (n/ε)O(1), and
so the coefficient aH,k can be computed in time (n/ε)O(1). Thus all coefficients aH,k for

H ∈ CC1k(G) can be computed and listed in time bounded by |CC1k(G)|(n/ε)O(1) =

(n/ε)O(1). This can be done for each k = 1, . . . , m in time (n/ε)O(1).

To finish the proof of the theorem, we compute pk for each k = 1, . . . , m by adding
all the numbers aH,kind(H, G) over all H ∈ CC1k(G). This can be done in time

O(m|CC1m(G)|n2∆2(C1m−1)) = (n/ε)O(1),

where we use that computing ind(H, G) with H ∈ CC1k(G) takes time O(n2∆2(C1m−1))
by Lemma 3.2(ii).

Remark 3.2. Let us finally remark that the proof of Theorem 3.1 is very robust. For ex-
ample, it extends easily to colored versions of induced graph counts. We will moreover
extend it to other graph-like structures in Section 7. For the sake of exposition we have
chosen to present it in the current form.

4 The independence polynomial

4.1 The independence polynomial on bounded degree graphs

Proof of Theorem 1.1. First note that by a result of Shearer [38] and Scott and Sokal [37,
Corollary 5.7], we know that Z(G)(z) 6= 0 for all all graphs G of maximum degree at

most ∆ and all z ∈ C that satisfy |z| ≤ λ∗ = (∆−1)∆−1

∆∆ .
Now fix an n-vertex graph G of maximum degree at most ∆. Let m = C ln(n/ε),

where C = C(λ, λ∗) is the constant in Corollary 2.3. As the kth coefficient of Z(G) is
equal to ind(•k, G), where •k denotes the graph consisting of k isolated vertices and as
Z(G) is clearly multiplicative and has constant term equal to 1, we have that Z(G) is
a BIGCP (taking C1 = C2 = 1). So by Theorem 3.1 we see that for k = 1, . . . , m we
can compute the first m inverse power sums of Z(G) in time (n/ε)O(1). Noting that
the degree of Z(G) is at most n, Corollary 2.3 implies we can compute a multiplicative
ε-approximation to Z(G)(λ) in time (n/ε)O(1). This concludes the proof.
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Let us briefly mention how our results apply to the multivariate independence poly-
nomial. For a graph G = (V, Z) and a variable zv for each v ∈ V define

Z(G)((zv)v∈V) = ∑
I⊂V

independent

∏
v∈I

zv.

Now define a multivariate polynomial q by q(λ) = Z(G)((λzv)v∈V). Then the coeffi-
cient of λk of q can be expressed as the sum over vertex colored induced graph counts
on at most k vertices (using the vertices of G as colors) where the coefficient of a graph
H with vertex coloring c : V(H) → V(G) is equal to ∏u∈V(H) zc(u) if H is an indepen-
dent set of k vertices and zero otherwise. Then by the method from the previous section
we can again compute the low order inverse power sums efficiently on bounded degree
graphs, cf. Subsection 7.2. Using that the result of Scott and Sokal [37] also applies
to the multivariate independence polynomial, it then follows that we can efficiently
approximate Z(G)((zv)v∈V) on bounded degree graphs if all zv satisfy |zv| < λ∗.

Evaluating the independence polynomial at negative and complex values gives us
new information about the distribution of independent sets in a graph, as illustrated by
the following example. We denote by Ze(G)(λ) the polynomial defined in the same way
as the independence polynomial except that in the sum (1), we only allow independent
sets whose cardinality is even.

Theorem 4.1. Let ∆ ∈ N and let 0 ≤ λ < λ∗(∆) := (∆−1)∆−1

∆∆ . Then there exists a deter-
ministic algorithm, which, given a graph G = (V, E) of maximum degree at most ∆ and ε > 0,
computes a multiplicative ε-approximation to Ze(G)(λ) in time (|V|/ε)O(1).

Proof. We apply the algorithm of Theorem 1.1 to compute multiplicative ε-approximations
A(λ) and A(−λ) to Z(G)(λ) and Z(G)(−λ) respectively in time (|V|/ε)O(1). We have

e−εZ(G)(λ) ≤ A(λ) ≤ eεZ(G)(λ) and e−εZ(G)(−λ) ≤ A(−λ) ≤ eεZ(G)(−λ).

Taking half the sum of these equations and noting that Ze(G)(λ) = 1
2 (Z(G)(λ) +

ZG(−λ)), we see that 1
2 (A(λ) + A(−λ)) is a multiplicative ε-approximation to Ze(G)(λ)

provided both Z(G)(λ) and Z(G)(−λ) have the same sign.
Clearly Z(G)(λ) > 0 since the coefficients of Z(G) are nonnegative real numbers.

