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Abstract 

The main technique used in algorithm design for  approxi- 
mating #P-hard counting problems is the Markov chain Monte 
Carlo method. At the heart of the method is the study of the con- 
vergence (mixing) rates of particular Markov chains of interest. 

In this paper we illustrate a new approach to the coupling 
technique, which we call path coupling, for bounding mixing 
rates. Previous appliccitions of coupling have required detailed 
insights into the combinatorics of the problem at hand, and this 
complexity can make the technique extremely difficult to apply 
successfully. Path coupling helps to minimize the combinatorial 
difficulty and in all cases provides simpler convergence proofs 
than does the standard coupling method. Howevel; the true 
power of the method i>i that the simpl$cation obtained may al- 
low coupling proofs which were previously unknown, or provide 
significantly better bounds than those obtained using the standard 
method. 

We apply the path coupling method to several hard combi- 
natorial problems, obtaining new or improved results. We exam- 
ine combinatorial probr'ems such as graph colouring and TWICE- 
SAT, and problems fn?m statistical physics, such as the anti- 
ferromagnetic Potts model and the hard-core lattice gas model. 
In each case we provide either a proof of rapid mixing where 
none was known previously, or substantial simpl$cation of ex- 
isting proofs with conseqent gains in the pegormance of the re- 
sulting algorithms. 

1 Introduction 

Exact combinatorial counting is known to be ex- 
tremely difficult [171, and therefore establishing the ap- 
proximation complexity of problems in this domain is a 
significant challenge to theoretical computer science. Even 
deterministic approximation seems problematic for most 
problems. However, several #P-hard combinatorial count- 
ing problems have baen shown to possess a fully polyno- 
mial randomized approximation scheme (fpras). See, for 
example, [2, 9, 131. Many of these algorithms are based 
on establishing polynomial-time convergence of a Markov 
chain defined on the s.et of combinatorial objects under con- 

sideration. This property is known as rapid mixing. Un- 
fortunately, there are few general techniques for proving 
that a particular chain has this attribute. (See [ 123 for a re- 
cent survey.) A method which has lately proved successful 
in some situations is the method of coupling, a long es- 
tablished technique in applied probability. See, for exam- 
ple, [6, 8, 111. However, the application of this approach 
(and it competitors) in this setting hiis necessarily been 
somewhat ad hoc, requiring detailed combinatorial insights 
into the target problem. 

In this paper we describe a general, approach to apply- 
ing the coupling method to certain Markov chains, which 
we call path coupling. The power of the path coupling 
method is that it requires only comparisons between ad- 
jacent states, rather than arbitrary staters, and this results in 
much simpler analyses. While we stress that the methodol- 
ogy is rather more general than our main theorems here, in 
Section 2 we apply it to prove two theorems on the conver- 
gence rates of Markov chains on product spaces. The first 
theorem provides the sharpest results, but has the drawback 
of requiring the Markov chain to be defined on inaccessi- 
ble as well as accessible states. Fortunately, this is less of a 
difficulty in some applications than one might expect. The 
second theorem avoids this difficulty, and allows an eas- 
ier description of the coupling, but at t he expense of some 
tightness in the bounds obtained. Nevertheless, the results 
are as tight as the first theorem in some important cases. 

In Section 3, we give several non-trivial applications of 
our theorems to problems from combinatorics and statisti- 
cal physics. In addition to establishing some new results, 
we also recover with ease some results that had previously 
required considerably more ingenuity. 

In Section 3.1.1 we give a simple proof of a result 
of Jerrum [ l l ]  on colouring of low-degree graphs. In 
Section 3.1.2 we give a new and far-reaching extension 
of this result to hypergraph colourings which, in particu- 
lar, includes and extends some recent work of Salas and 

223 
0272-5428/97 $10.00 0 1997 IEEE 



Sokal [I51 in statistical physics. In Section 3.2 we give 
a simple proof of a previous result of the authors on SAT 
instances with two occurrences of each variable. In Sec- 
tion 3.3 we easily extend this to provide a new result on the 
closely related NOT-ALL-EQUAL-SAT problem. (We will 
note here that the analysis of this problem had eluded us by 
the standard coupling approach.) In Section 3.4 we give a 
new result on counting independent sets of graphs which is 
related to, but different from, a recent result of Luby and 
Vigoda [ 141. (This result was obtained independently of, 
and at about the same time as [14].) Finally, in Section 4 
we indicate some further applications of the method which 
will appear elsewhere. 

