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Abstract

We present a new algorithm for computing the volume of a convex body in Rn. The main ingredients of the
algorithm are (i) a “morphing” technique that can be viewed as a variant of simulated annealing and (ii) a new
rounding algorithm to put a convex body in near-isotropic position. The complexity is O∗(n4), improving on the
previous best algorithm by a factor of n.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Efficient volume computation in high dimension is an important question both theoretically and prac-
tically. The first polynomial time randomized algorithm to compute the volume of a convex body in Rn

was given by Dyer et al. in their pathbreaking paper [6]. The convex body is specified either by a sepa-
ration oracle or by a membership oracle and a point in the body [8]. This result is quite surprising, given
that no deterministic polynomial-time algorithm can approximate the volume to within a factor that is
exponential in n [7,2]. A very high power of the dimension n (about 23) occurred in the complexity bound
of the algorithm, but subsequent improvements [14–17,1,5,11] brought the exponent down to 5. In this
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paper, we further improve the running time to O∗(n4) (where the asterisk indicates that the dependence
on error parameters and on logarithmic factors in n is not shown).

The main ingredient of our algorithm is a method that can be viewed as a variation of simulated
annealing. Introduced by Kirkpatrick et al. [12], simulated annealing is a general-purpose randomized
search method for optimization. It does a random walk in the space of possible solutions, gradually
adjusting a parameter called “temperature”. At high temperature, the random walk converges fast to the
uniform distribution over the whole space; as the temperature drops, the stationary distribution becomes
more and more biased towards the optimal solutions. Simulated annealing often works well in practice,
but it is notoriously difficult to obtain any theoretical guarantees for its performance.

To explain the connection between volume computation and simulated annealing, let us review the
common structure of previous volume algorithms. All these algorithms reduce volume computation to
sampling from a convex body, using the “Multi-phase Monte-Carlo” technique. One constructs a sequence
of convex bodies K0 ⊆ K1 ⊆ · · · ⊆ Km = K , where K0 is a body whose volume is easily computed, and
one estimates the ratios vol(Ki−1)/vol(Ki) (i = 1, . . . , m) by generating sufficiently many independent
uniformly distributed random points in Ki and counting the fraction of them that fall in Ki−1. The
generation of random points in Ki is done by some version of the Markov chain method (lattice walk,
ball walk, hit-and-run), whose details can be ignored for the moment.

Of course, one would like to choose the number of phases, m, to be small. Any saving in the number of
phases enters as its square in the running time: not only through the reduced number of iterations but also
through the fact that we can allow larger errors in each phase, which means a smaller number of sample
points are needed.

However, reducing the number of phases is constrained by the fact that in order to get a sufficiently
good estimate for the ratio vol(Ki−1)/vol(Ki), one needs about m vol(Ki)/vol(Ki−1) random points. It
follows that the ratios vol(Ki)/vol(Ki−1) must not be too large; since the volume ratio between vol(K)

and vol(K0) is n�(n) in the worst case for any conceivable choice of K0, it follows that m has to be �(n)

just to keep the ratios vol(Ki)/vol(Ki−1) polynomial size. It turns out that the best choice is to keep
these ratios bounded; this can be achieved e.g. if K0 = B is the unit ball and Ki = K ∩ (2i/nB) for i =
1, 2, . . . , m = �(n log n). (After appropriate preprocessing, one can assume that B ⊆ K ⊆ O(

√
n)B;

we will discuss such “roundings” in more detail.) Reducing m any further (i.e., o(n)) appears to be a
fundamental hurdle.

On the other hand, volume computation is a special case of integration. Since the paper of Applegate
and Kannan [1], the flexibility obtained by extending the problem to the integration of special kinds
of functions (mostly logconcave) has been exploited in several papers. Mostly integration was used to
dampen boundary effects; we use it in a different way. Instead of a sequence of bodies, we construct a
sequence of functions f0 �f1 � · · · �fm that “connect” a function f0 whose integral is easy to find to
the characteristic function fm of K. The ratios (

∫
fi−1)/(

∫
fi) can be estimated by sampling from the

distribution whose density function is proportional to fi and averaging the function fi−1/fi over the
sample points. (This method was briefly described in [16], but it was considered as a generalization of
the volume computation algorithm rather than a tool for improvement.)

If the functions fi are characteristic functions of the convex bodies Ki , then this is just the standard
algorithm. The crucial gain comes from the fact that the number of sample points needed in each phase is
smaller if the fi are smooth. We add a new coordinate x0 and use functions of the form f (x) = e−x0/T ,
where x0 is the first coordinate of x (we will come back to the preprocessing of K that is needed). For
this choice, we will only need O∗(

√
n) phases, and O∗(

√
n) sample points in each phase. Thus, we get
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samples from a density proportional to e−x0/T with monotonically increasing values of T (in simulated
annealing, T, the “temperature”, is decreased).

On two points this new approach brings in new difficulties. The first is related to the fact that we have to
sample from distributions that are not uniform over K. Various methods for sampling convex bodies have
been extended to logconcave distributions, and indeed our density functions are logconcave; but they do
not satisfy any smoothness conditions, and so we have to use recent results [18,19] that give sampling
algorithms with O∗(n3) steps (oracle calls) per sample point, without any smoothness assumption.

The other difficulty is that these sampling algorithms need a “warm start”, i.e., they cannot be started
from a fixed point but from a random point that is already almost uniformly distributed, in the sense that
the ratio of the target density and the starting density is bounded at every point. In the standard version
of the volume algorithm, this could be guaranteed by using the sample points generated in the preceding
phase as starting points for the new phase. In our case this cannot be done, since the ratio of densities
is not bounded. Instead, we use the hit-and-run random walk which has a much milder dependence on
starting density. In [19], it was shown that the complexity of sampling by this walk depends only the
logarithm of the L2 norm of the starting density; i.e., it suffices that this norm is polynomially bounded.

The main result of the paper can be stated precisely as follows.

Theorem 1.1. The volume of a convex body K, given by a membership oracle, and a parameter R such
that B ⊆ K ⊆ RB, can be approximated to within a relative error of ε with probability 1 − � using

O

(
n4

ε2 log9 n

ε�
+ n4 log8 n

�
log R

)
= O∗(n4)

oracle calls.

The oracle needed is a weak membership oracle [8]. The number of arithmetic operations is O∗(n6), on
numbers with a polylogarithmic number of digits. As in all previous algorithms, it is a factor of O∗(n2)

more than the oracle complexity. In the next section, we describe the volume algorithm. For the analysis
(Section 2.4 gives an outline), we will need some tools about logconcavity and probability (Section 3).
In the description of the volume algorithm, we will assume that B ⊆ K ⊆ O∗(

√
n)B. In Section 5, we

show how to achieve this by an algorithm that “rounds” a given convex body.

