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correlations (a spatial property of the equilibrium state) and rapid mixing of the Glauber dynamics
(a temporal property of a Markov chain Monte Carlo algorithm). Specifically, we show that if the
mixing time of the Glauber dynamics is O(n log n) then spin correlations decay exponentially fast
with distance. We also prove the converse implication for monotone systems, and for general
systems we prove that exponential decay of correlations implies O(n log n) mixing time of a
dynamics that updates sufficiently large blocks (rather than single sites). While the above equiva-
lence was already known to hold in various forms, we give proofs that are purely combinatorial and
avoid the functional analysis machinery employed in previous proofs. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

Lattice spin systems are a class of models that originated in Statistical Physics, though
interest in them has since expanded to many other areas, including Probability Theory,
Statistics, Artificial Intelligence, and Theoretical Computer Science. A (lattice) spin
system consists of a collection of sites which are the vertices of a regular lattice graph. A
configuration of the spin system is an assignment of one of a finite set of spins to each site.
The sites interact locally, according to potentials specified by the system, such that
different combinations of spins on neighboring sites have different relative likelihoods.
This interaction gives rise to a well-defined probability distribution over configurations of
any finite subset (volume) of the sites, conditional on a fixed configuration of the sites on
the boundary of this subset. Such a distribution is referred to as a finite volume Gibbs
distribution, and is regarded as the equilibrium state of the given subset conditional on the
given boundary configuration.

A Glauber dynamics is a Markov chain Monte Carlo algorithm used to sample from the
Gibbs distribution. A step in this Markov chain is a random update of the spin of a single
site (or of a finite set of sites), conditional on its neighboring spins and in a manner which
is reversible with respect to the Gibbs distribution. As a result, such a Markov chain
converges to the corresponding Gibbs distribution. The Glauber dynamics plays a central
role not just as an algorithm for sampling from the Gibbs distribution but also as a model
for the physical process of reaching equilibrium.

A striking phenomenon in the field of spin systems, at least for lattices with “subex-
ponential growth” such as the integer lattice �d, is the equivalence of (a priori unrelated)
notions of temporal and spatial mixing. By temporal mixing we mean that the Glauber
dynamics converges “very fast” to its stationary Gibbs distribution, while by spatial
mixing we mean that, in the Gibbs distribution, correlations between the spins of different
sites decay “very fast” with the (lattice) distance between them. This equivalence is
interesting because it precisely relates the running time of an algorithm to purely spatial
properties of the underlying model. In addition, a common heuristic in computer science
is that local algorithms should work well (run fast) for local problems. The equivalence
between temporal and spatial mixing is an example of the above heuristic in a restricted
setting, where the relationship is formally proven and where there are precise interpreta-
tions for the terms “local algorithm,” “local problem,” and “run fast.”

The above equivalence has been explored by a number of previous authors, using
various notions of spatial and temporal mixing. This line of work was initiated by Holley
[9] and Aizenman and Holley [1], followed by Zegarlinski [18] and culminating in the
work of Stroock and Zegarlinski [16], who were the first to establish the above equiva-
lence in full. We further mention Martinelli and Olivieri [12, 13], who later obtained
sharper results by working with a weaker spatial mixing assumption, and Cesi [3], who
recently simplified some of the proofs. See also [11] for a review of results in the field.

The references mentioned above make crucial use of functional analysis in their proofs,
and usually discuss quantities such as the spectral gap and the logarithmic Sobolev
constant of the dynamics as a measure of its temporal mixing (these quantities measure the
contraction of the semigroup associated with the dynamics). In this paper, we give purely
combinatorial proofs of this equivalence, based on the elementary technique of coupling
probability distributions. Although some of the ideas we use have appeared before, our
main contribution lies in presenting a complete argument which is purely combinatorial,
where the reader does not need to resort to concepts from functional analysis.
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We note that the result we present in the direction going from spatial mixing to
temporal mixing (of the single-site Glauber dynamics) is limited in the sense that it only
applies to monotone systems. For general systems, however, we show that spatial mixing
implies temporal mixing of a “finite-block” dynamics, in which a sufficiently large block
of spins is updated at each step. The corresponding implication for the single-site
dynamics in the general case is known [3, 11, 13, 16], but currently we do not have a
combinatorial proof of it.

The remainder of the paper is organized as follows. Section 2 includes exact definitions
and statements of results. In Section 3 we list a few basic tools we use in the proofs. In
Section 4 we prove that temporal mixing implies spatial mixing while in Sections 5 and
6 we prove that spatial mixing implies temporal mixing for monotone and general
systems, respectively.

2. DEFINITIONS AND STATEMENTS OF RESULTS

2.1. Spin Systems

Consider the d-dimensional integer lattice1 as a graph with vertex set V � �d and edge set
E, where {v, u} � E, denoted v � u, if and only if ¥i�1

d �vi � ui� � 1. We use the statistical
physics terminology and refer to the vertices as sites. For a finite subset � � V, we define
its boundary as

�� � �v�� : there exists u � � s.t. v � u�.

Each site is assigned a spin from the spin space S � {1, . . . , q}, and the configuration
space is denoted by � � �� � S�. Given a configuration � � �, we write �[v] for the
spin that � assigns to v and abuse this notation with �[�] standing for the configuration
of the subset � under �.

We consider spin systems with nearest neighbor interactions (although everything we
do can be generalized to finite range interactions). Namely, we have a (symmetric) pair
potential2 U : S 	 S3 �, and a self-potential W : S3 �. Then, for a finite subset � and
a boundary configuration � � ���, the Hamiltonian H�

� : �� 3 � is defined as

H�
� 
�� � �

v���,u��,v�u

U
��v, ��u� � �
v,u��,v�u

U
��v, ��u� � �
v��

W
��v�.

The value this Hamiltonian assigns can be considered as the “energy” of � when � is the
boundary configuration. The finite volume Gibbs distribution associated with the subset �
and the boundary configuration � assigns probability to � which is proportional to the
inverse exponential of its energy. Formally,

1Most of our results hold—with suitable modifications—for any lattice with “subexponential growth” (i.e., the
volume of increasing balls around any site increases subexponentially with the radius). For simplicity, in this
paper we focus just on �d.
2This definition of the pair potential does not cover systems with hard constraints, where U may be infinite.
Systems with hard constraints are discussed in Section 2.5 below.
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��
� 
�� �

1

Z�
� exp
�H�

� 
���, (1)

where Z�
� is the appropriate normalizing factor.

