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Abstract

We introduce the geodesic walk for sampling Riemannian manifolds and apply it to the
problem of generating uniform random points from the interior of polytopes in R

n specified
by m inequalities. The walk is a discrete-time simulation of a stochastic differential equation
(SDE) on the Riemannian manifold equipped with the metric induced by the Hessian of a
convex function; each step is the solution of an ordinary differential equation (ODE). The

resulting sampling algorithm for polytopes mixes in O∗(mn
3

4 ) steps. This is the first walk
that breaks the quadratic barrier for mixing in high dimension, improving on the previous best
bound of O∗(mn) by Kannan and Narayanan for the Dikin walk. We also show that each
step of the geodesic walk (solving an ODE) can be implemented efficiently, thus improving the
time complexity for sampling polytopes. Our analysis of the geodesic walk for general Hessian
manifolds does not assume positive curvature and might be of independent interest.
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1 Introduction

Sampling a high-dimensional polytope is a fundamental algorithmic problem with many applica-
tions. The problem can be solved in randomized polynomial time. Progress on the more general
problem of sampling a convex body given by a membership oracle [8, 7, 9, 19, 20, 21, 12, 23, 22, 31]
has lead to a set of general-purpose techniques, both for algorithms and for analysis in high dimen-
sion. All known algorithms are based on sampling by discrete-time Markov chains. These include
the ball walk [17], hit-and-run [29, 23] and the Dikin walk [13], the last requiring stronger access
than a membership oracle. In each case, the main challenge is analyzing the mixing time of the
Markov chain. For a polytope defined by m inequalities in R

n, the current best complexity of sam-
pling is roughly the minimum of n3 ·mn and mn ·mnω−1 where the first factor in each term is the
mixing time and the second factor is the time to implement one step. In fact, the bound of n3 on
the mixing time (achieved by the ball walk and hit-and-run) holds for arbitrary convex bodies, and
O(mn) is just the time to implement a membership oracle. The second term is for the Dikin walk,
for which Kannan and Narayanan showed a mixing time of O(mn) for the Dikin walk [13], with
each step implementable in roughly matrix multiplication time. For general convex bodies given by
membership oracles, Ω(n2) is a lower bound on the number of oracle calls for all known walks. A
quadratic upper bound would essentially follow from a positive resolution of the KLS hyperplane
conjecture (we mention that [3] show a mixing bound of Õ(n2) for the ball walk for sampling from
a Gaussian distribution restricted to a convex body). The quadratic barrier seems inherent for
sampling convex bodies given by membership oracles, holding even for cubes and cylinders for the
known walks based on membership oracles. It has not been surpassed thus far even for explicitly
described polytopes.

For a polytope in R
n, the Euclidean perspective is natural and predominant. The approach

so far has been to define a process on the points of the polytope so that the distribution of the
current point quickly approaches the uniform (or a desired stationary distribution). The difficulty
is that for points near the boundary of a body, steps are necessarily small due to the nature of
volume distribution in high dimension. The Dikin walk departs from the standard perspective by
making the distribution of the next step depend on the distances of the current point to defining
hyperplanes of the polytope. At each step, the process picks a random point from a suitable ellipsoid
that is guaranteed to almost lie inside. This process adapts to the boundary, but runs into similar
difficulties — the ellipsoid has to shrink as the point approaches the boundary in order to ensure
that (a) the stationary distribution is close to uniform and (b) the 1-step distribution is smooth,
both necessary properties for proving rapid convergence to the uniform distribution. Even though
this walk has the appealing property of being affine-invariant, and thus avoids explicitly rounding
the polytope, the current best upper bound for mixing is still quadratic, even for cylinders.

An alternative approach for sampling is the simulation of Brownian motion with boundary
reflection [10, 5, 4, 2]. While there has been much study of this process, several difficulties arise in
turning it into an efficient algorithm. In particular, if the current point is close to the boundary of
the polytope, extra care is needed in simulation and the process effectively slows down. However, if
it is deep inside the polytope, we should expect that Brownian motion locally looks like a Gaussian
distribution and hence it is easier to simulate. This suggests that the standard Euclidean metric,
which does not take into account distance to the boundary, is perhaps not the right notion for
getting a fast sampling algorithm.