1.1 Notation and preliminaries 

Let V and C be finite sets, and define n = IVI and 
k = ICI. For our theorems, we typically consider a finite 
Markov chain M, with state space R C Cv, the set of func- 
tions from V to C, and unique equilibrium distribution n. 
The reader may find it helpful to keep in mind the exam- 
ple of proper graph colourings (we analyse this example in 
depth in Section 3.1.1): then V is the set of vertices of a 
graph, and C is a set of colours; the Markov chain 94 then 
has state space the set of functions from vertices to colours, 
and equilibrium distribution the uniform distribution on the 
set of proper colourings. 

In our first theorem, we require that 52 = Cv, but in our 
second theorem we do not make this assumption. We de- 
note by D(M)  the diameter of M, i.e. the maximum over 
all pairs of positive-recurrent states X ,  Y E R of the mini- 
mum number of transitions necessary to go from X to Y. 

For X E R, v E V ,  and c E C let us use the notation 
X,,, to denote the state resulting from making the transi- 
tion at X associated with the pair (v, c) .  Thus 

if w = v, and 
xv‘c(w) = { L(w) otherwise. 

Using this notation, we may more precisely define the tran- 
sition structure of M. We first pick v E V from a fixed 
distribution J on V .  Then we pick c E C according to a 
distribution KX,” on C, dependent only on the current state 
X and v, and make the transition to X,,,. We assume that 
X,,, $ C2 implies that KX,”(C) = 0. 

The technique which we use to prove our theorems is 
known as coupling. In particular, we use the “Coupling 
Lemma” (see e.g. Aldous [I]). 

Lemma 1 (Coupling) Suppose (X, Y) is a random pro- 
cess (the coupling) such that marginally, X and Y are both 
copies of M. Moreovel; suppose Yo is chosenfrom n, and 
pt is the distribution of X,, then 

dTV(pt,X) 5 p(xt  # x) 

where dTV is the (total) variation distance metric on mea- 
sures. 

When X, = & , we say that X and Y have coupled. 
If G = (V,E)  is a graph, as in some of our applications, 

we use v N w for the adjacency relation, N ( v )  = { w  E V : 
v N w} for the neighbours of v, and 6(v) = IN(v)I for the 
degree of v. We write A = maxvEV 6(v )  for the maximum 
degree of G. 

2 Two convergence theorems 

The essence of the path coupling methodology is very 
simple. We see, from the Coupling Lemma, that our goal 
is to construct a joint process on two copies of a Markov 
chain that will have a probabilistic tendency to come to- 
gether “quickly”. Traditional coupling techniques consider 
all pairs of states, and show that for most-or all-such 
pairs, there is a tendency for the two copies of the Markov 
chain to come closer together (under some metric) in some 
small (i.e. polynomially bounded) number of steps. 

With path coupling, we abstract quickly away from our 
consideration of all pairs of states, by defining a path, or 
sequence of states between an arbitrary pair of states. We 
then only need to consider pairs of states that are adjacent 
in some path. Note that states that are adjacent on a path 
are not necessarily adjacent states in the Markov chain- 
although they are in the theorems in this section. 

If we can show that for all pairs of path-wise adja- 
cent states, that two Markov chains (with an appropriate 
coupling and metric) started in those two states will come 
closer together in expectation, then by linearity of expec- 
tation and the triangle inequality we may conclude that the 
entire path is contracting in expectation. A simple induc- 
tion will thus conclude a proof of rapid mixing. 

In the two theorems in this section, we consider a class 
of Markov chains in which the (not necessarily unique) 
choice of path arises naturally: we consider Markov chains 
with state space (some subset of) the set of functions from 
V to C. Our paths will be constructed simply by insisting 
that adjacent states on a path differ in their mapping of at 
most one v E V .  The statement of the theorems may seem 
technical, but the proofs are quite elementary. 

The metric that we shall use in the first theorem is 
Hamming distance, which for states X and Y we shall de- 
note H(X,Y), i.e. H(X,Y) is simply the number of v E V 
such that X ( v )  # Y (v). Thus adjacent states on a path have 
unit Hamming distance. 

In both of the theorems, p will be an upper bound on 
the expected distance between adjacent states after a single 
time-step. 
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Theorem 1 (Generral Path Coupling) Let R = Cv, and 

Proof: Suppose 01 and 0 2  are distinct probability dis- 
tributions on C. Then define the probability distribution 
( 0 1  - o2)+ by 

F o r X , Y  E Cv, let H ( X , Y )  denote their Hamming dis- 
tance. Let h = H ( X , Y )  and let X = &,Z1, ... ,Zh = Y 
be any sequence in Cv such that H(Z,-l,Z,) = 1 (for 
a = 1 , 2 , .  . . , h). Clearly these states are all distinct. 

Define the coupling for M at state ( X ,  Y )  by selecting 
the next state (X’,]’’)  according to the following experi- 
ment. 