2. The volume algorithm

In this section, we describe the main volume algorithm. We will assume that the convex body of interest,
K ⊆ Rn, contains the unit ball B and is contained in the ball DB, where D = O(

√
n ln(1/ε)). If this

is not true for the given K, it can be achieved by a pre-processing step (finding and applying a suitable
affine transformation) which is described in Section 5. To avoid some trivial difficulties, we assume that
n�16.

The main part of the algorithm consists of a modification of K, called the “pencil" construction, described
in Section 2.2, followed by a multi-phase Monte-Carlo estimation. The algorithm uses a subroutine for
convex body sampling as a black box, described next.
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2.1. Sampling

In our algorithm, we use as a black box a sampling algorithm (or sampler for short), which samples from
a distribution supported on a convex body K, whose density f (x) is proportional to a given exponential
function e−aT x , i.e.,

f (x) = e−aT x∫
K

e−aT y dy
. (1)

Let the corresponding measure be �f . The algorithm needs a starting point X ∈ K and a bound on the
following norm measuring the distance between the starting density � and the target density �f :

‖�/�f ‖ =
∫

K

d�

d�f

d� =
∫

K

(
d�

d�f

)2

d�f = E�

(
d�(X)

d�f (X)

)
.

Convex body sampler:

• Input: a convex body K ∈ Rn given by a membership oracle, a vector a ∈ Rn, a starting point X ∈ K

drawn from some distribution �, a bound M on the L2 norm of � w.r.t. �f , and an accuracy parameter
� > 0;

• Output: a point Y ∈ K drawn from a distribution that has variation distance at most � from �f .

A sampler we can use is given in [19], using the hit-and-run algorithm. We make the following as-
sumptions about the input:

(A1) Every level set L of f contains a ball with radius �f (L)r 2 .
(A2)

∫
K

f (x)|x|2 dx = R2.
(A3) The starting point X is a random point from a distribution � whose L2-norm with respect to �f is

at most M.
A distribution that satisfies (A1) and (A2) is said to be (r, R)-rounded. If r = �(1) and R = O∗(1),

then we say that f is well-rounded.
Under these assumptions, the main result of [19] says that the total variation distance of the output

distribution from �f is less than �. Furthermore, the number of calls on the membership oracle is

O

(
n2 R2

r2 ln5 Mn

�2

)
.

In the analysis, we will show that (A1) is satisfied with r = 1/10, (A2) is satisfied with R = O(
√

n ln 1
ε
)

and (A3) with M �8. Thus, the complexity is O(n3 ln7 n
ε�) per random point.

For the special case when a = 0 in (1), i.e., f is the uniform distribution, we can simplify (A1) to the
condition that K contains a ball of radius r. In this case, the sampler is a bit more efficient—the number

2 Strictly speaking, [19] only needs this for the level set of probability 1/8.
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Fig. 1. The pencil construction when K is a pentagon. The cross-section is a ball near the tip and K at the base.

of calls to the membership oracle is

O

(
n2 R2

r2 ln3 M

�

)
.

2.2. The pencil construction

Let K be the given body in Rn and ε > 0. Let C denote the cone in Rn+1 defined by

C =
{

x ∈ Rn+1 : x0 �0,

n∑
i=1

x2
i �x2

0

}
,

where x = (x0, x1, . . . , xn)
T. We define a new convex body K ′ ∈ Rn+1 as follows (recall that B ⊆ K ⊆

DB):

K ′ =
(
[0, 2D] × K

)
∩ C.

In other words, K ′ is an (n + 1)-dimensional “pencil” whose cross-section is K, which is sharpened and
its tip is at the origin. Note that by the definition of D, the part of K ′ in the halfspace x0 �D is inside C
and so it is a cylinder over K. Also, since K contains a unit ball, the part of K ′ in the halfspace x0 �1 is a
cone CB over the unit ball. See Fig. 1 for an illustration. It is trivial to implement a membership oracle
for K ′.

The volume of the pencil K ′ is at least half the volume of the cylinder [0, 2D]×K . Hence, if we know
the volume of K ′, it is easy to estimate the volume of K by generating O(1/ε2) sample points from the
uniform distribution on [0, 2D] × K and then counting how many of them fall into K ′. Note that K ′ is
contained in a ball of radius 2D.

2.3. The multi-phase Monte-Carlo

Now we describe the “morphing” part of the algorithm. For each real number a > 0, let

Z(a) =
∫

K ′
e−ax0 dx,

where x0 is the first coordinate of x. For a�ε/D, an easy computation shows that

(1 − ε)vol(K ′)�Z(a)�vol(K ′),
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so it suffices to compute Z(a) for such an a. On the other hand, for a�2n the value of Z(a) is essentially
the same as the integral over the whole cone, which is easy to compute:

Z(a)�
∫

C

e−ax0 dx =
∫ ∞

0
e−at tn�n dt = n!�na

−(n+1)

(where �n = vol(B)) and

Z(a)�
∫

CB

e−ax0 dx =
∫ 1

0
e−at tn�n dt > (1 − ε)

∫ ∞

0
e−at tn�n dt

by standard computation (assuming ε > (3/4)n).
So, if we select a sequence a0 > a1 > · · · > am for which a0 = 2n and am�ε/D, then we can estimate

vol(K ′) by

Z(am) = Z(a0)

m−1∏
i=0

Z(ai+1)

Z(ai)
.

The algorithm will estimate Z(am) by estimating the ratios

Ri = Z(ai+1)

Z(ai)
. (2)

We will estimate the Ri’s using sampling. Let �i be the probability distribution over K ′ with density
proportional to e−aix0 , i.e.,

d�i(x)

dx
= e−aix0

Z(ai)
.

Let X be a random sample point from �i , let X0 be its first coordinate and Y = e(ai−ai+1)X0 . It is easy to
verify that Y has expectation Ri :

E(Y ) =
∫

K ′
e(ai−ai+1)x0 d�i(x)

=
∫

K ′
e(ai−ai+1)x0

e−aix0

Z(ai)
dx

= 1

Z(ai)

∫
K ′

e−ai+1x0 dx = Z(ai+1)

Z(ai)
.

So, to estimate the ratio Ri , we draw random samples X1, . . . , Xk from �i , and compute the average of
the corresponding Y’s.

Wi = 1

k

k∑
j=1

e(ai−ai+1)(X
j
i )0 . (3)

Sample points that are (approximately) from �0 are easy to get: select a random positive real number
X0 from the exponential distribution with density proportional to e−2nx , and a uniform random point
(Y1, . . . , Yn) from the unit ball B. If X = (X0, X0Y1, . . . , X0Yn) /∈ K ′, try again; else, return X.
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In order to get appropriate sample points from �i (i > 0) efficiently (i.e., satisfy assumptions (A1) and
(A2) of the sampler), we have to make a simple affine transformation, namely a scaling along the x0 axis.
Let �i = max(1, ai/

√
n) and

(Tix)j =
{

�ix0 if j = 0,

xj otherwise.