In this paper, we combine the use of Stochastic Differential Equations (SDE) with non-Euclidean
geometries (Riemannian manifolds) to break the quadratic barrier for mixing in polytopes. As a
result we obtain significantly faster sampling algorithms.

Roughly speaking, our work is based on three key conceptual ideas. The first is the use of a
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Riemannian metric rather than the Euclidean metric. This allows us to scale space as we get closer
to the boundary and incorporate boundary information much more smoothly. This idea was already
used by Narayanan [24] to extend the Dikin walk to more general classes of convex bodies. The
relevant metrics are induced by Hessians of convex barrier functions, objects that have been put
to remarkable use for efficient linear and convex optimization [26]. The second idea is to simulate
an SDE on the manifold corresponding to the metric, via its geodesics (shortest-path curves, to be
defined presently). Unlike straight lines, geodesics bend away from the boundary and this allows
us to take larger steps while staying inside the polytope. The third idea is to use a modification
of standard Brownian motion via a drift term, i.e., rather than centering the next step at the
current point, we first shift the current point deterministically, then take a random step. This drift
term compensates the changes of the step size and this makes the process closer to symmetric.
Taken together, these ideas allow us to simulate an SDE by a discrete series of ordinary differential
equations (ODE), which we show how to solve efficiently to the required accuracy. In order to state
our contributions and results more precisely, we introduce some background, under three headings.

Riemannian Geometry. A manifold can be viewed as a surface embedded in a Euclidean
space. Each point in the manifold (on the surface), has a tangent space (the linear approximate of
the surface at that point) and a local metric. For a point x in a manifold M , the metric at x is
defined by a positive definite matrix g(x) and the length of a vector u in the tangent space TxM

is defined as ‖u‖x
def
= uT g(x)u. By integration, the length of any curve on the manifold is defined

as
∫ ∥

∥

dc
dt

∥

∥

c(t)
. A basic fact about Riemannian manifolds is that for any point in the manifold,

in any direction (from the tangent space), there is locally a shortest path (geodesic) starting in
that direction. In Euclidean space, this is just a straight line in the starting direction. Previous
random walks involve generating a random direction and going along a straight line in that direction.
However such straight lines do not take into account the local geometry, while geodesics do. We
give formal definitions in Section 2.1.

Hessian Manifolds. In this paper, we are concerned primarily with Riemannian manifolds
induced by Hessians of smooth (infinitely differentiable) strictly convex functions. More precisely,
for any such function φ, the local metric (of the manifold induced by φ) at a point x ∈ M is given
by the Hessian of φ at x, i.e., ∇2φ(x). Since φ is strictly convex, its Hessian is positive definite and
hence the Riemannian manifold induced by φ is well-defined and is called a Hessian manifold. In the
context of convex optimization, we are interested in a class of convex functions called self-concordant
barriers. Such convex functions are smooth in a precise sense and blow up on the boundary of a
certain convex set. The class of Hessian manifolds corresponding to self-concordant barriers has
been studied and used to study interior-point methods (IPM) [14, 27, 25].

Two barriers of particular interest are the logarithmic barrier and the Lee-Sidford (LS) barrier
[15], both defined for polytopes. For a polytope Ax > b, with A ∈ R

m×n and b ∈ R
m, for any x in

the polytope, the logarithmic barrier is given by

φ(x) = −
∑

i

ln(Ax− b)i.

This barrier is efficient in practice and has a self-concordance parameter ν ≤ m. The latter controls
the number of iterations of the IPM for optimization as O(

√
ν). The best possible value of ν is

n, the dimension. This is achieved up to a constant by the universal barrier [26], the canonical
barrier [11] and the entropic barrier [1]. However, these barrier functions take longer to evaluate
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(currently Ω(n5) or more). The LS barrier has been shown to be efficiently implementable (in time
O
(

nnz(A) + n2
)

[16]), while needing only Õ(
√
n) iterations [15].

In this paper, we develop tools to analyze general Hessian manifolds and show how to use them
for the logarithmic barrier to obtain a faster algorithm for sampling polytopes.