1. Choose v E V according to J and CO E C according to 
K&j. 

2. For a = 1,2 ,... , h  in turn, with probability 
Kz,,j(Ca-l)/x~,_,,j(Cu-l), let C, = Ca-1, otherwise 
pick c, according to (KZ, ,~ - K Z , - ~ , ~ )  + . 

3. Make the transition to (X’ ,Y’) ,  where X’ = Xv+c,,, 

Observe that, marginally, we choose Ca according to Kz,,j, 
and that this is the “maximal coupling” (i.e. best possible 
coupling) between ‘ K Z , - ~ , ~  and KZ,,j. In particular P(Ca # 

We shall use 27; as an abbreviation of (Za)v-+co, so 
X’ = Zb, Y’ = Zi. Suppose, in the coupling procedure, that 
Za-1 and Za differ only at i .  Then 

and Y’ = Yv-,:,, , 

Ca- 1 ) = dTV (KZ,, j, Q,- 1, j) 

Thus E ( H ( X ‘ , Y ’ ) )  5 E (z;,,,H (Z;,ZL_,)) = 

Thus, if Xr, and yt are the positions of X and Y af- 
ter t steps, we have that E ( H ( X t , I $ ) )  5 p‘n. Further- 
more, since H is a non-negative integer valued function, 
P(X,  # y t )  5 P‘n. Applying the Coupling Lemma, we see 
that dTvbr,7t) 5 p’n. Taking logarithms and rearranging 
establishes the theorem. 0 

Remark: Suppose we have on14 that p 5 1: then the 
above theorem appears to tell us nothing about the conver- 
gence of the chain. However, the same proof shows that 
at each step, H ( X , Y )  cannot increase in expectation, and 
its value can change either by zero or by one at each step. 
Suppose that the probability of its value changing at each 
step is bounded below by a. ‘Then the expected time for 
the processes to couple, i.e. for H ( X , Y )  to reach zero, is 
bounded above by the expected time for a symmetric ran- 
dom walk an the integers (0, 1 ,  . . . , n } ,  started at n and with 
probability a of moving to an adjacent integer, to reach 
zero. This is a-’ (n2  + n ) / 2 .  Using Markov’s inequality, 
we see that the probability that X ancl Y have not coupled 
by time t is bounded above by a-’(n2 + n ) / 2 ( t  + 1). In 
particular, in order to ensure that the: probability that we 
have not coupled is no greater than e-l, it suffices to simu- 
late z = [ea-’ (n2 + n ) / 2 l  - 1 steps of M. Since we may 
run successive, independent caupling “trials” of length z, 
in order to ensure that the probability that we have not cou- 
pled is bounded above by E, it sufficss to simulate M for 
[ln (&-I)] z steps. Thus we will have rapid mixing when- 
ever we can show that a-1 is polynomial in n and c. We 
will not give general conditions here for this to be true, but 
we will consider this observation below. 0 

The problem with Theorem 1 is that it requires S2 = 
Cv. We will relax this assumption by considering a slightly 
different coupling, for the particularly important class of 
“Metropolis” Markov chains. The transitions here are as 
follows. Choose the desired stationary distribution, 5c. Pick 
v E V, as before, according to some fixed distribution J .  
Pick c E C uniformly at random. Then, with probabil- 
ity AxJc) = min{ l , 7 t ( X v - , c ) / n ( X ) } ,  accept and make the 
transition to Xv-,c; otherwise reject and remain at X. This 
procedure determines the distributions K X , ~ .  

The metric that we use in the following theorem is 
slightly different from the first. In this theorem, we will 
use the minimum transition distance, vvhich we shall denote 
H ’ ( X , Y ) .  This is simply the minimum number of transi- 
tions of the Markov chain that could be performed in order 
to move from X to Y. 

E L  E (H (z;,z;-l)) 5 c;=1 P = P H ( X , Y ) .  

Theorem 2 (Metropolis Path Coupliing) Let R E Cv. 



Also define 

Y = Xi,, for  some c E C such that Y # X , I 

1. If P < 1, then dTv(pt,n) 5 E provided t 2 

2. If P 5 1, then dTv(pt,7T) 5 E provided t 2 

[ln(DE-’ )/In P-’]; 

[In(&-’)] [eq-lk(D2 +D)/miniEv{J(i)} - 11. 

Proof: This proof is very similar to that of the General Path 
Coupling Theorem, although we use a different coupling 
here. 

For two states, X ,  Y E R, let H’(X, Y )  be the minimum 
number of transitions required to move from X to Y .  Ob- 
serve that H’ is a metric. We will let h’ = H’(X ,Y) .  Let 
X = &,Zl , .. . ,Zhl be such a minimal sequence of transi- 
tions, and note that all these states are distinct. 