Example. Probably the best known spin system is the ferromagnetic Ising model. In this
case, the spin space is S � {�1, �1}, while U(s1, s2) � �� � s1 � s2 and W(s) � �� � h �
s, where � � �� is the inverse temperature and h � � is an external field. Thus, the
energy of a configuration is linear in the number of edges with disagreeing spins, as well
as the number of spins with sign opposite to that of h. For example, if h � 0 and if we
ignore the effect of the boundary configuration (the so-called “free-boundary condition”),
then the minimum energy (highest probability) configurations are the two constant
configurations where all the spins have the same value (either �1 or �1).

2.2. The Glauber Dynamics

We study the following simple Markov chain (Xt), known as the (heat-bath) Glauber
dynamics, which is used to sample from ��

� . Given the current configuration Xt � ��, the
transition Xt 3 Xt�1 is defined as follows:

● Choose a vertex v uniformly at random from �.
● Let Xt�1[u] � Xt[u] for all u � v.
● Choose Xt�1[v] from �{v}

X�t , where X�t is the configuration of �{v} defined by X�t[u] �
Xt[u] for u � � and X�t[u] � �[u] for u � ��.

It is not too difficult to verify that this Markov chain is reversible with respect to the Gibbs
distribution ��

� and, in particular, that ��
� is the unique stationary distribution.

Remark. In the literature, a Glauber dynamics is usually any Markov chain that makes
single-site updates that are reversible with respect to the single-site Gibbs measure.
Indeed, all the results below apply to any choice of Glauber dynamics. However, for
definiteness we will assume the above definition throughout this paper.

We also discuss a generalization of the Glauber dynamics to a Markov chain where at
each step a block of sites is updated rather than a single site. Let QL � [1, . . . , L]d be the
d-dimensional regular box of side length L. Consider all the translations of QL that
intersect the subset � and let B(�, L) � {� � A � � � (z � QL) � � for some z � �d}.
We think of each � � B(�, L) as a block. We then denote by HB(L) the heat-bath block
dynamics that makes updates to blocks from B(�, L). Given the current configuration Xt,
the transition Xt 3 Xt�1 is defined as follows:

● Choose a block � uniformly at random from B(�, L).
● Let Xt�1[u] � Xt[u] for all u � �.
● Choose Xt�1[�] from ��

X�t, where X�t is the configuration of �� defined by X�t[u] �
Xt[u] for u � � and X�t[u] � �[u] for u � ��.
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2.3. Temporal and Spatial Mixing

The results in this paper relate an appropriate notion of temporal mixing (convergence in
time of the Glauber dynamics) with an appropriate notion of spatial mixing (decay of
correlation with distance in the Gibbs distribution). The exact definitions are given below.

Let �1 and �2 be two distributions on ��. We write ��1 � �2� � maxA���
��1(A) �

�2(A)� for the total variation distance between the two distributions, and ��1 � �2�� �
maxA���

��1(A) � �2(A)� for the distance when projecting the two distributions onto ��

for � � �.

Definition 2.1. We say that the Glauber dynamics has optimal temporal mixing if there
exist constants b and c � 0 such that for any subset � with any boundary configuration,
the dynamics on � has the following property. For any two instances (Xt) and (Yt) of the
chain and for any positive integer k, �Xkn � Ykn� � bn exp(�ck), where n � ��� is the
volume of �.

In particular, optimal temporal mixing means that the distance from the stationary
measure �Xkn � ��

� � � bn exp(�ck) for any instance (Xt). Before we move on to the
definition of the spatial mixing notion, we pause to compare optimal temporal mixing as
defined here with some of the other notions of temporal mixing found in the literature. The
mixing time of a Markov chain (as a function of 	) is the time it takes to get within a
variation distance of 	 from the stationary measure. Notice that optimal temporal mixing
is equivalent to a mixing time of O(n log(n/	)). Optimal temporal mixing also implies that
the spectral gap of the dynamics is at least c/n. While such a spectral gap does not
immediately imply optimal temporal mixing, it is not too difficult to see that if the
log-Sobolev constant associated with the dynamics is bounded from below by c/n, then the
dynamics has optimal temporal mixing. We notice that in fact, in the context of spin
systems, all the above notions of temporal mixing are known to be equivalent when
considered to hold uniformly in the subset � and in the boundary configuration (since they
are all equivalent to an appropriate notion of spatial mixing as defined below).

Remark. We note that the word optimal in Definition 2.1 should not be taken literally.
Although it is indeed believed that the mixing time of the Glauber dynamics cannot be
o(n log n), there is not yet a rigorous proof of this conjecture for general spin systems.

The corresponding spatial notion we consider states that changing the spin of a site on
the boundary has an exponentially small effect on the configuration of sites far away from
the changed site. The distance between two sites v and u is defined as the graph distance
between them, or equivalently, dist(v, u) � ¥i�1

d �vi � ui�. The distance between subsets
is the natural extension, i.e., the minimal distance between two sites, one in each subset.

Definition 2.2. We say the system has strong spatial mixing if there exist constants � and

 � 0 such that for any two subsets �, � where � � �, any site u � ��, and any pair
of boundary configurations � and �u that differ only at u, ���

� � ��
�u

�� � ���� exp(�
 �
dist(u, �)).

Remark. In the literature, the definition of strong spatial mixing may vary, where the
difference lies in which class of subsets � the assumption applies to (for example, � may
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be restricted to be a regular box). We work with the strongest version by requiring it to
apply to all subsets in order to simplify our arguments.

In order to illustrate the above definitions,3 let us conclude this section with a brief
discussion of how they apply to the Ising model (as defined in Example 2.1) on the square
lattice �2. Recall that in the definition of the Ising model, � stands for the inverse
temperature and h for an external field. The following fact is an example of the equiva-
lence between temporal and spatial mixing: There exists a critical �̂c such that, when h �
0 (no external field), for � � �̂c both optimal temporal mixing (Definition 2.1) and strong
spatial mixing (Definition 2.2) hold for the Ising model on �2, while for � � �̂c both fail.