Also Z(G)(−λ) > 0 because we know by the result of Scott and Sokal [37] that Z(G)
does not vanish in the interval [−λ∗, λ∗], and we know Z(G) is positive in the interval
[0, λ∗] since all the coefficients of Z(G) are nonnegative real numbers. Hence Z(G) is
positive on the whole interval [−λ∗, λ∗] and in particular Z(G)(λ) > 0.

4.2 The independence polynomial on claw-free graphs

In this subsection, we illustrate a technique of Barvinok for approximating graph poly-
nomials on larger regions of the complex plane by making careful polynomial trans-
formations. We use this technique to prove Theorem 1.2, which shows that we can
approximate the independence polynomial of claw-free graphs on almost the entire
complex plane. First we require a few preliminary results.

Proposition 4.2. If G is a claw-free graph of maximum degree ∆ and ζ is a root of the indepen-
dence polynomial Z(G) of G then ζ ∈ R with ζ < − 1

e(∆−1)
.

Proof. The fact that ζ ∈ R is a result of Chudnovsky and Seymour [16]. The fact that
ζ must be negative follows because all the coefficients of Z(G) are positive. Now the
result of Sokal and Scott [37] states that

|ζ| ≥ λ∗(∆) =
(∆ − 1)∆−1

∆∆
>

1

e(∆ − 1)
,
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from which the proposition follows.

We also require the following lemma of Barvinok [5].

Lemma 4.3. For ρ ∈ (0, 1) we define

α = α(ρ) = 1 − exp(−ρ−1), β = β(ρ) =
1 − exp(−1 − ρ−1)

1 − exp(−ρ−1)
> 1,

N = N(ρ) = (1 + ρ−1) exp(1 + ρ−1), σ = σ(ρ) =
N

∑
i=1

αi

i
.

The polynomial

φ(z) = φρ(z) =
1

σ

N

∑
i=1

(αz)i

i

has the following properties:

(i) φ(0) = 0 and φ(1) = 1 and φ has degree N;

(ii) If z ∈ C with |z| ≤ β then φρ(z) ∈ Sρ, where

Sρ := {z ∈ C | −ρ ≤ Re(z) ≤ 1 + 2ρ and − 2ρ ≤ Im(z) ≤ 2ρ}.

Proposition 4.4. Fix λ = reiθ ∈ C with θ ∈ (−π, π). Let Sρ be as in the previous lemma,
and let R

− denote the negative real line. Then

λSρ ∩ R
− ⊆

{

[−2ρr, 0] if θ ∈ [−π
2 , π

2 ];

[−2ρr/|sinθ|, 0] otherwise.

Proof. Sρ is a bounded strip parallel to the real axis in the complex plane, so λSρ is
the same strip enlarged by a factor r and rotated by an angle θ. The proposition then
follows from elementary trigonometry.

Proof of Theorem 1.2. Recall that we are given a claw-free graph G of maximum degree
∆ and λ ∈ C that is not a negative real number and we wish to find a multiplicative
ε-approximation to Z(G)(λ).

Set n := |V(G)| and let λ = reiθ with θ ∈ (−π, π). Set

ρ =

{

1/6r(∆ − 1) if θ ∈ [−π
2 , π

2 ];

| sin θ|/6r(∆ − 1) otherwise,

and consider the polynomial g(z) = Z(G)(λφρ(z)). Note that the degree of g is O(n)
since the degree of Z(G) is at most n and the degree of φρ is a constant N(ρ).

We will use Corollary 2.3 to find a multiplicative ε-approximation to g(1) = Z(G)(λ)
in time (n/ε)O(1). In order to apply Corollary 2.3 to draw this conclusion, it is enough
to check that (i) g has no roots in the disk |z| ≤ β := β(ρ) and that (ii) the first m =
C ln(d/ε) inverse power sums of g can be computed in time (n/ε)O(1), where d = O(n)
is the degree of g and C = C(β, 1) is the constant in the statement of Corollary 2.3.

It remains to check (i) and (ii). To see (i), note first that by Lemma 4.3, φρ maps the
disk D = {z ∈ C | |z| ≤ β} into Sρ. By Proposition 4.4 and our choice of ρ, we have

λφρ(D) ∩ R
− ⊆ (− 1

3(∆−1)
, 0]. By Proposition 4.2 we know that if Z(G)(ζ) = 0 then

ζ ∈ R with ζ < − 1
e(∆−1)

. In particular this implies g(·) = Z(G)(λφρ(·)) has no root in

the disk D.
For (ii), we show that we can compute the first m coefficients of g in time (n/ε)O(1),

which is sufficient by Proposition 2.1. Given a polynomial p(z) = ∑
d
i=0 aiz

i, write
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p[m](z) := ∑
m
i=0 aiz

i. Then we note that g[m] = (Z(G) ◦ (λφ))[m] = (Z(G)[m] ◦ (λφ[m]))[m],
where we crucially use the fact that φ has no constant term since φ(0) = 0. In words,
to obtain g[m](z) we substitute λφ[m](z) into Z(G)[m](z) and keep the first m terms.