This will ensure that the distributions we sample are well-rounded. The algorithm shown in the box takes
as input the dimension n of K, a sampling oracle for �i (i = 1, . . . , m), and an accuracy parameter ε.
For calling the oracle, the roundness parameters and the warm start measure will always be bounded by
the same values, and so we do not mention them below. The output Z is an estimate of the volume of K ′,
correct to within a 1 ± ε

2 factor, with high probability.

Volume algorithm:

V1. Set m = 2	√n ln n
ε

, k = 512

ε2

√
n ln n

ε
, � = ε2n−10 and ai = 2n

(
1 − 1√

n

)i

for i = 1, . . . , m.
V2. For i = 1, . . . , m, do the following.

• Run the sampler k times for convex body TiK
′, with vector (ai/�i , 0, . . . , 0) (i.e.,

exponential function e−aix0/�i ), error parameter �, and (for i > 0) starting points
TiX

1
i−1, . . . , TiX

k
i−1. Apply T −1

i to the resulting points to get points X1
i , . . . , Xk

i .
• Using these points, compute

Wi = 1

k

k∑
j=1

e(ai−ai+1)(X
j
i )0 .

V3. Return

Z = n!�n(2n)−(n+1)W1 . . . Wm

as the estimate of the volume of K ′.

2.4. Outline of analysis

The analysis of the algorithm will verify the following claims. The first asserts that the estimate
computed by the algorithm is accurate, while the second and third address the conditions required by the
sampler.

1. The variance of the function e(ai−ai+1)x0 relative to the distribution �i is small enough so that k
sample points suffice to estimate its mean (Lemma 4.1) and the dependence between samples is
small enough that the output is accurate with large probability (Lemma 4.2).
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2. Random samples from one phase provide a good start for the next phase (Lemma 4.4), i.e., the warm
start measure (L2 norm) M is bounded and (A3) is satisfied.

3. The convex body TiK
′ and exponential function e−aix0/�i satisfy (A1) and (A2) (Lemmas 4.5, 4.6),

the roundness assumptions required by the convex body sampler.
4. The overall complexity is

O∗(
√

n) phases × O∗(
√

n) samples per phase × O∗(n3) queries per sample = O∗(n4).

Together, these claims yield Theorem 1.1. Their proofs need some technical tools, collected in the next
section (they might be useful elsewhere).

Below, we are going to assume that n�15 and ε > (3/4)n, which only excludes uninteresting cases
but makes the formulas simpler.

3. Analysis tools

3.1. Logconcavity

A nonnegative function f : Rn → R+ is said to be logconcave if for any x, y ∈ Rn and any � ∈ [0, 1],
f (�x + (1 − �)y)�f (x)�f (y)1−�.

The following theorem proved by Dinghas [4], Leindler [13] and Prékopa [21,20] summarizes fundamental
properties of logconcave functions.

Theorem 3.1. All marginals as well as the distribution function of a logconcave function are logconcave.
The convolution of two logconcave functions is logconcave.

The next lemma is new and will play a key role in the analysis.

Lemma 3.2. Let K ⊆ Rn be a convex body and f : K → R, a logconcave function. For a > 0, define

Z(a) =
∫

K

f (ax) dx.

Then anZ(a) is a logconcave function of a.

Proof. Let

G(x, t) =
{

1 if t > 0 and (1/t)x ∈ K,

0 otherwise.

It is easy to check that G(x, t) is logconcave, and so the function

F(x, t) = f (x)G(x, t)
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is also logconcave. By Theorem 3.1, its marginal in t is a logconcave function of t. But this marginal is
just ∫

Rn
f (x)G(x, t) dx = tn

∫
K

f (tx) dx. �

The next lemma is from [18].

Lemma 3.3. Let X be a random variable with a logconcave distribution, such that E(X) = X̄ and
E(|X − X̄|2) = �2. Then

P
(|X − X̄| > t�

)
�e−t+1.

The following lemma is along the lines of Theorem 4.1 in [10] and its proof is the same.

Lemma 3.4. Let K be a convex body in Rn whose centroid is the origin. For a unit vector v, let

−a = min
x∈K

vT x, b = max
x∈K

vT x and �2 = EK((vT x)2).

Then

�

√
n + 2

n
�a, b��

√
n(n + 2).

3.2. Probability

For two random variables X, Y , we will use the following measure of their independence:

�(X, Y ) = sup
A,B

∣∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣∣,

where A and B range over measurable subsets of the ranges of X and Y. We say that X and Y are �-
independent where � = �(X, Y ). By the identity∣∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)

∣∣ = ∣∣P(X ∈ A, Y ∈ B) − P(X ∈ A)P(Y ∈ B)
∣∣, (4)

where A denotes the complementary set of A, it suffices to consider sets A, B with P(X ∈ A)�1/2 and
P(Y ∈ B)�1/2.

The following are some basic properties of �.

Lemma 3.5. If f and g are two measurable functions, then

�(f (X), g(Y ))��(X, Y ).
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Proof. Trivial from the equation

∣∣P(f (X) ∈ A, g(Y ) ∈ B) − P(f (X) ∈ A)P(f (Y ) ∈ B)
∣∣

= ∣∣P(X ∈ f −1(A), Y ∈ g−1(B)) − P(X ∈ f −1(A))P (Y ∈ g−1(B))
∣∣. �

The next lemma is a variation of a lemma in [11].

Lemma 3.6. Let X, Y be random variables such that 0�X�a and 0�Y �b. Then

∣∣E(XY) − E(X)E(Y )
∣∣�ab�(X, Y ).

Proof. The LHS can be written as

∣∣∣∣
∫ a

0

∫ b

0
P(X�x, Y �y) dx dy

∣∣∣∣
which is clearly at most �ab.

Lemma 3.7. Let X, Y, X′, Y ′ be random variables, and assume that the pair (X, Y ) is independent from
the pair (X′, Y ′). Then

�((X, X′), (Y, Y ′))��(X, Y ) + �(X′, Y ′).