Stochastic Differential Equations. Given a self-concordant barrier φ on a convex set K, there
is a unique Brownian motion with drift on the Hessian manifold M induced by φ that has uniform
stationary distribution. In the Euclidean coordinate system, the SDE is given by

dxt = µ(xt)dt+
(

∇2φ(xt)
)−1/2

dWt (1.1)

where the first term, called drift, is given by:

µi(xt) =
1

2

n
∑

j=1

∂

∂xj

(

(

∇2φ(xt)
)−1
)

ij
. (1.2)

This suggests an approach for generating a random point in a polytope, namely to simulate the
SDE. The running time of such an algorithm depends on the convergence rate of the SDE and the
cost of simulating the SDE in discrete time steps.

Since the SDE is defined on the Riemannian manifold M , it is natural to consider the following
geodesic walk:

x(j+1) = expX(j)(
√
hw +

h

2
µ(x(j))) (1.3)

where expx(j) is a map from Tx(j)M back to the manifold, w is a random Gaussian vector on Tx(j)M ,
µ(x(j)) ∈ Tx(j)M is the drift term and h is the step size. The coefficient of the drift term depends
on the coordinate system we use; as we show in Lemma 16, for the coordinate system induced by
a geodesic, the drift term is µ/2 instead of µ as in (1.1). The Gaussian vector w has mean 0 and
variance 1 in the metric at x, i.e.Ew ‖w‖2x = 1. We write it as w ∼ Nx(0, I).

It can be shown that this discrete walk converges to (1.1) as h → 0 and it converges in a
rate faster than the walk suggested by Euclidean coordinates (Theorem ??), namely, x(j+1) =
x(j) +

√
hw + hµ(x(j)). (Note the drift here is proportional to h and not h/2.) This is the reason

we study the geodesic walk.

1.1 Algorithm

The algorithm is a discrete-time simulation of the geodesic process (1.3). For step-size h chosen in
advance, let p(x

w→ y) be the probability density (in Euclidean coordinates) of going from x to y
using the local step w. In general, the stationary distribution of the geodesic process is not uniform
and it is difficult to analyze the stationary distribution unless h is very small, which would lead to
a high number of steps. To get around this issue, we use the standard method of rejection sampling
to get a uniform stationary distribution. We call this the geodesic walk (see Algo. 2 for full details).

We show how to implement this in Section 3.10. Each iteration of the geodesic walk only uses
matrix multiplication and matrix inverse for O(logO(1)m) many O(m) × O(m)-size matrices, and
the rejection probability is small, i.e., acceptance probability is at least a constant in each step.

To implement the geodesic walk, we need to compute the exponential map expx, the vector w′

and the probability densities p(x
w→ y), p(y

w′

→ x) efficiently. These computational problems turn
out to be similar — all involve solving ordinary differential equations (ODEs) to accuracy 1/nΘ(1).
Hence, one can view the geodesic walk as reducing the problem of simulating an SDE (1.1) to solving
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Algorithm 1: Geodesic Walk

Pick a Gaussian random vector w ∼ Nx(0, I), i.e. Ew〈w, u〉2x = ‖u‖2 .
Compute y = expx(

√
hw + h

2µ(x)) where µ(x) is given by (1.2).

Let p(x
w→ y) is the probability density of going from x to y using the above step w.

Compute a corresponding w′ s.t. x = expy(
√
hw′ + h

2µ(y)).

With probability min

(

1, p(y
w′

→x)

p(x
w→y)

)

, go to y;

Otherwise, stay at x.

a sequence of ODEs. Although solving ODEs is well-studied, existing literature seems quite implicit
about the dependence on the dimension and hence it is difficult to apply it directly. In Section 5,
we rederive some existing results about solving ODEs efficiently, but with quantitative estimates of
the dependence on the dimension and desired error.

1.2 Main result

In this paper, we analyze the geodesic walk for the logarithmic barrier. The convergence analysis
will need tools from Riemannian geometry and stochastic calculus, while the implementation uses
efficient (approximate) solution of ODEs. Both aspects appear to be of independent interest. For
the reader unfamiliar with these topics, we include an exposition of the relevant background.

We analyze the geodesic walk in general and give a bound on the mixing time in terms of a
set of manifold parameters (Theorem 23). Applying this to the logarithmic barrier, we obtain a
faster sampling algorithm for polytopes, going below the mn mixing time of the Dikin walk, while
maintaining the same per-step complexity.