It is worth mentioning here that in the special case of the Ising model on �2, the critical
�̂c mentioned above coincides [14] with the critical inverse temperature �c where a phase
transition occurs in the infinite volume limit, namely, for � � �c there exists a unique
infinite volume Gibbs measure while for � � �c there are multiple such measures. Though
we do not discuss infinite volume Gibbs measures in this paper (see, for example, [7, 8]
for more on this topic), one can interpret the uniqueness of the infinite volume Gibbs
measure as an alternative notion of spatial mixing (which is weaker than strong spatial
mixing provided the underlying lattice is of subexponential growth). Notice that in general
it is not true that the two critical inverse temperatures �̂c and �c coincide, and there are
examples where the infinite volume Gibbs measure is unique while strong spatial mixing
does not hold (see [11] for a discussion on the matter).

Finally, again in the special case of the Ising model on �2, the corresponding phase
transition in the mixing time is known to be very sharp [4]. Specifically, for � � �̂c � �c,
not only does optimal temporal mixing not hold, but in fact the mixing time is super-
polynomial (specifically, exp(c�n) for some constant c � 0).

2.4. Monotone Systems

Some of the statements in this paper apply only to monotone systems. In a monotone
system, each site v is associated with a linear ordering of the spin space, denoted by �v.
Since the spin space is finite, each of the linear orderings has unique maximal and minimal
elements, which we call the plus and minus elements respectively. The single-site
orderings give rise to a partial ordering �� of the configuration space. Specifically, �1 ��

�2 if and only if �1[v] �v �2[v] for every v � �. The system is monotone with respect
to the above partial ordering if, for every subset � and any two boundary configurations
�1 and �2 such that �1 ��� �2, the Gibbs measure ��

�1 statistically dominates the Gibbs
measure ��

�2 with respect to ��. Equivalently, the two distributions can be coupled such
that with probability 1, �1 �� �2, where �1 and �2 are a pair of coupled configurations
chosen from ��

�1 and ��
�2, respectively. Notice that it is enough that the above property

holds for all single sites to ensure that it holds for all subsets �. Also, since the single-site
orderings are linear, the system is “realizably” monotone [6]. This means that, given a
collection of boundary configurations �1, �2, . . . , �k, we can simultaneously couple the k

3Strictly speaking, the discussion in the three paragraphs starting here applies to slightly modified definitions of
spatial and temporal mixing where the subset � is restricted to have a “nice” shape (see, remark following
Definition 2.2).
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corresponding Gibbs distributions such that if �i ��� �j, the corresponding coupled
configurations satisfy �i �� �j with probability 1 (simultaneously for each such pair i, j).

Many well-known spin systems are monotone, including the Ising model and the
hard-core model (independent sets).

2.5. Systems with Hard Constraints

Recall that according to our definition above, the edge potential U may only take on finite
real values. However, there are interesting models where U is infinite for some combi-
nations of spin values, i.e., there is a hard constraint forbidding certain combinations of
spins along an edge. Examples of such systems are the hard-core model (whose config-
urations are independent sets) and the antiferromagnetic Potts model at zero temperature
(whose configurations are proper colorings)—see, e.g., [8] for definitions of these models.
In general, the results of this paper apply to these kinds of systems as well. However, some
of the notions we introduced above are not necessarily well defined for systems with hard
constraints. In order to avoid cumbersome details but still consider systems with hard
constraints, we make the compromise of allowing U to be infinite but restricting our
results to permissive systems. A permissive system is one in which, for any finite subset
� and any boundary configuration �, there is at least one configuration � � �� such that
H�

� (�) � �, and in particular, ��
� (�) � 0. We also require that the space of “legal”

configurations (those in the support of the stationary distribution) is connected under the
Glauber dynamics. Notice that, by definition, systems without hard constraints are always
permissive. It is easy to verify that the hard-core model is permissive, as is the model of
proper colorings when the number of colors is strictly larger than the degree of the lattice,
i.e., q � 2d.

The main importance of assuming the system is permissive is that ��
� is well defined

for any value of �. An alternative to this assumption is to extend the definition of ��
� , but

this requires additional details which we wish to avoid. Once the finite Gibbs distributions
are well defined for any value of the boundary configuration, strong spatial mixing is also
well defined. In addition, the transitions of the Markov chains above are well defined for
any current configuration, even if it is not in the support of the stationary distribution. In
permissive systems, the chain is guaranteed to reach a legal configuration at some finite
time, and thus converge to the stationary Gibbs measure. Hence, without loss of generality, we
may think of the chains as running on the whole configuration space ��. In particular, when
we say the dynamics has optimal temporal mixing, the error bound applies to chains that start
from illegal configurations as well. Notice, however, that this has a negligible quantitative
effect since once every site is updated at least once [which takes O(n log n) time with high
probability], the configuration is guaranteed to be a legal one.

2.6. Results

Several notions of temporal and spatial mixing for models on integer lattices are known
to be equivalent to one another [3, 11, 12, 13, 16], though the proofs are often rather
complex and cast in the language of functional analysis. In this paper we present
combinatorial proofs of the following implications.

Theorem 2.3. If the single-site dynamics has optimal temporal mixing then the system
has strong spatial mixing.
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For monotone systems we show the converse as well:

Theorem 2.4. If a monotone system has strong spatial mixing then the single-site
dynamics has optimal temporal mixing.

In the general case (without assuming monotonicity), we show that:

Theorem 2.5. If a system has strong spatial mixing then there exists a finite integer L
for which the heat-bath block dynamics HB(L) has optimal temporal mixing.

The converse of Theorem 2.5 (that optimal temporal mixing of HB(L) implies strong
spatial mixing) can be proved using the same ideas as in the proof of Theorem 2.3 (with
the addition of a few minor technical details), so we skip it here.

Notice that strong spatial mixing implies optimal temporal mixing of the single-site
Glauber dynamics in the general case as well [3, 11, 13, 16], but we have not yet been able
to find a purely combinatorial proof of this implication. The main obstacle is translating
the rapid mixing result for the block dynamics into rapid mixing of the single-site
dynamics (at the cost of only a constant factor), a problem which is still open for general
spin-systems. The functional analysis proofs mentioned above analyze the log-Sobolev
constant of the block dynamics, and the implication for the single-site dynamics follows
since the log-Sobolev constant of the block dynamics translates easily to that of the
single-site dynamics.