Suppose we have (h’+ 1) instances of M, with current 
states &, Z1, . . . , and, z h l ,  which will evolve jointly by the 
following experiment: 

1. Choose v E V according to J and c E C uniformly at 
random. 

2. Choose W uniformly from [0,1]. For a = 0, l  , .. . , h’, 
if Az,,”(c) 2 W, (accept and) move from Z, to 
(Za),,+c, otherwise (reject and) remain at Z,. 

This defines a coupling on X and Y .  We use ZL to denote 
the state moved to from Z, in the above experiment. 

Observe, by the assumption on transitions of M, that 
Za-l and 2, differ for exactly one element of V, say 
i. Then E (H’ (Zh-,,Z;)) = 1 + P (H’ (Z:-,,ZL) = 2 )  - 
P (H’ (ZLPl ,ZL) = 0)  , since the coupling procedure en- 
sures that H’ (ZLP1 ,ZL) takes only values in (0, 1,2}. 

Now, H’ (ZLPl ,ZL) = 0 only if we choose v = i in the 
coupling procedure, and both Za-1 and Z, accept. Thus we 
have that P(H’(Z;-, ,ZL) = 0) =J(i)S(Za-l ,Z,) .  

The event H‘ (ZL-l,Z;) = 2 can occur only if we 
choose v E V with v # i, and we accept for precisely 
one of Za-l and 2,. Thus P(H’ (Z i - l ,Z ; )  = 2 )  = 
~ j + J ( j ) F ( Z , - l , Z , ) .  Thus we have 

h‘ 

(since H‘ is a metric) 
h‘ 

a=l 
L c E (H’ (Z;-l ,ZL)) 

(by linearity of expectation) 

IPH’ (X ,  Y )  (by definition of 0). 

We have, therefore, that E (H’ (Xt  , Y , ) )  5 P‘D, and, 
since H‘ is a non-negative integer valued function, we thus 
have P(Xt # Y, )  5 P‘D. Applying the Coupling Lemma, 
we see that the variation distance from equilibrium after t 
steps is bounded above by P‘D. Taking logarithms and re- 
arranging establishes the first part of the theorem. 

To establish the second part of the theorem, we will 
assume that all acceptance probabilities Ax,”(c) 5 1/z in 
M. If this is not the case, we may simply halve all the 
acceptance probabilities to make it so. This is equivalent to 
having a “do nothing with probability l/z” condition at the 
beginning of each step, and at most doubles the expected 
number of steps for M to couple. We allow for this in our 
calculations. Note that, if P 5 1 originally, this will still 
hold in the revised chain. 

Consider the sequence of values taken by H’(X, Y )  
under the coupling. Assuming p 5 1, then at each step, 
H’(X, Y )  cannot increase in expectation, and its value may 
change either by zero or by one Suppose that the proba- 
bility that its actual value changes is bounded below by 
a. Then the expected time for the processes to couple is 
bounded above by the expected time for a symmetric ran- 
dom walk on the integers { 0, l  ,. . . , D } ,  with probability a 
of moving to an adjacent state, started at D ,  to reach zero. 
This is u-l(D2 + D ) / 2 .  

Using Markov’s inequality, we see that the probability 
that we have not coupled by time t is bounded above by 
a-1 (D2 +D)/2( t+ 1 ) .  In particular, in order to ensure that 
the probability that we have not coupled is no greater than 
e - ’ ,  it suffices to simulate T = [ea-’(@ + 0) /2]  - 1 steps 
of M. Since we may run successive, independent coupling 
“trials” of length T, in order to ensure that the probability 
that we have not coupled is bounded above by E, it suffices 
to simulate M for [ln (&-‘)l T steps. 

It remains to show, however, that a 2 
qminiEv{J(i)}/k. We do not do this for the coupling 
above, but for one which is subtly different. Suppose there 
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is a pair of states, X and Y ,  such that any choice of v E V, 
c E C, W E [0,1] in 1 he previous coupling would result in 
H‘(X, Y )  remaining unchanged-we will call this a “stuck 
pair”. If there is no such pair then H’(X‘,Y’) # H’(X,Y)  
with probability at least qminiEv{J(i)}/k, and we are 
done. 

Let i be the element of V that is different in X and 21, 
and let c1 = Zl(i). :Then X ( i )  # c1, since Z1 is part of a 
minimal transition sequence from X to Y .  Also c1 # Y ( i ) ,  
otherwise choosing i and Y ( i )  would reduce H’(X,Y)  with 
probability at least rl. Let A,A’ 5 1/2 be the acceptance 
probabilities for Z1 ( I )  in X and Y ,  given v = i. Clearly 
A > 0. If A > A’ then we can have X’ = Z1,Y’ = Y with 
probability at least q and we are done. Also if A < A’, we 
can have X’ = X ,  Y‘ == YV+,, = Y*,  say, with probability at 
least q, and hence we must have H’(X,Y*) = H’(X,Y) .  If 
A = A’, then we only have H’(X, Y * )  5 H’(X, Y )  + 1 .  