Theorem 1 (Sampling with logarithmic barrier). For any polytope {Ax ≥ b} with m inequalities

in R
n, the geodesic walk with the logarithmic mixes in Õ

(

mn
3
4

)

steps from a warm start, with each

step taking Õ
(

mnω−1
)

time to implement.

The implementation of each step of sampling is based on an efficient algorithm for solving high-
dimensional ODEs (Theorem 65). We state the implementation as a general theorem below, and
expect it will have other applications. As an illustration, we show how Physarum dynamics (studied
in [?]) can be computed more efficiently (Section 5.3).

Theorem 2. Let u(t) ∈ R
n be the solution of the ODE d

dtu(t) = F (u(t), t). Suppose we are given
ε > 0 and 1 ≤ p ≤ ∞ such that

1. There is a degree d polynomial q from R to R
n such that q(0) = v and

∥

∥

d
dtu(t)− d

dtq(t)
∥

∥

p
≤ ε

for all 0 ≤ t ≤ 1.

2. For some L ≥ 1, we have that ‖F (x, t)− F (y, t)‖p ≤ L ‖x− y‖p for all x, y and 0 ≤ t ≤ 1.

Then, we can compute u such that ‖u− u(1)‖p = O(ε) in O(ndL3 log2(dK/ε)) time and

O(dL2 log(K/ε)) evaluations of F where K = maxx,0≤t≤1 ‖F (x, t)‖p. For the application to the
geodesic walk, L = O(1) and we did not optimize over the dependence on L.
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1.3 Discussion and open problems

At a high level, our algorithm is based on the following sequence of fairly natural choices. First, we
consider a Brownian motion that gives uniform stationary distribution and such Brownian motion
is unique for a given metric (via the Fokker-Planck equation, 15). Since the set we sample is a
polytope, we use the metric given by the Hessian of a self-concordant barrier, a well-studied class
of metrics in convex optimization. This allows us to reduce the sampling problem to the problem of
simulating an SDE.1 To simulate an SDE, we apply the Milstein method, well-known in that field.
To implement the Milstein method, we perform a change of coordinates to make the metric locally
constant, which greatly simplifies the Milstein approximation. These coordinates are called normal
coordinates and can be calculated by geodesics (Lemma 16). This gives the step of our walk (1.3).

There are two choices which are perhaps not the most natural. First, it is unclear whether
Hessians of self-concordant barriers are the best metrics for the sampling problem; after all, these
barriers were designed for solving linear programs. Second, the Milstein method may not be the
best choice for discrete approximation. There are other numerical methods with better convergence
rates for solving SDEs, such as higher-order Runge-Kutta schemes. However, the latter methods
are very complex and it is not clear how to implement them in Õ

(

mnω−1
)

time.
There are several avenues for improving the sampling complexity further. One is to take longer

steps and use a higher-order simulation of the SDE that is accurate up to a larger distance. Another
part that is not tight in the analysis is the isoperimetry. Our analysis incurs a linear factor in the
mixing time due to the isoperimetry. As far as we know, this factor might be as small as O(1). We
make this precise via the following, admittedly rash generalization of the KLS hyperplane conjecture.

If true, it would directly improve our mixing time bound to Õ
(

n
3
4

)

.

Conjecture. For any Hessian manifold M with metric d induced by a convex body K, let the
isoperimetric ratio of a subset S w.r.t. d be defined as

ψd(S) = inf
ε>0

vol({x ∈ K \ S, d(x, y) ≤ ε})
ε ·min{vol(S), vol(K \ S)}

and the isoperimetric ratio of d as ψ = infS⊂K ψd(S). Then there is a subset S defined as a halfspace
intersected with K with ψd(S) = O(ψ).

We note that we are not simultaneously experts on Riemannian geometry, numerical SDE/ODE
and convex geometry; we view our paper as a sampling algorithm that connects different areas while
improving the state-of-the-art. Although the sampling problem is a harder problem than solving
linear programs, the step size of geodesic walk we use is larger than that of the short-step interior
point method. Unlike many papers on manifolds, we do not assume positive curvature everywhere.
For example, in recent independent work, Mangoubi and Smith [?] assumed positive sectional cur-
vature bounded between 0 < m and M < ∞, and an oracle to compute geodesics, and analyzed
a geodesic walk for sampling from the uniform distribution on a Riemannian manifold; while their
mixing time bound O((M/m)3) is dimension-independent, as far as we know, any manifold that
approximates (the double cover of) a polytope well enough would have M/m = Ω(n) and hence
does not yield an improvement.