3. PRELIMINARIES

In this section we identify some of the common tools we use in our proofs.

3.1. Coupling and Mixing Time

A common tool for bounding the total variation distance between two distributions, and
in particular for bounding the mixing time of Markov chains, is coupling. A coupling of
�1 and �2 is any joint distribution whose marginals are �1 and �2, respectively. If �1 and
�2 are a pair of random configurations chosen from a given coupling of �1 and �2, then
Pr(�1 � �2) is an upper bound on the total variation distance between �1 and �2. Also,
there is always an optimal coupling, i.e., a coupling such that Pr(�1 � �2) � ��1 � �2�.

In the proofs we give in this paper we use the following coupling of the Glauber
dynamics, which we call an identity coupling. This coupling allows us to simultaneously
couple any number of instances of the chain. An identity coupling is determined by
specifying, for each site v, a coupling of all the single-site Gibbs distributions (ranging
over all possible values for the configuration of the neighbors of v). Namely, we have a
joint distribution �v whose marginals are �{v}

�1 , . . . , �{v}
�k , where the set {�1, . . . , �k} �

��{v}. Given �v, we couple a collection of instances of the Glauber dynamics (Xt
1),

(Xt
2), . . . , (Xt

l) using a Markovian coupling (i.e., the joint distribution of Xt�1
1 , . . . , Xt�1

l

is a function only of the coupled configurations Xt
1, . . . , Xt

l) where the coupled transition
(Xt

1, . . . , Xt
l) 3 (Xt�1

1 , . . . , Xt�1
l ) is as follows:

● Choose a site v u.a.r. from � (the same one for all chains).
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● Choose a collection of spins (s1, . . . , sk) from the joint distribution �v.
● For every 1 � i � l set Xt�1

i [v] � sj if and only if Xt
i[�{v}] � �j.

An important property of this coupling is that if Xt
i[�{v}] � Xt

j[�{v}], then Xt�1
i [v] �

Xt�1
j [v] with probability 1. Notice that in a monotone system there exists a monotone

identity coupling, i.e., a joint distribution �v such that whenever �i ��{v} �j, si �v sj with
probability 1.

We say that an identity coupling has optimal mixing if for any two instances of the
chain (Xt) and (Yt), we have Pr(Xkn � Ykn) � bn exp(�ck), where the probability space is
the coupling of Xkn and Ykn resulting from the identity coupling of the two processes.
Notice that optimal mixing of an identity coupling implies optimal temporal mixing of the
dynamics. Finally, the coupling time of an identity coupling is the minimum T such that
Pr(XT � YT) � 1/e. As a result, Pr(XkT � YkT) � e�k for any positive integer k.

3.2. Bounding the Speed of Propagation of Information

A central idea in the analysis of the mixing time of the Glauber dynamics, in particular
when using spatial mixing assumptions, is to bound the speed at which information
propagates during the dynamical process. In this section we give a lemma of this sort
following an argument explained to us by van den Berg, based on the idea of paths of
disagreement (also known as disagreement percolation [17]). The idea of bounding the
speed of propagation of information originally appeared in [16], and similar bounds can
also be found in [10, 11]. The quantitative analysis in the argument in fact goes back to
the Richardson model [15]. Our version below applies to the Glauber dynamics on general
graphs of bounded degree (as in [10]), rather than just for finite subsets of �d.

Lemma 3.1. Let G � (V, E) be a graph of maximum degree � � 1, and let n � �V�. Let
(Xt) and (Yt) be two copies of a Glauber dynamics on G such that the two initial
configurations agree everywhere except on A � V. Let B � V be another subset and let
r � dist(A, B). Then, for any positive integer k � r/(� � 1)e2, if we run the dynamics for
T � kn steps, Pr(XT[B] � YT[B]) � 4 min{�A�, �B�} ((� � 1)ek/r)r, where the probability
space is the coupling of XT and YT resulting from any identity coupling of (Xt) and (Yt).
In particular, if T � kn and dist(A, B) � (� � 1)e2k, then Pr(XT[B] � YT[B]) � 4 min{�A�,
�B�} e�dist(A,B).

In words, Lemma 3.1 states that in kn steps, with high probability, information
percolates a distance of at most (� � 1)e2k.

Proof. Since we couple Xt and Yt using an identity coupling, if at time zero v had the
same spin in both chains and at time T the spins at v differ, then it must be the case that
at some time t� � T the site chosen to be updated was v and immediately before the update
of v at time t� the two chains had different spins at one of the neighbors of v. Carrying this
argument inductively, if we assume that at time zero the only sites whose spins may differ
are included in A, then in order for a site v to have different spins at time T there must be
a path of disagreement going from A to v. Specifically, there must be v0, v1, . . . , vl � v
and 0 � t1 � t2 � . . . � tl � T such that v0 � � and for 1 � i � l, vi � vi�1, and at time
ti the site chosen to be updated was vi. Notice that for a given path v0, . . . , vl the
probability of this event occurring is at most (l

T) (1/n)l. Now, if the two configurations at
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time T differ at some site in B, there must be a path of disagreement of length at least r �
dist(A, B) going from A to B. Since the number of (simple) paths of length l going from
A to B is bounded from above by min{�A�, �B�} �(� � 1)l�1 we can conclude that the
probability of a disagreement in B at time T � kn is at most

min��A�, �B�� �
�

�  1
� �

l�r

kn


�  1�l�kn
l ��1

n�
l

� min��A�, �B�� �
�

�  1
� �

l�r

� �
�  1�ek

l �l

� 4 min��A�, �B���
�  1�ek

r �r

,

where in the last inequality we used the fact that r � (� � 1)e2k. ■

Remark. We will often use Lemma 3.1 in a setting where only a subset of the sites may
be updated in the Markov chain (i.e., the spins on some sites—typically those on the
boundary—are held fixed throughout the process). Notice that the proof above is still valid
in this setting (regardless of whether or not the fixed spins disagree—i.e., are of sites in
A). In fact, it is valid even if the two compared chains have different sets of fixed sites as
long as the sites which are fixed in only one of the chains are all included in the subset
A, i.e., we just assume that the spins of these sites disagree in the two chains. An important
point to keep in mind in these scenarios is the meaning of the parameter n. Rather than the
volume of the graph, n stands for the inverse of the probability that a given site is chosen
to be updated (and it must be the same in both chains). Indeed, this is the only use we made
of this parameter in the proof. The scenarios mentioned in this remark will become clearer
when they arise in the proofs below.