Proof. Set � = �(X, Y ) and �′ = �(X′, Y ′). Let R, R′, S, S′ be the ranges of X, Y, X′, Y ′, respectively,
and let A ⊆ R × R′, B ⊆ S × S′ be measurable sets. We want to show that

∣∣P((X, X′) ∈ A, (Y, Y ′) ∈ B) − P((X, X′) ∈ A)P((Y, Y ′) ∈ B)
∣∣�� + �′. (5)

For r ∈ R and s ∈ S, let Ar = {r ′ ∈ R′ : (r, r ′) ∈ A}, Bs = {s′ ∈ S′ : (s, s′) ∈ B}, f (r) = P(X′ ∈ Ar),
g(s) = P(Y ′ ∈ Bs) and h(r, s) = P(X′ ∈ Ar, Y

′ ∈ Bs). Then

P((X, X′) ∈ A) = E(f (X)), P((Y, Y ′) ∈ B) = E(g(Y ))

and

P((X, X′) ∈ A, (Y, Y ′) ∈ B) = EX,Y (PX′,Y ′(X′ ∈ AX, Y ′ ∈ BY )) = EX,Y (h(X, Y ))

(here we use that (X, Y ) is independent of (X′, Y ′)). We can write the left-hand side of (5) as

E(h(X, Y )) − E(f (X))E(g(Y ))

=
[
E(h(X, Y ) − f (X)g(Y ))

]
+
[
E(f (X)g(Y )) − E(f (X))E(g(Y ))

]
. (6)



402 L. Lovász, S. Vempala / Journal of Computer and System Sciences 72 (2006) 392–417

By assumption,

|h(r, s) − f (r)g(s)| = ∣∣P(X′ ∈ Ar, Y
′ ∈ Bs) − P(X′ ∈ Ar)P(Y ′ ∈ Bs)

∣∣��′

for every r and s, and hence the first term on the right-hand side in (6) is at most �′ in absolute value. The
second term is at most � by Lemma 3.6. This proves (5). �

Lemma 3.8. Let X0, X1, . . . , be a Markov chain. Then

�(Xi, Xi+1) = �((X1, . . . , Xi), Xi+1).

Proof. The inequality � is trivial (e.g., by Lemma 3.5). To show the converse, set � = �(Xi, Xi+1). Let
Si be the range of Xi , and let A ⊆ S0 × · · · × Si , B ⊆ Si+1. We want to prove that∣∣P((X0, . . . , Xi) ∈ A, Xi+1 ∈ B) − P((X0, . . . , Xi) ∈ A)P(Xi+1 ∈ B)

∣∣��. (7)

For r ∈ Si , let f (r) = P((X0, . . . , Xi−1, r) ∈ A). Let g denote the characteristic function of B. Then

P((X0, . . . , Xi−1, Xi) ∈ A) = E(f (Xi)) and P(Xi+1 ∈ B) = E(g(Xi+1)).

For every r ∈ Si ,

P((X0, . . . , Xi−1, r) ∈ A, Xi+1 ∈ B) = P((X0, . . . , Xi−1, r) ∈ A)P(Xi+1 ∈ B | Xi = r)

= f (r)E(g(Xi+1) | Xi = r) = E(f (r)g(Xi+1) | Xi = r).

by the Markov property, and so

P((X0, . . . , Xi−1, Xi) ∈ A, Xi+1 ∈ B) = E(f (Xi)g(Xi+1)).

So (7) follows from Lemma 3.6 again. �

We close this section with another simple fact from probability.

Lemma 3.9. Let X�0 be a random variable, a > 0, and X′ = min(X, a). Then

E(X′)�E(X) − E(X2)

4a
.

Proof. Let X′′ = X − X′. Note that X′X′′ = aX′′ (if X′′ �= 0 then X′ = a). Using this,

E(X2) = E((X′ + X′′)2)�4E(X′X′′) = 4aE(X′′),

which implies the assertion. �

4. Analysis of volume algorithm

The analysis is divided into three sections. The first two sections establish that the answer found by the
algorithm is accurate—Section 4.1 shows that the variance of each random variable computed is small,
using Lemma 3.2 about logconcavity; Section 4.2 shows how to handle the (slight) dependence among
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the random variables. The latter section is somewhat technical and uses the properties of �-independence
developed in Section 3. Together, they imply that the number of iterations and samples used by the
algorithm are sufficient.

The last section is devoted to proving properties needed by the convex body sampler, thus ensuring
that the sampling is efficient. Lemma 4.4 shows that samples from one phase have a bounded warm
start measure for the next distribution (i.e., assumption (A3) is satisfied) and Lemmas 4.5, 4.6 show
that the distribution being sampled remains well-rounded (i.e., assumptions (A1) and (A2) are satisfied)
throughout the course of the algorithm.

4.1. Variance

We begin by bounding the variance of the random variables used to estimate the ratios Ri defined
by (2).

Lemma 4.1. Let X be a random sample from d�i and

Y = e(ai−ai+1)X0 .

Then

E(Y 2)

E(Y )2 �

(
a2
i+1

ai(2ai+1 − ai)

)n+1

< 8.

Proof. We have

E(Y ) =
∫
K ′ e−ai+1x0 dx∫
K ′ e−aix0 dx

and

E(Y 2) =
∫
K ′ e−(2ai+1−ai)x0 dx∫

K ′ e−aix0 dx
.

By Lemma 3.2, the function an+1
∫
K ′ e−ax0 dx is logconcave and so

∫
K ′

e−aix0 dx

∫
K ′

e−(2ai+1−ai)x0 dx�

(
a2
i+1

ai(2ai+1 − ai)

)n+1 (∫
K ′

e−ai+1x0 dx

)2

.

Thus, since ai+1 = ai(1 − 1/
√

n),

E(Y 2)

E(Y )2 �

(
a2
i+1

ai(2ai+1 − ai)

)n+1

=
(

1 + 1

n − 2
√

n

)n+1

,

and the lemma follows. �
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Remark. If we have ai+1 = ai(1 − 1/t), then

E(Y 2)

E(Y )2 �
(

1 + 1

t2 − 2t

)n+1

.

As we note in the concluding section, this shows the tradeoff between the number of phases and the
number of samples per phase.

4.2. Divine intervention

In this section, our goal is to prove that the volume estimate is accurate. Note that in the lemma below,
the probability of success can be boosted from 3/4 to 1 − � for any � > 0, by using the standard trick of
repeating the algorithm O(log(1/�)) times and taking the median of the outputs [9].

Lemma 4.2. For R1, . . . , Rm, W1, . . . , Wm defined as in (2, 3), With probability at least 3/4,(
1 − ε

2

)
R1 . . . Rm�W1 . . . Wm�

(
1 + ε

2

)
R1 . . . Rm.

Proof. The sequence of sample points (X
j
0 , X

j
1 , X

j
2 , . . . , X

j
m) for a fixed j is called a thread. Note that

the threads are independent.
To analyze the algorithm we use the “divine intervention” (a.k.a. coupling) method. The distribution

of the random point X
j
i is approximately �i . We construct modified random variables X

j

i (i = 0, . . . , m,

j = 1, . . . , k) whose distribution is exactly �i as follows. Fix j. We define X
j

0 = X
j
0 . Assuming that

X
j

i is defined, let Z be the random point returned by the sampler Si+1 when it is started from X
j

i . Let �
denote the total variation distance of the distribution of Z from the distribution �i+1. By the specification

of the sampler, ���. Then we define X
j

i+1 as a random variable with distribution �i+1 such that P(Z =
X

j

i+1) = 1− �. The construction is carried out independently for each thread, so that the modified threads

(X
j

0, X
j

1, . . . , X
j

m) are independent.