Our coupling will then be modified as follows. If X 
and Y are not stuck or v # i or c # c1, use the previous 
coupling. Otherwise, accept in X if W 5 A and in Y if 
(1 - W )  5 A’. Note that X and Y are still faithful copies of 
M. Now, conditional on i and c1, we have 

with probability A ,  
(X’,Y’) = ( X , Y )  with probability (1 - A  -A’) ,  { ( X ,  Y ’) with probability A’. 

Thus P(H’(X’,Y’) # H’(X ,Y) )  2 A 2 q. If A < A’, then 
E(H’(X’,Y’)) - H’(X,Y)  = -A < 0. If A = A’, then 
E (H’ (X’,Y‘)) - H‘(X, Y )  5 -A +A’  = 0. So, in either 
case, we preserve the: condition that H’ does not increase 
in expectation. But the probability that it changes is now at 
least qminiEv{J(i)}/k, as required. 

Applying the Coupling Lemma completes the proof. 

It should be noted the definitions of p in the two path 
coupling theorems may yield different values when max- 
imized over adjacent states X , Y  E Q. In general the first 
is a lower bound on the second, and this inequality can be 
strict. They do however coincide in the case k = 2, as may 
be verified by easy calculations. 

(Zl , Y )  

3 Applications 

Here we examine several applications. We consider 
only the rapid mixing of the relevant Markov chain. De- 
tails of the associated approximate counting schemes are 
omitted, but see, e.g., [6, 11, 121 for the necessary ideas. 
We note that for all of the examples of chains for which we 
demonstrate rapid mixing, the associated (exact) counting 
problem is #P-hard. 

3.1 Graph colourings and the Potts model 

3.1.1 Graph colourings. For a graph G = (V,E)  and 
set (of colours) C, a function x : V -+ C is said to be a 
colouring. We will say a vertex v is properly coloured if 
~ ( v )  # { ~ ( w )  :w-v}. ApropercoZouringofGisacolour- 
ing with all vertices properly coloured. 

Jerrum [ 111 exhibits a fully polynomial almost uni- 
form sampler for k-colourings of a graph, provided that 
k 2 2A+ 1. 

Consider the Markov chain M with state space the set 
of all colourings of G and transitions, at state X ,  defined as 
follows. 

1. Choose v uniformly at random From V, and c uni- 
formly at random from C. 

2. If v is properly coloured in X,,,, then X’ = X,,,, 
otherwise X’ = X .  

This is an extension of Jerrum’s chain to all of Cv. It is 
easy to show that the positive-recurrent states of M are the 
proper colourings of G, and that the chain is ergodic on 
these states, but we omit these details here. Let us apply 
Theorem 1. In this instance, J is the constant function with 
value l/n, and unless i - j or i = j ,  K X , ~  = K Y , ~ .  In the 
case i = j ,  we have dTV(KX,j,Ky,j) 5 A/k, since any colour 
choice that would be accepted in X would also be accepted 
in Y .  Furthermore, for j N i, dTv(Icx,J,~y,J) 5 l/k, since 
every colour that would be accepted in X (resp. Y ) ,  except 
possibly Y ( i )  (resp. X ( i ) ) ,  would be accepted in Y (resp. X) .  
Thus p 5 1 - (1 -A/k)/n+&,, l/kn 5 1 - l/n+2A/kn. 

Thus, applying Theorem 1, we see that M is rapidly 
mixing for k 2 2 8  + 1, and thus comes within E of its sta- 
tionary distribution after at most [ln(n&-’)/ln((kn - k + 
2A)/kn)l steps. 

However, we can possibly do better than this. We need 
not take J to be constant, and in general, p 5 1 - J ( i )  (1  - 
6(i)/k) +CJNIJ(j)/k. So, if for example we take J ( i )  = 
6(i)/2m, where m = [El,  we see that chain would be rapidly 
mixing provided k > maxvEv{6(v) +C,,,,~(W)/~(V)}, i.e. 
the largest degree of a vertex plus the average degree of its 
neighbours. This will be less than 2 8  unless there is a ver- 
tex of maximum degree for which all of its neighbours are 
also of maximum degree. 

It is natural to inquire whether we can choose J opti- 
mally for a particular graph, and it is riot hard to see that 
we may in fact do so. Answering the query, “is there a J 
such that is rapidly mixing fork colours?” is equivalent 
to checking that a particular linear program is feasible, and 
finding such a J is equivalent to finding a feasible solution. 