We hope that the connections revealed in this paper might be useful for further development of
samplers, linear programming solvers and the algorithmic theory of manifolds.

1Coincidentally, when we use the best known self-concordant barrier, the canonical barrier, our SDE becomes a
Brownian motion with drift on an Einstein manifold. This is similar to how physical particles move under general
relativity (an algorithm that has been executed for over 10 billion years!).
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1.4 Outline

In the next section, we recall the basic definitions and properties of Riemannian geometry and
Hessian manifolds, and relevant facts from stochastic calculus and complex analysis. We also derive
the discrete-time geodesic walk (in Section 2.2.1), showing how the formula naturally arises. Key
concepts that we use repeatedly include geodesics, curvature and Jacobi fields. In Section 3, we
prove the convergence guarantee for general Hessian manifolds. The analysis needs three high-
level ingredients: (1) the rejection probability of the filter is small (2) two points that are close in
manifold distance have the property that their next step distributions have large overlap (bounded
total variation distance) (3) a geometric isoperimetric inequality that shows that large subsets have
large boundaries. Of these the last is relatively straightforward, relying on a comparison with the
Hilbert metric and existing isoperimetic inequalities for the latter. For the first two, we first derive
an explicit formula for the one-step probability distribution (Lemma 27). For bounding the rejection
probability, we need to show that this probability is comparable going forwards and going backwards
as computed in the algorithm (Theorem 28). The one-step overlap is also derived by comparing the
transition probabilities from two nearby points to the same point (Theorem 29). This comparison
and resulting bounds depend on several smoothness and stability parameters of the manifold. This
part also needs an auxiliary function that controls the change of geodesics locally. An important
aspect of the analysis is understanding how this probability changes via the Jacobi fields induced by
geodesics. Given these ingredients, the proof of mixing and conductance follows a fairly standard
path (Section 3.4). As a warm-up, in Section 3.5, we work out the mixing for a hypercube with the

logarithmic barrier — the mixing time is Õ
(

n
1
3

)

.

In subsequent sections, we apply this general theorem to the logarithmic barrier for a polytope,
to prove Theorem 1. We bound each of the parameters and use an explicit auxiliary function that
is just a combination of the infinity norm and the ℓ4 norm.

The algorithm for solving ODEs (collocation method) is presented and analyzed in Section 5,
and this is used to compute the geodesic and transition probabilities. The main idea of the analysis
is to show that the ODE can be approximated by a low-degee polynomial, depending on bounds
on the derivatives of the solution. To bound these derivatives, we give some general relations for
bounding higher derivatives (Section 5.4). As a simple application of the collocation method, we
give a faster convergence bound for discretized Physarum dynamics. To apply this method for
the log barrier, in Section 6, we show that the functions we wish to compute (geodesic, transition
probability) are complex analytic, then apply the derivative estimates of the previous section and
finally bound the time complexity of the collocoation method.
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2 Background and notation

Throughout the paper, we use lowercase letter for vectors and vector fields and uppercase letter
for matrices and tensors (this is not the convention used in Riemannian geometry). We use ek to

denote coordinate vectors. We use d
dt for the usual derivative, e.g. df(c(t))

dt is the derivative of some

function f along a curve c parametrized by t, we use ∂
∂v for the usual partial derivative. We use

Dkf(x)[v1, v2, · · · , vk] for the kth directional derivative of f at x on the direction v1, v2, · · · , vk.
We use ∇ for the connection (manifold derivative, defined below which takes into account the local
metric), Dv for the directional derivative of vector wrt to the vector (or vector field) v (again, defined
below which takes into account the local metric), and Dt if the parametrization is clear from the
context. We use g for the local metric. Given a point x ∈ M , g is a matrix with entries gij . Its
inverse has entries gij . Also n is the dimension, m the number of inequalities, γ is a geodesic, and
φ is a smooth convex function.

2.1 Basic Definitions of Riemannian geometry

Here we first introduce basic notions of Riemannian geometry. One can think of a manifold M
as a n-dimensional “surface” in R

k for some k ≥ n. In this paper, we only use a special kind of
manifolds, called Hessian manifold. For these manifolds, many definition can be defined directly by
some mysterious formulas. If it helps, the reader can use this section merely to build intuition and
use Lemma 10 instead as the formal definition of various concepts defined here.