Assume that X
j
i = X

j

i . Then X
j
i+1 = Z, and so

P(X
j

i+1 = X
j
i+1)�1 − �. (8)

It follows by induction that X
j
i = X

j

i with probability at least 1 − j�, and hence

P(X
j
i = X

j

i for all j)�1 − km�. (9)

[It would be nice to use “divine intervention” to make the X
j
i in one of the threads independent, but

this does not work (for this, the sampler would have to work with a cold start, which would take too long).
We will have to estimate the dependence between consecutive phases carefully.]

Let

Y
j
i = e(ai−ai+1)(X

j
i )0 .
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Since the random variables X
j

i have the “right” distribution �i , we have E(Y
j
i ) = Ri . Let

Wi = 1

k

k∑
j=1

Y
j
i .

Then for every j, E(Wi) = E(Y
j
i ) = Ri , and using Lemma 4.1, E((Y

j
i )2)�8E(Y

j
i )2. Thus,

E(W
2
i ) = 1

k2

⎛
⎝ k∑

j=1

E
(
(Y

j
i )2

)
+ k(k − 1)R2

i

⎞
⎠ �

(
1 + 7

k

)
R2

i . (10)

Consider the product Z = W 1W 2 . . . Wm. Now if we had independence between successive phases, then
we would have

E

(
m∏

i=1

Wi

)
=

m∏
i=1

Ri and E

(
m∏

i=1

W
2
i

)
�
(

1 + 7

k

)m m∏
i=1

R2
i .

This would imply

var(Z)�
(

1 + 7

k

)m

− 1�
ε2

32

m∏
i=1

R2
i ,

and we could easily show that with probability at least 4/5 (say), Z is within a factor of (1 ± ε) to the
volume of K ′. Since Z = Z with probability 1 − o(1), it follows that with probability at least 3/4, Z is
within a factor of (1 ± ε) to the volume of K ′.

Unfortunately, since we are using the sample points from each phase as the starting points for the
next, the random variables Wi are not independent. The next lemma shows that they are approximately
independent; its proof is deferred to the end of the section.

Lemma 4.3. (a) For every phase 0�i < m and every thread 1�j �k, the random variables X
j
i and

X
j
i+1 are �-independent, and the random variables X

j

i and X
j

i+1 are (3�)-independent.

(b) For every phase 0�i < m and every thread 1�j �k, the random variables (X
j
0 , . . . , X

j
i ) and

X
j
i+1 are (3�)-independent.
(c) For every phase 0�i < m, the random variables W 1 . . . W i and Wi+1 are (3k�)-independent.

We continue with the proof of Lemma 4.2. Given the approximate independence, we would like to
apply Lemma 3.6 to bound the expectation. However, the variables W 1 . . . W i and Wi+1 are not bounded
and so we cannot apply Lemma 3.6 directly. So we define another set of random variables. Let

� = ε
1
2

8(m�)
1
4

,

where � = 3k�. Note that � is much larger than 1. For i = 1, . . . , m, let

Vi = min{Wi, �E(Wi)}.
By our choice of �, Vi = Wi with high probability.
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Clearly E(Vi)�E(Wi). On the other hand, using Lemma 3.9 and Eq. (10), we have

E(Vi)�E(Wi) − E(W
2
i )

4�E(Wi)
�
(

1 − 1

4�

(
1 + 7

k

)m)
E(Wi)�

(
1 − 1

2�

)
E(Wi). (11)

Define U0 = 1 and recursively

Ui+1 = min{UiVi+1, �E(V1) . . . E(Vi+1)}.
We will show that(

1 − (i − 1)

�

)
E(V1) . . . E(Vi)�E(Ui)�

(
1 + 2��2i

)
E(V1) . . . E(Vi). (12)

By Lemma 3.5, the random variables Ui and Vi+1 are �-independent, so it follows by Lemma 3.6 that

|E(UiVi+1) − E(Ui)E(Vi+1)|���E(V1) . . . E(Vi)�E(Wi+1)�2��2E(V1) . . . E(Vi+1). (13)

Now the upper bound in (12) is easy by induction:

E(Ui+1)�E(UiVi+1)�E(Ui)E(Vi+1) + 2��2E(V1) . . . E(Vi+1)

�
(
1 + 2��2(i + 1)

)
E(V1) . . . E(Vi+1) (induction hypothesis).

A similar argument shows that

E(U2
i )�

(
1 + 2��4i

)
E(V 2

1 ) . . . E(V 2
i ) (14)

and E(U2
i V 2

i+1)�
(
1 + 2��4i

)
E(V 2

1 ) . . . E(V 2
i+1). (15)

For the lower bound in (12), using Lemma 3.9 and inequality (15), we get

E(Ui+1)�E(UiVi+1) − E(U2
i V 2

i+1)

4�E(V1) . . . E(Vi+1)

�E(UiVi+1) − (
1 + 2��4i

) E(V 2
1 ) . . . E(V 2

i+1)

4�E(V1) . . . E(Vi+1)
.

Here, using (11),

E(V 2
i )�E(W

2
i ) �

(
1 + 7

k

)
E(Wi)

2

�
(

1 + 7

k

)
1

1 − 2
√

n�
E(Vi)

2

<

(
1 + 8

k

)
E(Vi)

2. (16)



L. Lovász, S. Vempala / Journal of Computer and System Sciences 72 (2006) 392–417 407

Hence,

E(Ui+1)�E(UiVi+1) − 1

4�

(
1 + 2��4i

) (
1 + 8

k

)i

E(V1) . . . E(Vi+1)

�E(UiVi+1) − 1 + 2��4i

2�
E(V1) . . . E(Vi+1)

�E(Ui)E(Vi+1) − 1

�
E(V1) . . . E(Vi+1)

(we used (13) in the last step). Hence, by induction

E(Ui+1)�E(V1) . . . E(Vi+1) − i

�
E(V1) . . . E(Vi+1).

This proves (12). Thus,

E(Um)�
(

1 + ε

4

)
E(V1) . . . E(Vm)�

(
1 + ε

4

)
E(W 1) . . . E(Wm).

Similarly,

E(Um)�
(

1 − ε

4

)
E(W 1) . . . E(Wm).

By (14) and (16),

E(U2
m)�

(
1 + ε2

64

)
E(Um)2,

and hence

|Um − E(Um)|� ε

2
E(W 1) . . . E(Wm)

with probability at least .9. Furthermore, using Markov’s inequality,

P(Ui+1 �= UiVi+1) = P (UiVi+1 > �E(V1) . . . E(Vi+1)) �
2

�

and similarly

P(Vi �= Wi)�
1

�
.