It is also possible to show convergence in the case 
k = 2A, as noted in [ 111 using the remark following Theo- 
rem 1. The only stuck pairs are certain proper colourings 
X ,  Y with H ( X ,  Y )  = n. If we simply modify the coupling 
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to allow them to evolve independently, they cannot remain 
stuck for long. We omit the details here, and simply note 
that in this case the mixing rate is O(kn3 loge-’). 

3.1.2 Hypergraph colouring and the extended Potts 
framework. The following subsumes and generalizes 
section 3.1.1, but with a slightly more complicated ap- 
proach. 

Recall that a hypergraph is a set of vertices, together 
with a set of “edges”-each edge can contain any number 
of vertices, but to avoid trivialities, we shall assume here 
that they each contain at least two. (Clearly, if they all con- 
tain exactly two we just have a graph.) 

Suppose G = ( V , E )  is a hypergraph. We will write 
V N  w if {v,w} E e, for some e E E ,  andN(v) = {w : v N w}. 
We consider four degree functions. A vertex v E V will 
have degree 

Then G is said to have degree Ai = maxvGv6i(v) (i = 
1,2,3,4), All of these definitions of degree, and the notion 
of k-colourability are in accord with those for graphs. Note 
thatforevery vertex, v, &(v) I 6 4 ( v )  5 min{62(v),63(v)}, 
and hence A1 5 4 5 min(A2,A.s). 

The definition of degree 61 is standard, and may be 
found, for example, in Berge [3] or Tomescu [16]. 

We also define the co-degree of two distinct vertices, 

As for graphs, we define a colouring to be a function 
x : V + C. The number of jaws  f ( x )  of x is the number 
of edges, e E E ,  for which all of its vertices are the same 
colour. A proper colouring is a colouring with no flaws. 
We say colour c is critical for v E V if there is any edge 
where v is the only vertex not coloured c. We call such an 
edge a critical edge. A hypergraph is k-colourable if it can 
be properly coloured with k colours. 

Many systems in statistical physics are referred to as 
anti-ferromagnetic systems, where less energy is required 
for a system in which adjacent particles have the same (or 
in some cases similar) states. 

The k-state Potts model for anti-ferromagnetism as- 
signs one of k “spins” (colours) to each of the vertices in 
a graph. The Hamiltonian ?l defines the energy of the 
colouring, and is equal to the number of flaws in the colour- 
ing. It should be clear that we may extend this definition to 
hypergraphs. In this case we will refer to the model as the 

by S(i,j) = l{e E E I {i,j) E e l l .  

‘The usual symbol is !3, but we use y here to avoid confusion 

extended Potts framework. It should be noted that the ex- 
tended Potts framework is not a physical model per se, but 
rather a framework within which physical models, such as 
the Potts model, may be set. Another model which lies 
within the framework might define a flaw to be a particle 
which has the same spin as all its neighbours. 

According to the axioms of statistical mechanics, if an 
anti-ferromagnetic system is in equilibrium with surround- 
ings at a temperature T, then the probability of observing 
any particular colouring x is proportional to exp( -yH(x)) ,  
where y= l / k T , ’  and k is a constant. The probability dis- 
tribution governing the observed colourings is known as the 
Gibbs distribution. 

Consider the Metropolis Markov chain M, defined as 
follows. At colouring X choose a vertex v and colour 
c uniformly at random. Accept X,,, with probability 
min{ 1, exp( f (X) - f ( X V - c ) ) } .  It is easily checked that the 
stationary distribution is the Gibbs distribution for the ex- 
tended Potts framework. 

With a chain similar to N, Salas and Sokal [15] use 
Dobrushin’s Uniqueness Criterion (see also [4]) to show 
absence of phase transition for the Potts model (which 
is essentially the same as proving rapid mixing) provided 
k > 26. Jerrum [ 111 observed, without proof, that it would 
be sufficient to take k > 2( 1 - e-vA. 

We apply Theorem 1 with J uniform. Consider first 
the case where i = j .  Assume without loss of general- 
ity that ~ ( x )  > @’), and define p = dTV(KX,j,Ky,j), to 
be the probability that X rejects. There can be at most 
61 (i) colours that have a non-zero probability of rejecting, 
since at most 61 (i) colours can be critical for i. Enumer- 
ate these by c1 , c2,. . . , cr. Then p is bounded above by 
C;=l(l - e-”’)/k, where (TI is the number of edges crit- 
ical for i with colour CI. Now, since 1 -e-‘ is a con- 
vex increasing function, and CF=lol 5 &( j ) ,  we have 

For the cases in which j # i, we have dTv(Kx,j, Ky,j) 5 
(1 - e-*(itj))/k, since there could be most S ( i , j )  additional 
flaws for any colour choice at j caused by changing only 
the colour of i. Also there are at most 64(i) vertices for 
which dTV(KX,j,Ky,j) > 0. Any two such vertices must be 
adjacent to i, but not both in any edge containing i. This 
follows from the fact that an edge may be critical for at 
most one vertex other than i in either X or Y .  