1. Tangent space TpM : For any point p, the tangent space TpM of M at point p is a linear
subspace of Rk of dimension n. Intuitively, TpM is the vector space of possible directions that
are tangential to the manifold at x. Equivalently, it can be thought as the first-order linear
approximation of the manifold M at p. For any curve c on M , the direction d

dtc(t) is tangent

to M and hence lies in Tc(t)M . When it is clear from context, we define c′(t) = dc
dt (t). For any

open subset M of Rn, we can identify TpM with R
n because all directions can be realized by

derivatives of some curves in R
n.

2. Riemannian metric: For any v, u ∈ TpM , the inner product (Riemannian metric) at p is given

by 〈v, u〉p and this allows us to define the norm of a vector ‖v‖p =
√

〈v, v〉p. We call a

9



manifold a Riemannian manifold if it is equipped with a Riemannian metric. When it is clear
from context, we define 〈v, u〉 = 〈v, u〉p. In R

n , 〈v, u〉p is the usual ℓ2 inner product.

3. Differential (Pushforward) d: Given a function f from a manifold M to a manifold N , we
define df(x) as the linear map from TxM to Tf(x)N such that

df(x)(c′(0)) = (f ◦ c)′(0)

for any curve c on M starting at x = c(0). When M and N are Euclidean spaces, df(x) is the
Jacobian of f at x. We can think of pushforward as a manifold Jacobian, i.e., the first-order
approximation of a map from a manifold to a manifold.

4. Hessian manifold: We call M a Hessian manifold (induced by φ) if M is an open subset of Rn

with the Riemannian metric at any point p ∈M defined by

〈v, u〉p = vT∇2φ(p)u

where v, u ∈ TpM and φ is a smooth convex function on M .

5. Length: For any curve c : [0, 1] →M , we define its length by

L(c) =

∫ 1

0

∥

∥

∥

∥

d

dt
c(t)

∥

∥

∥

∥

c(t)

dt.

6. Distance: For any x, y ∈ M , we define d(x, y) be the infimum of the lengths of all paths
connecting x and y. In R

n , d(x, y) = ‖x− y‖2.

7. Geodesic: We call a curve γ(t) : [a, b] → M a geodesic if it satisfies both of the following
conditions:

(a) The curve γ(t) is parameterized with constant speed. Namely,
∥

∥

d
dtγ(t)

∥

∥

γ(t)
is constant

for t ∈ [a, b].

(b) The curve is the locally shortest length curve between γ(a) and γ(b). Namely, for any
family of curve c(t, s) with c(t, 0) = γ(t) and c(0, a) = γ(a) and c(0, b) = γ(b), we have

that d
ds

∣

∣

s=0

∫ b
a

∥

∥

d
dtc(t, s)

∥

∥

c(t,s)
dt = 0.

Note that, if γ(t) is a geodesic, then γ(αt) is a geodesic for any α. Intuitively, geodesics are
local shortest paths. In R

n, geodesics are straight lines.

8. Exponential map: The map expp : TpM →M is defined as

expp(v) = γv(1)

where γv is the unique geodesic starting at p with initial velocity γ′v(0) equals to v. The
exponential map takes a straight line tv ∈ TpM to a geodesic γtv(1) = γv(t) ∈ M . Note that
expp maps v and tv to points on the same geodesic. Intuitively, the exponential map can be
thought as point-vector addition in a manifold. In R

n, we have expp(v) = p+ v.
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9. Parallel transport: Given any geodesic c(t) and a vector v such that 〈v, c′(0)〉c(0) = 0, we define
the parallel transport of v along c(t) by the following process: Take h to be infinitesimally small
and v0 = v. For i = 1, 2, · · · , 1/h, we let vih be the vector orthogonal to c′(ih) that minimizes
the distance on the manifold between expc(ih)(hvih) and expc((i−1)h)(hv(i−1)h). Intuitively, the
parallel transport finds the vectors on the curve such that their end points are closest to the
end points of v. For general vector v ∈ Tc′(0), we write v = αc′(0) + w and we define the
parallel transport of v along c(t) is the sum of αc′(t) and the parallel transport of w along
c(t). For non-geodesic curve, see the definition in Fact 3.