4. FROM TEMPORAL TO SPATIAL MIXING

In this section we prove Theorem 2.3, which states that if the Glauber dynamics has
optimal temporal mixing then strong spatial mixing holds. The first step in the proof is to
derive a stronger notion of temporal mixing, given in Lemma 4.1 below. Temporal mixing
as defined earlier (Definition 2.1) guarantees that if we run the dynamics on a rectangle
� for sufficient time, then the distance between any two chains will be small enough as
a function of the time we run the chains. The distance considered is the total variation
distance between the two distributions on ��. However, if we project the distributions on
��, where � � �, it may very well be that after the same amount of time the distance
between the two projected distributions is smaller than the distance between the original
distributions. Ideally, we look for a bound which is of the same form as the one we get
from running the dynamics on �, i.e., b����exp(�c�k). We use the subexponential growth
of �d to argue that if the Glauber dynamics has optimal temporal mixing then indeed this
stronger notion, which we call projected optimal mixing, holds as well.

Lemma 4.1. If the Glauber dynamics has optimal mixing, then there exist constants b�
and c� � 0 such that, for any subset � of volume n, any boundary configuration, any two
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instances (Xt) and (Yt) of the chain on � and any subset � � �, we have that �Xkn �
Ykn�� � b����exp(�c�k) for any positive integer k, where n � ��� is the volume of �.

Proof. The idea of the proof is one we use throughout this paper, which involves using
Lemma 3.1 in order to localize the dynamics we consider. Namely, when we run the
dynamics for kn steps, with high probability information from sites which are at distance
at least (2d � 1)e2k from � does not percolate into �. Therefore, if we take a subset �k

surrounding � and whose boundaries are at distance at least (2d � 1)e2k from �, we can
assume that the sites on the boundary of �k are fixed throughout the process. Thus, we can
use the optimal temporal mixing bound for a dynamics on the local subset �k, whose
volume is smaller than that of �. As shown below, the fact that the volume of �k grows
only subexponentially in k (this is the first place where we use the subexponential growth
of �d) gives the required bound. An additional point we need to make in order to carry out
the above argument is that when running the dynamics on �, with high probability, an
appropriate portion of the time is spent in the subset �k. This, however, is an easy
consequence of the Chernoff bound.

We proceed with the formal proof. Consider the subset of all sites within distance
(2d � 1)e2k from �, and let �k be the intersection of this subset with �. Notice that
dist(�, ���k) � (2d � 1)e2k and that ��k� � [2(2d � 1)e2k]d���.

In addition to the chains (Xt) and (Yt), we consider two additional chains, denoted by
(Xt

�k) and (Yt
�k), whose initial configurations inside �k are the same as (Xt) and (Yt),

respectively. The configuration of ���k is fixed to the same arbitrary configuration in both
(Xt

�k) and (Yt
�k) and remains fixed throughout the process, i.e., (Xt

�k) and (Yt
�k) represent

modified processes where, in a given step, if the chosen site to be updated is outside �k,
then the spin of that site remains unchanged, while if it is in �k, then it is updated as usual.
Notice that this modified process is the same as running the dynamics on �k except that
the probability of a site being chosen at a given step is 1/��� instead of 1/��k�.

Using the triangle inequality, we have �Xkn � Ykn�� � �Xkn � Xkn
�k�� � �Xkn

�k � Ykn
�k�� �

�Ykn
�k � Ykn��. Lemma 3.1 (together with the remark following it) gives a bound on the first

and third terms on the rhs of the last inequality. To see this, couple (Xt) and (Xt
�k) using

a modified identity coupling, where an update of a site outside �k in (Xt) is coupled with
doing nothing in (Xt

�k). Notice that at time zero the two chains agree on �k. Disagreement
may percolate from ���k into the bulk of �k as we run the chains, but since dist(�,
���k) � (2d � 1)e2k, we can use Lemma 3.1 to deduce that �Xkn � Xkn

�k�� �

4���e�(2d�1)e2k.
It remains to bound �Xkn

�k � Ykn
�k��. Recall that both these chains have the same fixed

configuration outside �k so we can use the optimal temporal mixing assumption for a
process on �k. Notice that when running the chain Xt

�k for kn steps, on average k��k� of
the steps hit �k. Using a Chernoff bound, with probability at least 1 � exp(� k��k�/8), the
number of steps that hit �k is at least k��k�/2. Thus, we can use the same bound as when
running a process on �k for k��k�/2 steps. Specifically,

�Xkn
�k  Ykn

�k�� � �Xkn
�k  Ykn

�k��k

� b��k� exp��c �
k

2� � exp��
k��k�

8 �
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� b�2
2d  1�e2kd��� exp��c �
k

2� � exp��
k

8�
� b���� exp
�c� � k�

for appropriate constants b� and c� � 0. ■

We now proceed with the proof of Theorem 2.3.

Proof of Theorem 2.3. Let � be a subset of volume n, � and �u be two boundary
configurations that differ only at u, and let � � �. Following Lemma 4.1, we assume the
dynamics has projected optimal mixing and show that

���
�  ��

�u�� � b���� exp��
c�


2d  1�e2 � dist
u, ��� � 4���e�dist
u,��.