Thus, in O(m3)-time we can obtain the first m coefficients of g if we know the first m
coefficients of Z(G). As Z(G) is a BIGCP, we can compute its first m inverse power
sums in time (n/ε)O(1) (as in the proof of Theorem 1.1), from which we can find its first
m coefficients in time O(m2) by Proposition 2.1. This finishes the proof.

We remark that, for the (n/ε)O(1) running time in the algorithm above, the O(1)
in the exponent depends on λ and grows exponentially fast in r = |λ|. However, this
dependence can be brought down to O(|λ|1/2) by adapting Lemma 4.3 as described by
Barvinok [6].

5 The Tutte polynomial

Here we give a proof of Theorem 1.3.

Proof of Theorem 1.3. By a result of Jackson, Procacci and Sokal, cf. [29, Theorem 1.2]
(which is valid for loopless multigraphs) we know that there exists a constant K > 0
depending on ∆ and w such that for all q with |q| > K we have ZT(G)(q, w) 6= 0 for all
graphs G of maximum degree at most ∆. This is exactly opposite to what we need to
apply Corollary 2.3, so let us define the graph polynomial pT by

pT(G)(z) := z|V|ZT(G)(1/z, w), (17)

for any graph G = (V, E). Note that pT(G) has degree n := |V| and that if x is a multi-
plicative ε-approximation to pT(G)(1/q, w), then qnx is a multiplicative ε-approximation
to ZT(G)(q, w), so it is sufficient to find the former.

We will show that for any n-vertex graph G of maximum degree at most ∆, we
can compute the first m inverse power sums of pT(G) in time (n/ε)O(1), where m =
C ln(n/ε) and C = C(1/q, 1/K) is the constant in Corollary 2.3. Corollary 2.3 then
implies we can compute a multiplicative ε-approximation to pT(G)(1/q) and hence to
ZT(G)(q, w) in time (n/ε)O(1).

We will show that pT(G) is a BIGCP so that by Theorem 3.1 we can conclude that
we can compute the first m inverse power sums in time (n/ε)O(1).

Since the Tutte polynomial ZT(G)(z, w) (as a polynomial in z) is a monic and mul-
tiplicative graph polynomial (of degree n = |V(G)|), we know that the constant term
of pT equals 1 and that pT is multiplicative. So it suffices to show conditions (i) and
(ii) in Definition 3.1. The coefficient of zk in pT(G) equals the coefficient of zn−k in
ZT(G)(z, w) and is by definition equal to the sum over all subsets A of E such that
A induces a graph with exactly n − k components, where each subset is counted with
weight w|A|. Let us call a component of a graph nontrivial if it consists of more than one
vertex. Suppose some subset of the edges A ⊆ E induces n − k components of which c
are nontrivial. Then we have n − k − c isolated vertices and so the graph F, consisting
of the union of these nontrivial components, has n − (n − k − c) = k + c vertices and
k(F) = c components. Thus we have a correspondence between subsets A of E that
induce a graph with exactly n − k components and subgraphs F of G with no isolated
vertices satisfying k(F) = V(F) − k. Therefore the coefficient of zn−k in ZT(G) can be
expressed as

∑
F⊆G : δ(F)≥1

|k(F)|=|V(F)|−k

w|E(F)| = ∑
H

∑
F⊆H : δ(F)≥1
V(F)=V(H)

|k(F)|=|V(F)|−k

w|E(F)|ind(H, G). (18)
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In fact the first sum can be taken over graphs H with at most 2k vertices. This is because
V(H) = V(F) and

|V(F)| = k(F) + k ≤
V(F)|

2
+ k.

as F has no isolated vertices.
From (18), we can compute the coefficient of ind(H, G) by checking all subsets of

E(H) in time O(2E(H)) = O(2∆|V(H)|). This implies that pT is a BIGCP (taking C1 = 2
and C2 = 2∆).

Remark 5.1. Csikvári and Frenkel [17] introduced graph polynomials of bounded exponential
type and showed that these polynomials have bounded roots on bounded degree graphs.
This was utilized in [36] to give quasi-polynomial-time approximation algorithm for
evaluations of these polynomials. The Tutte polynomial with the second argument fixed
is an example of such a polynomial. We remark here that the proof given above for the
Tutte polynomial also easily extends to graph polynomial of bounded exponential type.
So the algorithm in [36] can be adapted to run in polynomial time on bounded degree
graphs.

6 Partition functions of spin models

In this section we will state and prove a generalization of Theorem 1.4 and we will
indicate how our method applies to partition functions of graph homomorphisms with
multiplicities.