So with probability at least 1 − 3k
� , we have Um = W 1 . . . Wm. Also, by (9), we have W 1 . . . Wm =

W1 . . . Wm with probability at least 1 − km�.
Note that E(W 1) . . . E(Wm) = R1 . . . Rm. Hence with probability at least 3/4,

|W1 . . . Wm − R1 . . . Rm|� ε

2
R1 . . . Rm.

This completes the proof of Lemma 4.2. �
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Proof of Lemma 4.3.
(a) Let A, B ⊆ K; we claim that∣∣P(X

j
i ∈ A, X

j
i+1 ∈ B) − P(X

j
i ∈ A)P(X

j
i+1 ∈ B)

∣∣��. (17)

By the remark after (4), we may assume that �i(A)�1/2. Let �′
i be the restriction of �i to A, scaled to be

a probability measure. Then �′
i �2�i and so ‖�′

i/�i+1‖�4‖�i/�i+1‖. Hence by the basic property of the
sampler Si ,∣∣P(X

j
i+1 ∈ B | X

j
i ∈ A) − P(X

j
i+1 ∈ B)

∣∣��,

and so (17) holds. The second assertion is immediate, since putting a bar above the variables changes the
probabilities in the condition by at most � (cf. (8)).

(b) Follows from Lemma 3.8.
(c) Follows from Lemmas 3.7 and 3.5. �

4.3. Sampling assumptions

The next lemma shows that samples from one phase provide a good start for the next phase. This means
that assumption (A3) is satisfied in every phase of the algorithm. It is interesting to note that the proof of
the lemma relies on the same inequality (Lemma 3.2) as the proof of Lemma 4.1.

Lemma 4.4. The L2-norm of �i with respect to �i+1 is at most 8.

Proof. Let X be a random sample from �i . Then we have to prove that

E

[
d�i(X)

d�i+1(X)

]
�8.

Indeed, using Lemma 3.2

E

[
d�i(X)

d�i+1(X)

]
=
∫
K ′ e(ai+1−ai)x0e−aix0 dx∫

K ′ e−aix0 dx

∫
K ′ e−ai+1x0 dx∫
K ′ e−aix0 dx

= Z(2ai − ai+1)Z(ai+1)

Z(ai)Z(ai)

�
(

(2ai)
2

4ai+1(2ai − ai+1)

)n+1

=
⎛
⎝ 1

(1 − 1√
n
)(1 + 1√

n
)

⎞
⎠

n+1

< 8. �

Finally, we show that (A1) and (A2) are maintained in the algorithm. For s�0, let

Ks = {x ∈ K ′ : x0 �s}.
These sets are exactly the level sets of the functions fi = e−aix0 .
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Lemma 4.5. Let c = �i(Ks). Then TiKs contains a ball with radius c/10.

Proof. Let X be a random point from �i , and let X0 be its first coordinate. We denote by F the density
function of X0.

The intersection of the hyperplane x0 = s with K ′ contains a ball with radius min(1, s). Hence the
body TiK

′ contains a cone with height �is�s over this ball. If we show that s�c/4, then it follows by
simple geometry that Ks contains a ball with radius c/4(1 + √

2) > c/10.
We may assume that s < 1/4. Let F(t) denote the density function of X0. This function is proportional

to tne−ai t for t < 1. Using that ai �2n, it follows that F(t) is monotone increasing for t �1/2, and so its
value is at least F(s) between 1/4 and 1/2. Thus, we have

c =
∫ s

0 F(t) dt∫ 2D

0 F(t) dt
�

sF (s)

(1/4)F (s)
= 4s. �

Lemma 4.6. If X is a random point from the distribution �i , then E(|TiX|2)�5D2.

Proof. Let X = (X0, . . . , Xn) be a random point from �i , and let Y = (Y0, . . . , Yn) = TiX. First, we
estimate the expectation of Y 2

0 . If ai �
√

n, then �i = 1 and Y = X, so |Y0|�2D, so E(Y 2
0 )�4D2.

Let ai >
√

n. Let Z be a random point from the distribution over the whole cone C with density function
proportional to e−aix0 . Then

E(X2
0)�E(Z2

0) =
∫
tn+2e−at dt∫
tne−at dt

= (n + 1)(n + 2)

a2 ,

and hence

E(Y 2
0 ) = �2

i E(X2
0)�

a2

n

(n + 1)(n + 2)

a2 = (n + 1)(n + 2)

n
< D2.

The expectation of Y 2
1 + · · · + Y 2

n , conditional on any X0 = t , is at most D2, since K is contained in
DB. This proves the lemma. �

5. Rounding the body

In the volume algorithm, we assumed that K contains the unit ball B and is contained in the ball DB,
where D = O(

√
n ln(1/ε)). Here we describe an algorithm to achieve this, which can be used as a pre-

processing step if necessary. In [11], a similar procedure for rounding had to be interlaced with volume
computation for efficiency. Here too one can interlace, but it is conceptually easier and just as efficient to
view the rounding as a pre-processing step. In fact, the rounding will only require uniform sampling. The
rounding algorithm actually finds an affine transformation that puts K in near-isotropic position (defined
below). As it will be clear shortly, this is a stronger property than being well-rounded.

A convex body K is said to be in isotropic position, if its center of gravity is the origin and for every
vector v ∈ Rn,∫

K

(v · x)2 dx = |v|2.
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In terms of the associated random variable X, this means that

EK(X) = 0 and EK(XXT ) = I.

We say that K is near-isotropic up to a factor t, if

1

t
�
∫

K

(uT (x − x̄))2 dx� t

for every unit vector u. Recall that a convex set K is (r, R)-rounded if (i) it contains a ball of radius r and
(ii) EK(|x − x̄|2)�R2.

A body in isotropic position has many nice roundness properties. For example, it follows from the
definition, that

EK(|X|2) =
n∑

i=1

EK(X2
i ) = n

and from Lemma 3.4 it contains a ball of radius 1 and so it is (1,
√

n)-rounded. Further, by Lemma 3.3,

P
(
|X| > s

√
EK(|X|2)

)
�e−s+1. (18)

For a body in t-isotropic position, EK(|X − X̄|2)� tn and so, all but an ε fraction is contained in a ball of
radius

√
tn ln(e/ε). Thus, if we first transform K into near-isotropic position for some constant t and then

replace it by its intersection with a ball of radius D for D >
√

tn(ln(10e/ε)), we satisfy the assumptions
of the algorithm and lose less than an ε

10 fraction of its volume. The rest of this section is devoted to an
algorithm that brings a given convex body into near-isotropic position.

It is well-known that there is an affine transformation that will put any convex body in isotropic position.
In fact, it can be estimated as follows: we generate O(n log2 n) approximately uniformly distributed
random points in K, and compute the transformation that brings these points (more exactly, the uniform
measure on this finite set) into isotropic position. More precisely, if y1, . . . , yl are uniform random points
from K, we compute:

ȳ = 1

l

l∑
i=1

yi, Y = 1

l

l∑
i=1

(yi − ȳ)(yi − ȳ)T and T = Y− 1
2 . (19)

We make use of the following theorem due to Rudelson [22].