Thus M is rapidly mixing provided that 
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Thus, in particular, k > A1 +A4 is a sufficient condition. 
Also it is possible io show that the only stuck pairs are 
proper colourings of a regular graph of degree A, and hence 
we could show convergence also in the case k 2 A1 + &. 

In the case of the Potts model, we have 6, = 6 ( r  = 
1,2,3,4), and 6(i, j) 5 1. Thus a sufficient condition is 
k > 2A( 1 - C Y ) .  Jerrum [ 1 11 mentions that a similar result, 
for a slightly different Markov chain has been obtained by 
Salas and Sokal. No1;e also that once again the equality case 
can be handled using the remark following Theorem 1. 

3.2 Sink-free graph orientations and TWICE- 
SAT 

In TWICE-SAT [6], we consider the set !2 C 
{True, False}"of satisfying assignments to a Boolean for- 
mula in conjunctive normal form, where V is the set of 
variables, and each variable appears at most twice in to- 
tal. This restriction of the familiar SAT problem remains 
#P-complete in its counting variant. 

An orientation of an undirected graph, G, is an as- 
signment of a direction to each of the edges of G. A 
sink-free orientation is an orientation in which no vertex 
has zero out-degree. The problems associated with sink- 
free graph orientations may be parsimoniously reduced to 
TWICE-SAT instances [6] ,  so henceforth we consider only 
the TWICE-SAT problem. 

We consider a ]Markov chain M, on GI. Transitions 
on M are made by choosing v E V and truth value c uni- 
formly at random. If assigning c to v results in a satis- 
fying assignment, wle accept and make a transition to this 
state. This chain was first shown to be rapidly mixing by 
the authors [6] .  Let m be the number of clauses. Then it is 
possible to show that, under certain (non-restrictive) condi- 
tions [6] on the instance, the chain is ergodic with diameter 
max{2m,n}, but we omit these details here. 

We may easily apply the Theorem 2 to this chain. If X 
and Y are two assignments that differ only at 3, write Y = X;. 
Consider the formula for p. If Y = X; for some X and i in 
the maximum, then 

p = 1 - l /n  
+ l { j  E V I j # i; precisely one of Xi, Yj  E Q}l/2n. 

Now if only one of X.; and Y j  is in GI, this must be caused by 
a clause in which both i and j appear as variables. Further- 
more, in this clause, the literal of variable j must appear 
as True, and the literal of i must appear as False in one 
of X and Y and True: in the other. All other literals in the 
clause must appear als False. Clearly there can be at most 
one such j in each clause in which i appears, i.e. there are 
at most two such js. Thus p 5 1. 

Applying conclusion 2 of the Metropolis Path Cou- 
pling Theorem, with q = 1, we see immediately that 
M is rapidly mixing with mixing rate O(n310ge-'); the 
best bound known for this Markov chain previously was 
O((n3 +nm3) loge-') [6]. 

3.3 Sink- and source-free graph orientations 

An orientation of an undirected graph, G, is an assign- 
ment of a direction to each of the edges of G. 

A sink- and source-free orientation is an orientation of 
an undirected graph in which every vertex has both posi- 
tive in-degree and positive out-degree. In the SAT setting 
of Section 3.2 this corresponds to a refstriction of the well- 
known problem NOT-ALL-EQUAL-SAT. The proof offered 
in this section is the only known proof of rapid mixing for 
a Markov chain on this state space. 

For a graph G = ( V , E ) ,  fix an orientation, and call this 
0. Let M be a Markov chain on the set of orientations of 
G. We may regard these orientations as the set of functions 
from E to {A,  D}, where an edge takes value A in an ori- 
entation if it agrees with 0, and D if it disagrees. If X is 
a sink- and source-free orientation of G, then M will have 
transitions modelled by picking an edge and one of A and 
D uniformly at random. If the orientation formed by ori- 
enting this edge to the choice of A or D results in a sink- 
and source-free orientation then accept this, otherwise re- 
ject, and remain at the current orientation. It can be shown 
that, if G has minimum degree at least 3, this chain is er- 
godic, with diameter at most m+ n, where m = (El .  Again 
we omit the details. 

We will apply the Metropolis Path Coupling theorem 
to show that M is rapidly mixing on tiny graph with min- 
imum degree at least four. The associated counting prob- 
lem, even for this restricted case, is #P-complete. 

If X and Y are two orientations that differ only at i, we 
shall write Y = X;. Then 

p = I - l / n  
+ 1 ( j  E V 1 j # i; precisely one of' X;, Y; E S2} I /2n. 