6.1 Partition functions for edge-colored graphs

Suppose a graph G = (V, E) has an edge-coloring ψ : E → [c], which need not be a
proper coloring. Suppose also that for each i = 1, . . . , c we have a symmetric k × k-
matrix Ai. Let us write A = (A1, . . . , Ac). Then we can extend the definition of the
partition function of a spin model as follows:

p(G)(A) = ∑
φ:V→[k]

∏
e={u,v}∈E

A
ψ(e)
φ(u),φ(v)

. (19)

We will refer to p(G)(A) as the partition function of A. In [22] this is called a Markov
random field (if the Ai are nonnegative) and in [34] this is called a multi spin system.
Clearly, if c = 1 this just reduces to the partition function of a spin model. We have the
following result, which implies Theorem 1.4.

Theorem 6.1. Let ∆, k ∈ N. Then there exists a deterministic algorithm, which, given a c-edge-
colored graph G = (V, E) of maximum degree at most ∆, symmetric k × k matrices A1, . . . , Ac

such that |As
i,j − 1| ≤ 0.34/∆ for all i, j = 1, . . . , k and s = 1, . . . , c, and ε > 0, computes a

multiplicative ε-approximation to p(G)(A) in time (|V|/ε)O(1).

Remark 6.1. The implicit constant in the big O only depends on ∆ and k, cf. Remark 3.1.
In particular, the number of colors c does not play a role in the complexity of the
algorithm. The constant 0.34 may be replaced by 0.45 if ∆ ≥ 3 and by 0.54 if ∆ is large
enough. See [7].

Proof. Let J be the all ones matrix. For z ∈ C, let A′(z) := (J + z(A1 − J), . . . , J + z(Ac −
J)). Define a univariate polynomial q by

q(G)(z) = k−|V|p(G)(A′(z)). (20)
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Then q(G)(0) = 1 and q(G)(1) = k−|V|p(G)(A). Barvinok and Soberón [7, Theorem
1.6] showed that there exists a constant δ > 0 such that q(G)(z) 6= 0 for all z satisfying
|z| ≤ 1 + δ.

We will show that for any n-vertex graph G of maximum degree at most ∆, we
can compute the first m inverse power sums of q(G) in time (n/ε)O(1), where m =
C ln(n/ε) and C = C(1, 1 + δ) is the constant in Corollary 2.3. Noting that the degree
of q(G) is at most |E| ≤ n∆/2, Corollary 2.3 implies we can compute a multiplicative ε-
approximation to q(G)(1) in time (n/ε)O(1). So it remains to show that we can compute
the first m inverse power sums of q(G) in time (n/ε)O(1).

By definition, q(G)(z) satisfies

q(G)(z) = k−n ∑
φ:V→[k]

∏
e={u,v}∈E

(J + (z(Aψ(e) − J)))φ(u),φ(v)

= k−n
|E|

∑
i=0

zi

(

∑
F⊆E
|F|=i

∑
φ:V→[k]

∏
e={u,v}∈F

(Aψ(e) − J)φ(u),φ(v)

)

. (21)

For a subset F of E, define G[F] to be the edge-colored graph induced by the edges in
F. The vertex set of G[F] consists of those vertices incident with edges in F and hence
has size at most 2|F|. For each ℓ ∈ N, let Gℓ(c) be the collection of graphs on at most
ℓ vertices whose edges are colored with colors from [c]. For two edge-colored graphs
H1, H2 with colors from [c] we denote by indc(H1, H2) the number of induced graphs
of H2 that are isomorphic as edge-colored graphs to H1.

Then we see that the coefficient of zi in (21) can be written as follows:

k−n ∑
H∈G2i(c)
|E(H)|=i

kn−|V(H)|
(

∑
φ:V(H)→[k]

∏
e={u,v}∈E(H)

(Aψ(e) − J)φ(u),φ(v)

)

indc(H, G)

= ∑
H∈G2i(c)
|E(H)|=i

(

k−|V(H)| ∑
φ:V(H)→[k]

∏
e={u,v}∈E(H)

(Aψ(e) − J)φ(u),φ(v)

)

indc(H, G). (22)

If i ≤ m, the inner sum in (22) can be computed in time O(k2m) = (n/ε)O(1). Clearly,
q has constant term equal to 1 and it is multiplicative. In case c = 1, i.e., in case we
are dealing with ordinary graphs, this implies that q is a BIGCP (with constant C1 = 2
and C2 = k) and so Theorem 3.1 implies that we can compute the first m inverse power
sums of q in time bounded by O(n/ε)O(1).

In the general case we note that Theorem 3.1 remains valid if ind is replaced by indc

in Definition 3.1. To see this, it suffices to note that all lemmas and proofs in Section 3
directly carry over to the edge-colored case. This finishes the proof.