The idea of the proof is that when running the Glauber dynamics, the time needed in
order for the projected distribution on � to be close to the stationary one is less than the
time it takes for the disagreement at u to percolate into �. Formally, consider the
following two instances of the Glauber dynamics on �. The first, denoted by Zt, is an
instance with � as the boundary configuration while the second, denoted by Z�t, is an
instance with �u as the boundary configuration. The initial configuration of � in both
chains is chosen from the distribution ��

�u

. Notice that this is the stationary distribution of
Z�t and therefore Z�t � ��

�u

for all t.
Using the triangle inequality, we have ���

� � ��
�u

�� � ���
� � Z�t�� � ���

� � Zt�� �
�Zt � Z�t��. By letting t � [dist(u, �)/(2d � 1)e2] � n we can make sure both terms are
small. We bound the first term using the temporal mixing assumption. Namely, for t �
[dist(u, �)/(2d � 1)e2] � n we have ���

� � Zt�� � b����exp(�c� � [dist(u, �)/(2d � 1)e2]).
We use Lemma 3.1 in order to bound the second term. Notice that Zt and Z�t have the same
initial distribution on � and thus they can be coupled such that at time zero they have the
same configuration on � with probability 1. We continue to couple the two processes
using an identity coupling. Disagreement may percolate from u, but since dist(u, �) �
(2d � 1)e2 t/n we have �Zt � Z�t�� � 4���e�dist(u,�). ■

We conclude this section with a couple of remarks on the generalization of the
arguments made above to other settings. First, notice that we never used the fact that the
difference on the boundary is only at a single site u. Indeed, if the difference is on a subset
� we have the same bound (as a function of dist(�, �)) without adding any factor that
depends on �. Second, the argument for showing that projected temporal mixing implies
spatial mixing uses only Lemma 3.1 and can thus be carried out in models with any
underlying finite-degree graph. On the other hand, the proof of Lemma 4.1 uses the
subexponential growth of �d and breaks down for graphs with exponential growth.
Indeed, the Ising model on a tree at an appropriate temperature provides a counterexample
to the claim of Lemma 4.1 in such graphs. This counterexample can be deduced from [10],
where it is shown that there are temperatures where the Glauber dynamics for the Ising
model on a tree has optimal temporal mixing but a modified form of strong spatial mixing
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(where the difference on the boundary may include many sites) does not hold, which in
particular means that projected optimal mixing does not hold.

5. FROM SPATIAL TO TEMPORAL MIXING: THE MONOTONE CASE

In this section we show that in monotone systems the strong spatial mixing assumption
implies optimal temporal mixing of the single-site Glauber dynamics (Theorem 2.4).
Actually, we state two theorems whose combination gives Theorem 2.4. The first theorem,
whose proof uses ideas from the proof of Theorem 4.2 of [12], states that the strong spatial
mixing assumption implies O(n log2 n) coupling time of any monotone identity coupling,
uniformly in the volume n and in the boundary configuration. The second theorem, which
is based on Theorem 3.12 of [11], states (for general systems) that if there exists n0 for
which the coupling time of any identity coupling of the Glauber dynamics on subsets of
volume n0 is at most (c/log n0) n0

1�1/d for an appropriate constant c, uniformly in the
boundary configuration, then this identity coupling has optimal mixing. In particular, any
upper bound of o(n1�1/d/log n) on the asymptotic coupling time immediately implies that
the identity coupling has optimal mixing.

Theorem 5.1. Strong spatial mixing implies that the coupling time of any monotone
identity coupling of the Glauber dynamics on any subset of volume n is at most T(n) �
cn(log n)2 for some constant c, uniformly in n and in the boundary configuration.

Proof. As in our earlier arguments, the idea of the proof is again to localize the
dynamics, which allows us to use inductive bounds from smaller volume subsets. How-
ever, here we use strong spatial mixing to achieve the localization, rather than the bound
on the speed of propagation of information from Lemma 3.1.

Fix a large enough n0 (to be determined later). By choosing an appropriate constant c �
c(n0), the coupling time statement is true for all n � n0. This is a consequence of the fact
that any two instances of the chain will coalesce in finite time under any monotone
coupling, e.g., because eventually both instances will simultaneously reach a maximal or
minimal state. We go on to show the statement of the theorem is valid for n � n0, by
inductively assuming its validity for volumes m � [2 � (2/
)log(3e�n)]d, where 
, � are
the constants in the definition of strong spatial mixing (Definition 2.2).

Let � be a subset of volume n with an arbitrary boundary configuration. Let (Xt) and
(Yt) be two instances of the chain with arbitrary initial configurations inside �. We will
show that after T(n) steps, for every site v � �, the probability that the two spins at v
differ is at most 1/en, and therefore, the probability that two configurations (on the whole
of �) differ is at most 1/e, as required.

Consider the regular box of radius (2/
)log(3e�n) around v, and let �v be the
intersection of this box with �. Let m � ��v� and notice that m � [2 � (2/
)log(3e�n)]d.
We now introduce four additional chains that may only update sites in �v. We will couple
these chains along with (Xt) and (Yt) such that, whenever the site chosen to be updated is
outside �v, only Xt and Yt are updated while the additional four chains remain unchanged.
On the other hand, when the site to be updated belongs to �v all six chains are updated
simultaneously according to the monotone identity coupling. Below we describe the
additional four chains and their initial configurations. Notice that we only describe the
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initial configuration inside �. Outside �, all four chains have the same boundary
configuration as (Xt) and (Yt).

1. Qt
�,�v: the chain starting from the all plus configuration on �.

2. Qt
�,�v: the chain starting from the all minus configuration on �.

3. Zt
�,�v: the chain starting from the all plus configuration outside �v, while the initial

configuration inside �v is chosen from the (stationary) Gibbs measure on �v with
this boundary configuration.

4. Zt
�,�v: the chain starting from the all minus configuration outside �v, and the

stationary Gibbs measure corresponding to this boundary configuration inside �v.

Notice that we can simultaneously couple the six chains such that at time zero, with
probability one, Q0

�,�v � X0 � Q0
�,�v, Q0

�,�v � Y0 � Q0
�,�v, and Zt

�,�v � Zt
�,�v. Since we

use a monotone identity coupling, we have by induction that these relations hold for all
t. Thus, we have

Pr
Xt�v � Yt�v� � Pr
Qt
�,�v�v � Qt

�,�v�v� �

Pr
Qt
�,�v�v � Zt

�,�v�v� � Pr
Zt
�,�v�v � Zt

�,�v�v� � Pr
Zt
�,�v�v � Qt

�,�v�v�.