10. Orthonormal frame: Given a vector fields v1, v2, · · · , vn on a subset of M , we call {vi}ni=1 is
an orthonormal frame if 〈vi, vj〉x = δij for all x. Given a curve c(t) and an orthonormal frame
at c(0), we can extend it on the whole curve by parallel transport and it remains orthonormal
on the whole curve.

11. Directional derivatives and the Levi-Civita connection: Given any vector v ∈ TpM and a
vector field u in a neighborhood of p. Let γv is the unique geodesic starting at p with initial
velocity γ′v(0) = v, we define

∇vu = lim
h→0

u(h) − u(0)

h

where u(h) ∈ TpM is the parallel transport of u(γ(h)) from γ(h) to γ(0). Intuitively, Levi-
Civita connection is the directional derivative of u along direction v, taking the metric into
account. In particular, for R

n, we have ∇vu(x) =
d
dtu(x+ tv). When u is defined on a curve

c, we define Dtu = ∇c′(t)u. In R
n, we have Dtu(γ(t)) =

d
dtu(γ(t)). We reserve d

dt for the usual
derivative with Euclidean coordinates.

We list some basic facts about the definitions introduced above that are useful for computation and
intuition.

Fact 3. Given a manifold M , a curve c(t) ∈ M , a vector v and vector fields u,w on M , we have
the following:

1. (alternative definition of parallel transport) v(t) is the parallel transport of v along c(t) if and
only if ∇c′(t)v(t) = 0.

2. (alternative definition of geodesic) c is a geodesic if and only if ∇c′(t)c
′(t) = 0.

3. (linearity) ∇v(u+ w) = ∇vu+∇vw.

4. (product rule) For any scalar-valued function f, ∇v(f · u) = ∂f
∂vu+ f · ∇vu.

5. (metric preserving) d
dt 〈u,w〉c(t) = 〈Dtu,w〉c(t) + 〈u,Dtw〉c(t).

6. (torsion free-ness) For any map c(t, s) from a subset of R2 to M , we have that Ds
∂c
∂t = Dt

∂c
∂s

where Ds = ∇ ∂c
∂s

and Dt = ∇ ∂c
∂t

.

7. (alternative definition of Levi-Civita connection) ∇vu is the unique linear mapping from the
product of vector and vector field to vector field that satisfies (3), (4), (5) and (6).

11
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Figure 2.2: Riemann curvature tensor measures the deviation of parallelepipeds (2.1) and Ricci
curvature measures the change of volumes (2.2). The illustrations are inspired by [28].

2.1.1 Curvature

Here, we define various notions of curvature. Roughly speaking, they measure the amount by which
a manifold deviates from Euclidean space.

Given vector u, v ∈ TpM , in this section, we define uv be the point obtained from moving from p
along direction u with distance ‖u‖p (using geodesic), then moving along direction “v” with distance
‖v‖p where “v” is the parallel transport of v along the path u. In R

n, uv is exactly p + u + v and
hence uv = vu, namely, parallelograms close up. For a manifold, parallelograms almost close up,
namely, d(uv, vu) = o(‖u‖ ‖v‖). This property is called being torsion-free.

1. Riemann curvature tensor: Three-dimensional parallelepipeds might not close up, and the
curvature tensor measures how far they are from closing up. Given vector u, v, w ∈ TpM , we
define uvw as the point obtained by moving from uv along direction “w” for distance ‖w‖p
where “w” is the parallel transport of w along the path uv. In a manifold, parallelepipeds do
not close up and the Riemann curvature tensor how much uvw deviates from vuw. Formally,
for vector fields v, w, we define τvw be the parallel transport of w along the vector field v for
one unit of time. Given vector field v,w, u, we define the Riemann curvature tensor by

R(u, v)w =
d

ds

d

dt
τ−1
su τ

−1
tv τsuτtvw

∣

∣

∣

∣

t,s=0

. (2.1)

Riemann curvature tensor is a tensor, namely, R(u, v)w at point p depends only on u(p), v(p)
and w(p).