6.2 Partition functions of graph homomorphisms with multiplicities

Let again G = (V, E) be equipped with an edge-coloring ψ : E → [c], which need not
be a proper coloring. Suppose also that for each i = 1, . . . , c we have a symmetric k × k-
matrix Ai. Let us write A = (A1, . . . , Ac). Let n = |V| and let µ = (µ1, . . . , µk) with
µi ∈ Z≥1 for each i be such that that ∑

k
i=1 µi = n. We call such µ a composition of n in

k parts. Barvinok and Soberón [8] define the partition function of graph homomorphisms
with multiplicities µ as

pµ(G)(A) = ∑
φ:V→[k]

|φ−1(i)|=µi

∏
e={u,v}∈E

A
ψ(e)
φ(u),φ(v)

. (23)
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We refer to [8] for more details and background on this type of partition function.
Building on a result from Barvinok and Soberón [8, Section 2] and using exactly the

same proof as above we directly establish the following:

Theorem 6.2. Let ∆, k ∈ N. Then there exists a deterministic algorithm, which, given an
c-edge colored graph G = (V, E) of maximum degree at most ∆, a composition µ of |V| in k
parts, symmetric k × k matrices A1, . . . , Ac such that |As

i,j − 1| ≤ 0.1/∆ for all i, j = 1, . . . , k

and s = 1, . . . , c, and ε > 0, computes an ε-approximation to pµ(G)(A) in time (|V|/ε)O(1).

7 Partition functions of edge-coloring models

In this section we state and prove a generalization of Theorem 1.5. It is along the same
lines as the generalization of Theorem 1.4 in the previous section. The proof also goes
along the same line, but as we will see below there are some details that are different.

7.1 Partition functions for vertex-colored graphs

Let G = (V, E) be a graph that is equipped with a vertex coloring ψ : V → [c] (ψ
need not be a proper coloring). Suppose that we have k-color edge-coloring models
h1, . . . , hc. Let us write H = (h1, . . . , hc). Often the pair (G, {h1, . . . , hc}, ψ) is called a
signature grid, cf. [14, 15, 13]. Then we can extend the definition of the partition function
of an edge-coloring model as follows:

p(G)(H) = ∑
φ:E→k

∏
v∈V

hψ(v)(φ(δ(v))). (24)

We will refer to p(G)(H) as the partition function of H. It is also called the Holant problem
of the signature grid (G, {h1, . . . , hc}, ψ) cf. [14, 15, 13]. We have the following result,
which implies Theorem 1.5.

Theorem 7.1. Let ∆, k ∈ N. Then there exists a deterministic algorithm, which, given a c-
vertex colored graph G = (V, E) of maximum degree at most ∆, k-color edge-coloring models
h1, . . . , hc that satisfy |hs(φ)− 1| ≤ 0.35/(∆+ 1) for all φ ∈ Nk and s = 1, . . . , c, and ε > 0,
computes a multiplicative ε-approximation to p(G)(H) in time (|V|/ε)O(1).

Remark 7.1. Just as for edge-colored graphs, the number of colors c does not play a
role in the time complexity in the theorem above. Additionally, the constant 0.35 may
be replaced by 0.47 if ∆ ≥ 3 and by 0.56 if ∆ is large enough; see [36]. Moreover, for
readers familiar with the orthogonal group invariance of these partition functions one
can use Corollary 6b from [36] to find a larger family of edge-coloring models for which
the partition function can be efficiently approximated.

Proof. Let J denote the constant ones function J : Nk → C (defined by J(φ) = 1 for
all φ ∈ Nk). Let for z ∈ C, H(z) := (J + z(h1 − J), . . . , J + z(hc − J)). Consider the
following univariate polynomial:

q(G)(z) := k−|E|p(G)(H(z)). (25)

Observe that q(G)(1) = k−|E|p(G)(H) and that q(G) is a polynomial of degree at most
n := |V|. So, just as in the previous section, the problem of approximating the partition
function p(G)(H) is replaced by approximating an evaluation of a univariate polyno-
mial.

By Corollary 6a from [36] (which is valid for multigraphs) there exists δ > 0 such
that q(G)(z) 6= 0 for all z ≤ 1 + δ. We will show (in Theorem 7.2) that for any n-vertex
graph G of maximum degree at most ∆, we can compute the first m inverse power sums
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of q(G) in time (n/ε)O(1), where m = C ln(n/ε) and C = C(1, 1 + δ) is the constant in
Corollary 2.3. Noting that the degree of q(G) is at most n, Corollary 2.3 implies we can
compute a multiplicative ε-approximation to q(G)(1) in time (n/ε)O(1).

Ideally we would like to do this using Theorem 3.1 just as in the proof of Theorem
6.1. Since partition functions of edge-coloring models are multiplicative, the polynomial
q is also multiplicative and it has constant term equal to 1. So to be able to apply
Theorem 3.1 we need only check that the coefficients of q can be expressed as linear
combinations of induced graph counts. This is in fact proved in [36] for c = 1, but
in that expression it is not clear whether the coefficients λH,i in (11) can be computed
efficiently. So instead of directly applying Theorem 3.1 we will have to do a little more
work, which we postpone to the next section.