We use the strong spatial mixing assumption to bound the middle term of the last
expression. Notice that since Zt

�,�v and Zt
�,�v represent the stationary Gibbs distributions

on �v with the appropriate boundary configurations then strong spatial mixing (together
with the triangle inequality4) gives �Zt

�,�v � Zt
�,�v�{v} � ���v����� exp(�
 �

dist(��v���, v)). This bound on the total variation distance does not guarantee the same
bound on disagreement under the coupling because the coupling we use is not necessarily
the optimal one. However, monotonicity guarantees that our coupling is within a factor of
q � 1 (recall that q is the size of the spin space) from the optimal coupling, as explained
next. We embed the ordering associated with v in the linear ordering 1, 2, . . . , q with
integer arithmetic. Since the spins at v are coupled such that with probability one Zt

�,�v[v]
� Zt

�,�v[v], we have

Pr
Zt
�,�v�v � Zt

�,�v�v� � E
Zt
�,�v�v  Zt

�,�v�v� � E
Zt
�,�v�v�  E
Zt

�,�v�v�

� 
q  1��Zt
�,�v  Zt

�,�v��v�

� 
q  1����v����� exp
�
 � dist
��v���, v�� �
1

3en

for large enough n. Notice that in order to get the inequality in the middle line we used
an optimal coupling of Zt

�,�v[v] and Zt
�,�v[v] together with the fact that the oscillation of

any function whose range is [1, q] is at most q � 1.
In order to complete the proof we have to show that Pr(Qt

�,�v[v] � Zt
�,�v[v]) � 1/3en

4The strong spatial mixing assumption gives bounds only for comparing two Gibbs distributions whose boundary
conditions differ at a single site. We use the triangle inequality in order to extend the bound to comparing two
distributions whose boundary conditions differ at multiple sites.
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when t � T(n) (by symmetry, the same will hold for the minus chains). Using a Chernoff
bound, if we run the dynamics on � for cn(log n)2 steps, then with probability at least 1 �
1/6en the number of steps in which �v is hit is at least

1

2
cm
log n�2 � 
2 log n�cm

log n

4
� 
2 log n�cm
log m�2

for large enough n. If we assume that indeed �v is hit this often, then we can use the
induction hypothesis to bound the probability that the spins at v differ because the two
chains we are comparing have the same fixed boundaries outside �v. Indeed, after T(m) �
cm(log m)2 steps in �v, the configurations (on the whole of �v) disagree with probability
at most 1/e, and thus after (2 log n)T(m) steps, they disagree with probability at most 1/n2.
Hence, Pr(QT(n)

�,�v[v] � ZT(n)
�,�v[v]) � 1/6en � 1/n2 � 1/3en for large enough n, as required.

■

Remark. The reader may have noticed that, by carrying through a more careful analysis
in the above proof, one can get a slightly better bound—e.g., O(n log n(log log n)2)—on
the coupling time. However, since in any case we will reduce the coupling time to O(n log
n) using the next theorem, we choose to keep the calculations simpler by only showing a
bound of O(n log2n).

Theorem 5.2. Suppose there exists an identity coupling such that for all subsets � of
volume at most n0, where n0 is a sufficiently large constant, the coupling time of the given
identity coupling on � is at most [1/8(2d � 1)e2] (n0

1/d/log n0)��� uniformly in the
boundary configuration. Then, for all n and for all subsets � of volume n with any
boundary configuration, Pr(Xkn � Ykn) � ��� exp(�ck), where c � 2(2d � 1)e2n0

�1/d.
Thus, this identity coupling has optimal mixing.

Proof. Consider the Glauber dynamics on � with an arbitrary boundary configuration.
We will show that for any two instances of the chain (Xt) and (Yt) and any v � � we have
Pr(Xkn[v] � Ykn[v]) � exp(�ck) under the given identity coupling. Using a union bound,
this implies that Pr(Xkn � Ykn) � ���exp(�ck).

Let l0 � 1/c � n0
1/d/2(2d � 1)e2. As before, we will use Lemma 3.1 to localize the

dynamics. Together with the hypothesis of the theorem, this will imply that after l0n steps
the spins at v agree with high probability. What we want, however, is that the probability
of disagreement will continue to decay exponentially with the number of steps. Notice that
such a result would follow if, once the spins at v agreed, they continued to agree through
the rest of the process, but this is clearly not the case. However, using the subexponential
growth of �d and another localization argument, we can show that if all the spins within
a large enough radius around v agree at a given time, then the spins at v will continue to
agree for sufficiently many steps (depending on the radius of agreement). Bootstrapping
from the sufficiently small probability of disagreement after l0n steps, we get the required
exponential decay.

We proceed with the formal proof. Let �(k) � maxX0,Y0,v�� Pr(Xkn[v] � Ykn[v]). We
make the following two claims.

Claim 1. Under the hypothesis of the theorem, �(l0) � 1/e2d(n0 � 1) � 1/e2d([2(2d �
1)e2l0]d � 1).
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Claim 2. Without any assumptions, for any k1 and k2, �(k1 � k2) � [2(2d �
1)e2k2]d�(k1)�(k2) � 4e�k2.

Theorem 5.2 follows from a combination of the above two claims. To see this, let
�(k) � 2d([2(2d � 1)e2k]d � 1) � max{�(k), 2e�k/2}. Using Claim 2, we have by an
explicit calculation that �(2k) � �(k)2. On the other hand, from Claim 1 we get that
�(l0) � 1/e (where we used the fact that l0 is large enough to handle the case of �(l0) �
2e�l0/2). We then conclude that �(k) � �(k) � exp(�k/l0), as required.

Proof of Claim 1. Let v � � be any site. As in Lemma 4.1, the idea is to take a regular
box of volume n0 around v. Then, since we run the coupled chains for only l0n steps,
information from the boundary of this box does not have enough time to percolate to v.
We can therefore assume the boundaries around this box are fixed. But, then, the
assumption of the theorem guarantees that the spins at v will agree with the required
probability.

Formally, let �v be the intersection of the regular box of volume n0 around v with �.
Let (Xt

�v) and (Yt
�v) be two chains whose initial configurations inside �v agree with X0 and

Y0 respectively, and which have the same fixed arbitrary boundary configuration on
��v���. We have Pr(Xt[v] � Yt[v]) � Pr(Xt[v] � Xt

�v[v]) � Pr(Xt
�v[v] � Yt

�v[v]) �
Pr(Yt

�v[v] � Yt[v]). Notice that dist(v, ��v���) �
1
2 n0

1/d � (2d � 1)e2l0. Therefore, using
Lemma 3.1, we have Pr(Xl0n

[v] � Xl0n
�v[v]) � 4e�(2d�1)e2l0.