Theorem 5.1 (Rudelson [22]). Let K be a convex body in Rn in isotropic position and 	 > 0. Let
y1, . . . , yl be independent random points distributed uniformly in K, with

l�c
np

	2 log
n

	2 max{p, log n},
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where c is a fixed absolute constant and p is any positive integer. Then

E

⎛
⎝
∥∥∥∥∥1

l

l∑
i=1

yiy
T
i − I

∥∥∥∥∥
p
⎞
⎠ �	p.

A convenient way to use this is the following corollary (formulated in [3]).

Corollary 5.2. Let K be a convex set and ȳ and Y be defined as in (19). There is an absolute constant c
such that for any integer p�1, and N �cpn log n max{p, log n}, with probability at least 1 − 1

2p , the set

K1 = {x : Y
1
2 x + ȳ ∈ K}

satisfies

1
2 ||v||2 �EK1((v

T x)2)� 3
2 ||v||2.

Thus uniform samples are enough to calculate a near-isotropic transformation. But how do we get
uniform samples? It is in order to make the sampling efficient that we are rounding in the first place.
To get around this, we will alternate between sampling and rounding steps. We will also use the pencil
construction.

We assume that K contains the unit ball B and is contained in R0B. As in Section 2.2, let C be the cone
in Rn+1 defined by

C =
{

x ∈ Rn+1 : x0 �0,

n∑
i=1

x2
i �x2

0

}
.

Then K ′ ∈ Rn+1 is a pencil defined as

K ′ =
(
[0, 2R0] × K

)
∩ C.

Also define for i = 1, . . . , 	n log 2R0
,

Ki = K ′ ∩ {x | x0 �2
i
n }.

Since K contains a unit ball centered at the origin, K0 is just a rotational cone, and it is easy to generate
a random point from it. The output of the algorithm below is a linear transformation that puts K in
near-isotropic position.

In every phase, the algorithm scales along the x0 axis using a small number of samples. Once every
n phases, it applies a linear transformation orthogonal to the x0 axis. (The goal of these phases is to
keep the body well rounded so that sampling is efficient.) The cumulative transformation it computes is

alan
Cone made up of usual expanding set of bodies.



412 L. Lovász, S. Vempala / Journal of Computer and System Sciences 72 (2006) 392–417

of the form

Si =
(

ti 0
0 Ti

)
,

where ti is a positive number and Ti is an n × n matrix.

Rounding algorithm:

R1. Set m = 	n log 2R0
 and � = ε10n−10, and initialize t0 = n and T0 = √
nIn. Let X0 be

a random point from K0.
R2. For i = 0, . . . , m − 1, do the following.

If i is not a multiple of n,

• Run the uniform sampler k = 2c ln n times for convex body SiKi , with error param-
eter �, and initial starting point SiXi−1. Use each point obtained as the next starting
point. Apply S−1

i to the points obtained to get points Y 1, . . . , Y k in Ki . Set Xi = Y k .
• Using the sample points, compute

Ȳ0 = 1

k

k∑
j=1

(Y j )0 and Z = 1

k

k∑
j=1

(Y j )2
0 − Ȳ 2

0 .

• Let Ti+1 = Ti and

ti+1 = 1√
Z

.

Else (if i is a multiple of n),
• Run the uniform sampler l = 2cn log3 n times for convex body SiKi , with error

parameter �, and initial starting point SiXi−1. Use each point obtained as the next
starting point. Apply S−1

i to the points obtained to get points Y 1, . . . , Y l in Ki . Set
Xi = Y l . Let Ŷ j be obtained from Y j by dropping the coordinate with index 0.

• Using these points, compute

Ȳ = 1

l

l∑
j=1

Ŷ j and A = 1

l

l∑
j=1

Ŷ j (Ŷ j )T − Ȳ Ȳ T .

• Compute Ti+1 = A− 1
2 , and let ti+1 = ti .

R3. Run the uniform sampler 2l times on SmK ′ and apply S−1
m to the resulting points. Let

the subset with x0 �R0 be Y 1, . . . , Y r . Let Ŷ j be obtained from Y j by dropping the
coordinate with index 0. Compute

Ȳ = 1

r

r∑
j=1

Ŷ j and A = 1

r

r∑
j=1

Ŷ j Ŷ j − Ȳ Ȳ T .

Return the matrix T = A−1/2.
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Theorem 5.3. The set TK is in 2-isotropic position with probability at least 1−1/n. Further, the number
of calls to the membership oracle is

O(n4 log8 n log R) = O∗(n4).

Theorem 5.3 will follow from the next lemma which shows that the assumptions of the sampler are
satisfied so that each sample requires only O(n3 log5 n) oracle calls. The total number of samples is
O(n log3 n log R0).

Lemma 5.4. With probability at least 1 − 1/2n, for i = 1, . . . , m, the sets SiKi−1 and SiKi are
(1

4 , 10
√

n ln 10n)-rounded.

Proof. First note that each transformation Si can be viewed as a composition of two transformations—a
scaling along the x0 axis and a linear transformation orthogonal to the x0 axis. As a result, the distribution
of SiKi along the x0-axis is just a scaled version of the distribution of Ki . In particular, it is monotone
nondecreasing. Also, since K ′ is a pencil, for any t ′� t such that the cross-section Ki ∩ {x : x0 = t ′} is
nonempty, we have

(t ′ − t, 0, . . . , 0) + Ki ∩ {x : x0 = t1} ⊆ Ki ∩ {x : x0 = t ′}.

The sets S1K1 and S1K0 are just scaled rotational cones. Suppose Si−1Ki−1 is (1/4, 10
√

n ln 10n)-
rounded. We will first prove that SiKi−1 and SiKi contain balls of radius 1/4.

If i is a multiple of n, the algorithm obtains 2l nearly uniform samples from Ki−1 to estimate the inertia
matrix A, and so by Corollary 5.2, with probability at least 1 − 1/4n3, for every vector v orthogonal to
the x0 axis,

1
2 �ESiKi−1

(
(vT (x − x̄))2

)
� 3

2 . (20)

Hence, by Lemma 3.4, the projection of SiKi−1 orthogonal to the x0 axis contains an n-dimensional ball
of radius 1/

√
2 centered at the projection of zi , the centroid of SiKi−1. Let u = max{x0 : x ∈ SiKi}.

In particular, the cross-section of SiKi−1 at x0 = u contains such a ball. Now for the x0 axis itself, with
probability at least 1 − 1/4n3, we get

1
2 �ESiKi−1

(
(x − x̄)2

0

)
� 3

2 . (21)

Hence, by Lemma 3.4, |u − (zi)0|�1/
√

2 and so SiKi−1 contains a cone of height 1/
√

2. A cone of
height r and base radius r contains a ball of radius r/(1 + √

2) and so SiKi−1 contains a ball of radius
(1/(2 + √

2) > 1/4. It follows that SiKi , which is a superset of SiKi−1, also contains such a ball.
If i is not a multiple of n, the algorithm estimates the variance along x0 and we still have (21) for Si .