7.2 Computing coefficients of q(G)(z)

By definition,

q(G)(z) = k−|E| ∑
φ:E→[k]

∏
v∈V

(J + z(hψ(v) − J))(φ(δ(v)))

= k−|E|
n

∑
i=0

zi

(

∑
U⊆V
|U|=i

∑
φ:E→[k]

∏
u∈U

(hψ(u) − J)(φ(δ(u)))

)

. (26)

We need the concept of a fragment, which is a pair (H, κ), where H is a c-vertex colored
graph and where κ is a map κ : V(H) → {0, 1, . . . , ∆}. We think of κ(u) as a number of
half edges incident with u. Note that the graph G itself can be thought of as a fragment
by taking the map κ : V(G) → {0, . . . , ∆} to be κ(v) = 0 for all v ∈ V(G).

For U ⊆ V we let G(U) be the fragment (G[U], κ) where κ(u) is equal to the number
of edges that connect u with V \ U. Clearly, for each U of size i the second sum on
the right in (26) only depends on the isomorphism class of the fragment G(U). (An
isomorphism from a fragment (H, κ) to a fragment (H′, κ′) is an isomorphism α of the
underlying graphs that preserves vertex colors and such that for each u ∈ V(H), κ(u) =
κ′(α(u)).) For a fragment F = (H, κ) let E(F) denote the set of edges of F including half
edges and let V(F) denote the vertex set of the underlying graph H. Then define,

p(F)(H) := ∑
φ:E(F)→[k]

∏
v∈V(F)

hψ(v)(φ(δ(v))). (27)

Here we implicitly assume that the ψ : V(F) → [c] is the same as the vertex colouring ψ :
V(H) → [c] of H. Define for a fragment F = (H, κ), ind∗(F, G) to be the number of sets
U of size |V(F)| such that G(U) is isomorphic to F. Writing H− J = (h1 − J, . . . , hc − J),
we can rewrite (26) as

q(G)(z) = k−|E|
n

∑
i=0

zi

(

∑
F=(H,κ)
|V(H)|=i

k|E|−|E(F)|p(F)(H− J)ind∗(F, G)

)

=
n

∑
i=0

zi

(

∑
F=(H,κ)
|V(H)|=i

k−|E(F)|p(F)(H− J)ind∗(F, G)

)

, (28)

where the sum runs over fragments. Let us denote the coefficient of zi in (28) by ei. In
[36] it is proved that in case c = 1, ind∗(F, G) can be expressed as a linear combination
of the parameters ind(H, G) for certain graphs H. As mentioned above, the coefficients
in this expression may not be easy to compute (at least we do not know how to do
this). So will have to work with the parameters ind∗(F, ·) instead. This is not a severe
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problem, since essentially if we replace ind in (11) by ind∗, then Theorem 3.1 remains
valid. Indeed, we have the following theorem.

Theorem 7.2. Let C > 0 and ∆ ∈ N. Then there is a deterministic (n/ε)O(1)-time algorithm,
which, given any n-vertex graph G of maximum degree at most ∆ and any ε > 0, computes the
inverse power sums p1, . . . , pm of q(G) for m = C ln(n/ε).

The proof of Theorem 7.2 follows the same line as the proof of Theorem 3.1. Essen-
tially we need to replace graphs by fragments in the proof and check that everything
remains valid. For completeness we will give the proof.

We first need to note that for a fragment F1 = (H1, κ1) the graph parameter ind∗(F1, ·)
can be extended to the collection of all fragments as follows: for a fragment F2 =
(H2, κ2) we let ind∗(F1, F2) denote the number of embeddings of H1 as induced sub-
graph in H2, preserving vertex colors, such that for each vertex v of H1 we have that the
number of neighbours of v in V(H2) \ V(H1) is equal to κ1(v)− κ2(v). Then for two
fragments F1 and F2 we have

ind∗(F1, ·) · ind∗(F2, ·) = ∑
F

cF
F1,F2

ind∗(F, ·), (29)

where the sum runs over all fragments F and where for a fragment F, cF
F1,F2

denotes

the number of pairs of subsets (S, T) of V(F) such that S ∪ T = V(F) and F1 = F(S)
and F2 = F(T). (Here F(S) is the fragment induced by S, i.e., if F = (H, κ), then
F(S) = (H[S], α) where for s ∈ S we set α(s) = degH(s)− degH[S](s) + κ(s).) We call a

fragment F = (H, κ) connected if the graph H is connected. We now adapt some of the
statements and proofs of the results in Section 3 to include fragments.