Now if only one of XJ and Y; is in Q there must be a vertex, 
v, incident on both i and j .  Furthermore, if j is oriented 
away from v then all other edges incident on v must be ori- 
ented towards it in one of X or Y .  Similarly, if j is oriented 
toward v then all other edges incident on v must be oriented 
away from it in one of X or Y. If 6(v)  > 3 then there can 
be at most one such j incident on v. (As an aside note that, 
if 6(v)  < 3, then X and Y cannot both ble in GI). Since there 
are only two vertices incident on i, it follows that provided 
every vertex in G has degree at least four, p 5 1. In this 
case, Theorem 2, with q = 1, establishes that M is rapidly 
mixing with mixing time O(m3 log&-':I. 
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3.4 Independent sets and conserved hard-core 
lattice gases 

Consider a graph G on n vertices, where each vertex 
may be either occupied (by a single particle) or unoccu- 
pied. An instance of a conserved hard-core lattice gas on 
G with s particles is a configuration in which every vertex 
adjacent to an occupied vertex is unoccupied. The set of oc- 
cupied vertices in a hard-core lattice gas is (equivalently) an 
independent set. In this section we describe a fully polyno- 
mial almost uniform sampler for instances of a conserved 
hard-core lattice gas, provided some condition (to be deter- 
mined) holds on s. Since this problem is equivalent to find- 
ing independent sets almost uniformly at random from G', 
we shall restrict our attention to this problem. This is the 
first proof of rapid mixing for a Markov chain on this state 
space. A related problem has been considered by Luby and 
Vigoda [ 141 (see also Section 4.) 

Consider the set of functions from particles P = 
{ 1,2,. . . ,s} to vertices, V .  We call such a function 5 a 
placement. We shall define a Markov chain on all place- 
ments, to which we shall apply the General Path Coupling 
Theorem. A particle i is said to be safe in 6 if there is no 
j E P such that either S(i) = 5( j )  or c(i) - E,(j). 

Transitions of !%f will be as follows. Assume the cur- 
rent state is X .  Pick p E P and v E V uniformly at random. 
If p would be safe at v, then accept, and move to this new 
placement, otherwise reject and remain at X .  

Then dTV(KX,i,KY,i) 5 cj#i(s(x(j)) + I)/. 5 (s - 
1)(A+ l ) /n ,  since we only choose a different vertex if one 
of X or Y rejects, and this can happen only if we choose a 
vertex occupied by, or adjacent to, another particle. 

Now dTv(Kx,j,W,j) L: ( 6 ( X ( i ) )  + 1 + 6(y ( i ) )  -t- 
1)/2n 5 (A+ l)/n.  Thus 

p 5 1 - l / ~ + 2 ( A +  1 ) ( ~ -  l ) / ~ n ,  

and a sufficient condition for p < 1 is s < n/2(A + 1) + 1. 
Applying the General Path Coupling Theorem estab- 

lishes that we have rapid mixing to the uniform station- 
ary distribution on independent sets of size s, provided that 
s < n/2(A + 1) + 1. Counting the number of independent 
sets of size s remains a #P-complete problem when re- 
stricted to s < n/2(A + 1) + 1. 

4 Conclusions and further work 

As we have seen, the path coupling method may read- 
ily be applied to a variety of cases that are quite different. 
This has enabled us to prove several new results on sam- 
pling combinatorial structures, and where the results have 
been known previously, we have proofs that are far simpler 
than their original counterparts. 

The path coupling method does not just extend to 
the examples presented here: the authors [SI have used 
this technique elsewhere to substantially improve the best 
bound on sampling almost uniformly from the set of linear 
extensions of a partial order from O(n'1ogn + n410ga-') 
to O(n310gn +n310g&-'). We observe that Rn3 is a lower 
bound on the best chains known for this problem. 

Luby and Vigoda [ 141 have recently proved the rapid 
mixing of a Markov chain for the (unconserved) hard-core 
model-this differs from the conserved model considered 
in this paper in that in the unconserved model the num- 
ber of particles is not fixed. A Metropolis Markov chain 
with the same stationary distribution as the Luby-Vigoda 
chain succumbs easily to our general theorems here. The 
result obtained is incomparable to that obtained by Luby 
and Vigoda. However, a more careful analysis of the Luby- 
Vigoda chain by path coupling gives a result which general- 
izes both of these (see Dyer and Greenhill [ lo]). The same 
paper also describes a significant improvement of Luby and 
Vigoda's result using a modified chain. 

Path coupling has also been used by the authors and 
Greenhill [7] to beat the k 2 2A bound for k-colouring a 
graph, for some special cases. In particular, rapid mixing 
has been established for a Markov chain on the set of 5- 
colourings for graphs of maximum degree 3, and on the set 
of 7-colourings for triangle-free 4-regular graphs. 
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