We go on to bound Pr(Xl0n
�v[v] � Yl0n

�v[v]). Notice that since in both chains the
configuration outside �v is fixed and is identical in both chains and since ��v� � n0, we
can use the hypothesis of the theorem to bound the above probability. If we run the
coupled chains for l0n steps, then with probability at least 1 � exp(�(l0/8)��v�) the number
of steps that hit �v is at least (l0/2)��v�. If indeed that many steps hit �v, then, according
to the hypothesis of the theorem, Pr(Xt

�v[v] � Yt
�v[v]) � e�2 log n0 � n0

�2. Thus, Pr(Xl0n
�v[v]

� Yl0n
�v[v]) � n0

�2 � exp(�(l0/8)��v�). Putting this together with the result of the previous
paragraph, we get Pr(Xl0n

[v] � Yl0n
[v]) � n0

�2 � exp(�l0/8) � 8e�(2d�1)e2l0 � 1/e2d(n0 � 1)
for sufficiently large n0, as required. ■

Proof of Claim 2. We use Lemma 3.1 once again, this time in the sense that in k2n steps,
information can percolate over a distance of at most (2d � 1)e2k2. Thus, if the spins of all
the sites within that radius from v agree after k1n steps, then the spins at v will continue
to agree after (k1 � k2)n steps with high probability.

Formally, let �v,k2
be the intersection of the regular box of radius (2d � 1)e2k2 around

v with �, and let � stand for the event that Xk1n
[�v,k2

] � Yk1n
[�v,k2

]. Then, using Lemma
3.1, we have

Pr
X
k1�k2�n�v � Y
k1�k2�n�v� � 
1  Pr
���4e�
2d�1�e2k2 � Pr
���
k2�.

The proof is concluded once we notice that Pr(�) � ��v,k2
��(k1) � [2(2d � 1)e2k2]d�(k1).

■

This completes the proof of Theorem 5.2. ■

Remark. Notice that, in fact, the proof of Theorem 5.2 gives the stronger property of
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projected optimal mixing, as in Lemma 4.1. The hypothesis of Theorem 5.2 differs from
that of Lemma 4.1 in two respects. On one hand, the hypothesis of Theorem 5.2 is stronger
because it works with the coupling time of an identity coupling rather than with the mixing
time in general. On the other hand, the hypothesis in Theorem 5.2 is weaker because the
time bounds are weaker. The reason why a weaker time bound is sufficient for coupling
time is that we can appeal to the union bound Pr(Xt[�] � Yt[�]) � ¥v�� Pr(Xt[v] � Yt[v]).
We used this union bound twice, first when we reduced the proof to bounding the
probability of disagreement at a single site, and second when we bounded the probability
of the event �. Notice that the corresponding inequality for the total variation distance is
not necessarily true. Namely, we cannot in general assert that �Xt � Yt�� � ¥v�� �Xt �
Yt�{v}. If this assertion were true, then we could have done with assuming a fast mixing
time (rather than a fast coupling time) and working with the total variation distance rather
than with the probability of disagreement throughout the proof.

As remarked at the beginning of this section, combining Theorems 5.1 and 5.2
immediately yields Theorem 2.4.

6. FROM SPATIAL TO TEMPORAL MIXING: THE GENERAL CASE

In this section we prove Theorem 2.5. Namely, we show that in general (without assuming
monotonicity), strong spatial mixing implies that the heat-bath block dynamics has
optimal temporal mixing if the blocks used are large enough. Using path coupling [2], the
proof is reduced to showing that strong spatial mixing implies that the so-called Do-
brushin-Shlosman condition for complete analyticity [5] holds. This last implication was
proved in [5], but we include a simple proof of it here.

Proof of Theorem 2.5. Consider the heat-bath dynamics HB(L) on a rectangle � of
volume n with an arbitrary boundary configuration. Notice that L here is a large enough
constant to be set later and will depend only on the dimension d and the constants from
the definition of strong spatial mixing. In particular, L is uniform in n and the boundary
configuration. Recall that the dynamics chooses a block to be updated from B(�, L),
which is the set of translations of the regular box of side-length L that intersect �. We
denote the number of blocks by m � �B(�, L)� and notice that n � m � Ldn (the lower
bound is due to the fact that the number of translations that intersect � is at least the
volume of � while the upper bound crudely uses the fact that each site is covered by Ld

translations). Using the path coupling method [2], it is enough to show that there exists a
constant c � 0 (independent of n and the boundary configuration) such that, for any site
u � � and any two configurations �, �u that differ only at u, there exists a coupling of
the two chains whose current configurations are � and �u respectively such that after one
step, the average Hamming distance between the two coupled configurations is at most
1 � c/m, i.e., decreases by at least c/m.

We couple these two chains using a specific identity coupling. Namely, the block
chosen to be updated is the same in both chains, and if the boundaries of that block are
the same in both � and �u, then we couple the update of the block such that the
configurations inside the block agree with probability 1. If the boundaries are not the same
(this can happen only if u is on the boundary of the chosen block), we use a coupling to
be described below.
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From the way we defined the heat-bath block dynamics, each site in � is included in
exactly Ld blocks. Since we use an identity coupling, if a block including the site u is
chosen to be updated, then the Hamming distance between the two configurations will be
0 (i.e., decrease by 1) since the boundaries of this block are the same in both � and �u.
The probability of choosing a block as above is Ld/m. Thus, it is enough to show that the
contribution to the expected change in Hamming distance from choosing the rest of the
blocks is at most (Ld � c)/m.

As we already mentioned, the Hamming distance may increase only if the block chosen
to be updated is one whose boundary includes u. Since there are at most 2dLd�1 such
blocks, we will be done once we show that we can couple the update of each such block
� such that the resulting average Hamming distance in � is strictly less than L/2d.

Consider a block � such that u � ��. Let r � (1/2) (L/4d)1/d, �r � {v � � � dist(v,
u) � r}, and �r � ���r. By the strong spatial mixing assumption, ���

� � ��
�u

�—�
r
� ���r�

exp(�
 � r) � L�d for a large enough L. We can thus couple the update of � such that
the two coupled configurations disagree over �r with probability at most L�d. A trivial
upper bound on the resulting average Hamming distance in � in this coupling is then ��r�
� L�d��r� � L/(4d) � 1. ■
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