We start with some definitions. By F we denote the collection of all fragments and
by Fk for k ∈ N we denote the collection of fragments with at most k vertices. (Recall
that we implicitly assume that the vertices of our fragments are colored with the colors
1, . . . , c.) For two fragments F1 = (H1, κ1) and F2 = (H2, κ2), F1 ∪ F2 := (H, κ), where
H = H1 ∪ H2 and κ : V(H1 ∪ V(H2) → {0, 1, . . . , ∆} is the map whose restriction to
V(H1) is κ1 and whose restriction to V(H2) is κ2. An invariant of fragments is a function
f : F → S for some set S that takes the same value on isomorphic fragments. Call
an invariant of fragments f multiplicative if f (∅) = 1 and f (F1 ∪ F2) = f (F1) f (F2) for
all fragments F1, F2 . The maximum degree of a fragment F = (H, κ) is equal to the
maximum of deg(v) + κ(v) over v ∈ V(G).

Lemma 7.3. Let F = (H, κ) be a connected fragment on k vertices and let ∆ ∈ N. Then there is
an O(n2∆2(k−1))-time algorithm, which, given any n-vertex fragment F̂ with maximum degree
at most ∆, computes the number ind∗(F, F̂).

Note that Lemma 7.3 enables us to test for isomorphism of fragments between
bounded degree fragments when |V(F)| = |V(F̂)|.

Proof. This follows immediately from the proof of Lemma 3.2. We apply the proof of
Lemma 3.2 to the underlying graphs and then remove any potential embedding that
either violates the vertex coloring constraints or the constraints that κ imposes.

We call an invariant of fragment f : F → C additive if for each F1, F2 ∈ F we have
f (F1 ∪ F2) = f (F1) + f (F2). The following variation of a lemma due to Csikvári and
Frenkel [17] has exactly the same proof as Lemma 3.5; one just needs to replace graph
by fragment everywhere in the proof.

Lemma 7.4. Let f : F → C be an invariant of fragments given by f (·) := ∑F∈F aFind∗(F, ·)
(where only finitely many of the aF are nonzero). Then f is additive if and only if aF = 0 for all
fragments F that are disconnected.

We now sketch the proof of Theorem 7.2.
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7.2.1 Proof of Theorem 7.2

Let ζ1, . . . , ζd ∈ C be the roots of the polynomial q(G) and recall that for ℓ ∈ N, pℓ is
the ℓth inverse power sum of the ζi. Here d denotes the degree of q(G) = ∑

d
i=0 eiz

i,
which is at most n. By (28), for i ≥ 1, the ei can be expressed as linear combinations
of induced fragments counts of fragments with at most ℓ vertices. Since e1 = −p1, this
implies that the same holds for p1. By induction, (29) and (13) (using that e0 = 1) we
have that for each ℓ

pℓ = ∑
F∈Fℓ

aF,ℓind∗(F, G), (30)

for certain, yet unknown, coefficients aF,ℓ.
Since q̂ is multiplicative, the power sums are additive. Thus Lemma 7.4 implies that

aF,ℓ = 0 if F is not connected. Denote by C ′
ℓ(G) the set of connected fragments F of

order at most ℓ such that ind∗(F, G) 6= 0. This way we can rewrite (30) as follows:

pℓ = ∑
F∈C ′

ℓ(G)

aF,ℓind∗(F, G). (31)

The next lemma says that we can compute the coefficients aF,ℓ efficiently for ℓ =
1, . . . , m, where m = C ln(n/ε).

Lemma 7.5. There is an O(n/ε)O(1)-time algorithm, which given an n-vertex graph G and
ε > 0, computes and lists the coefficients aF,ℓ in (31) for all F ∈ C ′

ℓ(G) and all ℓ = 1, . . . , m =
C ln(n/ε).

Proof. Using the algorithm of Lemma 3.4, we first compute the sets Tℓ consisting of
all subsets S of V(G) such that |S| ≤ ℓ and G[S] is connected, for ℓ = 1 . . . , m. This
takes time bounded by (n/ε)O(1). We next compute and list the fragments in C ′

ℓ(G) by
considering the set of fragments {G(S) | S ∈ Tℓ} and removing copies of isomorphic
fragments using Lemma 7.3 to test for isomorphism. This takes time at most (n/ε)O(1)

for each ℓ, so the total time to compute and list the C ′
ℓ(G) is bounded by (n/ε)O(1).

To prove the lemma, let us fix ℓ ≤ m and show how to compute the coefficients
aF,ℓ, assuming that we have already computed and listed the coefficients aF,ℓ′ for all
ℓ′ < ℓ. Let us fix F ∈ C ′

ℓ(G). By the Newton identities (13), it suffices to compute the
coefficient of ind∗(F, ·) in pℓ−iei for i = 1, . . . , ℓ (where we set p0 = 1). By (28), (29) and
(30) we know that the coefficient of (−1)iind(F, ·) in pℓ−iei is given by

∑
F1∈Fi,F2∈Fℓ−i

|V(F1)|=i

cF
F1,F2

aF2,(ℓ−i)
p(F1)(J −H)

k|E(F1)|
= ∑

S,T⊆V(F)
S∪T=V(F)

|S|=i,|T|≤ℓ−i

aF(T),(ℓ−i)
p(F(S))(J −H)

k|E(F(S))|
. (32)

For each such pair (S, T), we need to compute
p(F(S))(J−H)

k|E(F(S))| and look up aF(T),(ℓ−i). We

can compute
p(F(S))(J−H)

k|E(F(S))| in time bounded by O(k∆ℓ) = (n/ε)O(1).