Let j be the largest multiple of n smaller than i. Then Si can be viewed as Sj composed with a scaling
along the x0 axis. The projection of SjKj orthogonal to x0 contains a ball of radius 1/

√
2 and hence the

projection of SiKi−1 contains such a ball as well. From (21), we get that SiKi−1 contains a cone of height
1/

√
2 and therefore, as in the previous case, it contains a ball of radius 1/4; so does SiKi .

alan
Radius of ball is direct from lower bound in (19).

alan
Scaling along x_0 just moves the copies of K.
Cone looks same. Different units of length along x_0. 

alan


alan


alan


alan


alan


alan
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Next, we have to bound E(|x − x̄|2). If i is a multiple of n, then using (20) and (21),

ESiKi−1(|x − x̄|2) =
n∑

p=0

ESiKi−1

(
(x − x̄)2

p

)

�
3(n + 1)

2
,

where the inequality holds with probability at least 1 − 1/2n3.
For any i (i.e., whether or not it is a multiple of n), by (21),

ESiKi−1

(
(x − x̄)2

0

)
�

3

2
. (22)

The support of SiKi−1 along x0 is [0, u] where, by (21) and Lemma 3.4,

u�
√

3

2
n(n + 2) <

3n

2
.

Further, since Ki−1 is a pencil, the cross-sectional area along x0 is a nondecreasing function of x0 (in its
support) and so,

ESiKi−1((x − x̄)2
0)�

(
u − ESiKi−1(x0)

)2
3

.

Therefore, using (22),

(
u − ESiKi−1(x0)

)2 �
9

2
.

We also have SiKi ⊆ 21/nSiKi−1 and so the support of SiKi along x0 is contained in [0, 21/nu]. Hence,
there is some � ∈ [0, 1] such that

ESiKi

(
(x − x̄)2

0

)
� �ESiKi−1

(
(x − x̄)2

0

)+ (1 − �)

(√
9

2
+ u(2

1
n − 1)

)2

� �
3

2
+ (1 − �)

(√
9

2
+ u

n

)2

� �
3

2
+ (1 − �)16�16.

It remains to bound the expected squared distance along coordinates other than x0. Let j be the largest
multiple of n smaller than or equal to i. Let the support of SiKj−1 along x0 be [0, u] and that of SiKi be
[0, v]. Note that orthogonal to x0, Si and Sj are the same transformation, and so,

ESiKj−1

⎛
⎝ n∑

p=1

(x − x̄)2
p

⎞
⎠ �

3n

2
.

alan
Lower bound from integral of r^2 x r.  

alan
alpha=0 corresponds to u(....-1)+9/2 which is maximum gap. 
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Let u′ be the rightmost nonempty cross-section of SiKj−1 that is contained in a ball of radius r0 =
3
√

n ln 10n. Clearly, u′�u and, since i < j + n, we get v�2u. If v�3u′, then every cross-section of
SiKi is contained in a ball of radius 3r0 and so,

ESiKi

⎛
⎝ n∑

p=1

(x − x̄)2
p

⎞
⎠ �(3r0)

2 = 81n ln2 2n.

Otherwise, u′�2u/3 and so |u − u′|�u/3. Thus,

� = |v − u|
|v − u′| �

3

4
.

Let the cross-sections of Ki at u′, u and v be Bu′, Bu and Bv , respectively. By the Brunn–Minkowski
inequality,

vol(Bu)
1
n � vol(�Bu′ + (1 − �)Bv)

1
n

� � vol(Bu′)
1
n + (1 − �)vol(Bv)

1
n . (23)

Further, by the choice of r0, applying Lemma 3.3 to SiKj−1,

vol(Bu)�vol(Bu′)

(
1 + 1

8n2

)
.

(Otherwise the volume of SiKj−1 between u′ and u is too large.) Therefore, by (23),

vol(Bv)�vol(Bu′)

(
1 + 2

n2

)
.

So, for any cross-section of SiKi between u and v, the fraction of the volume that lies outside a ball of
radius r0 is at most 2/n2. Now, by Lemma 3.4, each cross-section of SiKj−1 is contained in a ball of
radius 2n and so Bu is contained in such a ball. Thus, Bv is contained in a ball of radius 4n. Therefore,

ESiKi

⎛
⎝ n∑

p=1

(x − x̄)2
0

⎞
⎠ �r2

0 + 2

n2 (4n)2 �48n ln2 10n.

This completes the proof of the lemma. �

6. Concluding remarks

1. If we view the sampler as a blackbox, then the number of calls to the sampler is O∗(n), and this is
the total number of points used to estimate the volume.All previous algorithms used �(n2) samples.

2. If we use ai+1 = ai(1 − 1/t) then the number of phases is m = O(t ln(n/ε)). By the remark
after Lemma 4.1 and a similar analysis of cumulative sampling error, for any t = �(

√
n), we need

only O(mn/t2ε2) samples in each phase. So e.g., with t = n, we have O(n ln(n/ε)) phases and
O(ln(n/ε)/ε2) samples in each phase.

alan
B_u\supseteq \l B_{u'}+...

alan
radius 4n comes from v \leq 2u.

alan
They seem to assert that S_i inverse does not increase distances from centroid.

alan
Note that 

    each cross section B_u is a restriction of K (the original body) to a ball of some radius.
    the transformation S_i and S_j for i a multiple of n and j < i+n are the same orthogonal to x_0. 


Given these, we apply Lemma 3.3 (which holds for any dimension) to the set S_iK_{j-1}. Note that this set is nearly isotropic. So by Lemma 3.3, the measure of the set outside a ball of radius r_0 is very small (in particular less than 1/n^3 or so fraction).  Now the cross-section B_u' is exactly the same as the restriction of B_u to a ball of radius r_0. Therefore the measure of B_u outside B_u' must be smaller than this fraction, and this is the content of the inequality.
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3. It is a natural next step to extend this method to integration of logconcave functions. The fundamental
Lemma 3.2 can be extended to this case, but the sampling results we used from [19] are still not
known for the general case. We believe that these difficulties can be overcome, and one can design
an O∗(n4) integration algorithm for logconcave functions.

4. How far can the exponent in the volume algorithm be reduced? There is one possible further
improvement on the horizon. This depends on a difficult open problem in convex geometry, a
variant of the “Slicing Conjecture” [10]. If this conjecture is true, then the mixing time of the
hit-and-run walk in a convex body in isotropic position could be reduced to O∗(n2), which, when
combined with ideas of this paper, could perhaps lead to an O∗(n3) volume algorithm. But besides
the mixing time, a number of further problems concerning achieving isotropic position would have
to be solved.
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