Looking up aF(T),(ℓ−i) in the given list requires us to test isomorphism of F(T)

with each fragment in C ′
ℓ−i(G) (noting that aF(T),(ℓ−i) = 0 if F(T) 6∈ C ′

(ℓ−i)(G) by
Lemma 7.4). Using Lemma 7.3 to test for isomorphism, this takes time at most

O(|C ′
(ℓ−i)(G)|(ℓ− i)2∆2(ℓ−i−1)) = O(n/ε)O(1).

Here we use Lemma 3.3 to bound |C ′
(ℓ−i)(G)| ≤ |T(ℓ−i)(G)|. Together, all this implies

that the coefficient of ind∗(F, ·) in pℓ−iei can be computed in time bounded by (n/ε)O(1),
and so the coefficient aF,ℓ can be computed in time (n/ε)O(1). Thus all coefficients aF,ℓ

for F ∈ C ′
ℓ(G) can be computed and listed in time bounded by |C ′

ℓ(G)|(n/ε)O(1) =
(n/ε)O(1). This can be done for each ℓ = 1, . . . , m in time (n/ε)O(1).
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To finish the proof of the theorem, we compute pℓ for each ℓ = 1, . . . , m by adding
all the numbers aF,ℓind∗(F, G) over all F ∈ C ′

ℓ(G). This can be done in time

O(m|C ′
m(G)|n2∆2(m−1)) = (n/ε)O(1),

where we have used that computing ind∗(F, G) with F ∈ C ′
ℓ(G) takes time bounded by

O(n2∆2(m−1)) by Lemma 7.3. This finishes the proof.

8 Concluding remarks and open questions

In this paper we have presented a direct connection between the absence of complex
roots for a large class of graph polynomials (BIGCPs) and the existence of (determin-
istic) algorithms to efficiently approximate evaluations of these polynomials. We have
illustrated its use by giving deterministic polynomial-time approximation algorithms
for evaluations of the Tutte polynomial, the independence polynomial and graph poly-
nomials obtained from spin and edge-coloring models at complex numbers on bounded
degree graphs.

This connection naturally leads to the question of how hard it is to approximate
evaluations of these graph polynomials close to (complex) roots. Of course this question
is rather vague. So let us formulate a more concrete question.

Question 8.1. Recall the constant λ∗(∆) = (∆−1)∆−1

∆∆ for ∆ ∈ N. What is the complexity
of approximating ZG(−λ) for λ > λ∗(∆) for graphs G of maximum degree at most ∆?

We note that Harvey, Srivastava and Vondrák [27] have already made some progress
on this question. But the interesting case, when λ is close to λ∗(∆), is, as far as we
know, still open.

As is noted in the introduction our result for the independence polynomial at pos-
itive λ does not allow us to efficiently approximate the independence polynomial at λ

for λ∗ ≤ λ < λc. (This can be done with the correlation decay approach cf. Weitz [46].)
But using the approach in Section 4.2 it would follow from a positive answer to the
following question, which is a restatement of a version of a conjecture of Sokal [41].

Question 8.2. Let ε > 0 and ∆ ∈ N. Does there exists δ > 0 (possibly depending on ∆)
such that if λ ∈ C satisfies

|ℑ(λ)| ≤ δ, and 0 ≤ ℜ(λ) ≤ (1 − ε)
(∆ − 1)∆−1

(∆ − 2)∆
, (33)

then ZG(λ) 6= 0 for all graphs G of maximum degree at most ∆.

We also iterate a another conjecture of Sokal [28, Conjecture 21], which, if true,
would by the methods of the present paper imply that we have an efficient algorithm
for approximately counting the number of (∆ + 1)-colorings in any graph of maximum
degree at most ∆.

Question 8.3. Let ∆ ∈ N. Is it true that ZT(G)(−1, q) 6= 0 for any q ∈ C with ℜ(q) > ∆

and any graph G of maximum degree at most ∆?

Another question that arises naturally is the following. Barvinok [2, 5] found quasi-
polynomial-time approximation algorithms for computing the permanent of certain ma-
trices, based on absence of zeros. Our method for computing inverse power sums of
BIGCPs on bounded degree graphs presented in Section 3 does not seem to apply to
permanents. It would be very interesting to find a more general method that also ap-
plies to permanents.
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