2. Ricci curvature: Given a vector v ∈ TpM , the Ricci curvature Ric(v) measures if the geodesics
starting around p with direction v converge together. Positive Ricci curvature indicates the
geodesics converge while negative curvature indicates they diverge. Let S(0) be a small shape
around p and S(t) be the set of point obtained by moving S(0) along geodesics in the direction
v for t units of time. Then,

volS(t) = volS(0)(1 − t2

2
Ric(v) + smaller terms). (2.2)
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Formally, we define

Ric(v) =
∑

ui

〈R(v, ui)ui, v〉

where ui is an orthonormal basis of TpM . Equivalently, we have Ric(v) = Eu∼N(0,I) 〈R(v, u)u, v〉.
For R

n, Ric(v) = 0. For a sphere in n+ 1 dimension with radius r, Ric(v) = n−1
r2

‖v‖2.

Fact 4 (Alternative definition of Riemann curvature tensor). Given any M -valued function c(t, s),
we have vector fields ∂c

∂t and ∂c
∂s on M . Then, for any vector field z,

R(
∂c

∂t
,
∂c

∂s
)z = ∇ ∂c

∂t
∇ ∂c

∂s
z −∇ ∂c

∂s
∇ ∂c

∂t
z.

Equivalently, we write R(∂tc, ∂sc)z = DtDsz −DsDtz.

Fact 5. Given vector fields v, u,w, z on M ,

〈R(v, u)w, z〉 = 〈R(w, z)v, u〉 = −〈R(u, v)w, z〉 = −〈R(v, u)z, w〉 .

2.1.2 Jacobi field

In this paper, we often study the behavior of a family of geodesics. One crucial fact we use is that
the change of a family of geodesics satisfies the following equation, called the Jacobi equation:

Theorem 6 ([?, Thm 4.2.1]). Let c : [0, ℓ] →M be a geodesic and c(t, s) be a variation of c(t) (i.e.

c(t, 0) = c(t)) such that cs(t)
def
= c(t, s) is a geodesic for all s. Then u(t)

def
= ∂

∂sc(t, s)
∣

∣

s=0
satisfies the

following equation

DtDtu+R(u,
dc

dt
)
dc

dt
= 0

where R(·, ·)· is Riemann curvature tensor defined before. Conversely, any vector field V on c(t)
satisfying the equation

DtDtV +R(V,
dc

dt
)
dc

dt
= 0

can be obtained by a variation of c(t) through geodesics. We call any vector field satisfying this
equation a Jacobi field.

See figure 2.3 for an illustration.
In the appendix, we prove the first part of the theorem above as an illustration of the Jacobi

equation. In R
n, geodesics are straight lines and a Jacobi field is linear, namely, u(t) = u(0)+u′(0)t.

A similar decomposition holds for any Jacobi field.

Fact 7. Given a unit speed geodesic c(t), every Jacobi field u(t) on c(t) can be split into a tangential
part u1 and a normal part u2 such that

1. u = u1 + u2,

2. u1 and u2 are Jacobi fields, namely, DtDtu1+R(u1,
dc
dt )

dc
dt = 0 and DtDtu2+R(u2,

dc
dt )

dc
dt = 0,

3. u1 is parallel to dc
dt and is linear, namely, u1(t) =

(

〈

u(0), dcdt (0)
〉

c(0)
+
〈

Dtu(0),
dc
dt (0)

〉

c(0)
t
)

dc
dt (t),

4. u2 is orthogonal to dc
dt , namely,

〈

u2(t),
dc
dt (t)

〉

c(t)
= 0.
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∂s

s

t

Figure 2.3: A Jacobi field describes the difference between geodesic.

Definition 8. Given a geodesic γ(t), we define a linear map R(t) : Tγ(t)M → Tγ(t)M by

R(t)u = R(u, γ′(t))γ′(t).

In particular, the Jacobi equation on γ(t) can be written as D2
t u+R(t)u = 0.

Given a coordinate system xi, the linear map R(t) can be written as a symmetric matrix

R(t)ij =
〈

R(xi(t), γ
′(t))γ′(t), xj(t)

〉

.

To analysis the Jacobi equation, it is convenient to adopt the follow matrix notation.

Definition 9. Given a linear map A : TxM → TxM , we define ‖A‖2 = max‖v‖x=1 ‖Av‖x, ‖A‖F =
∑

i,j 〈vi, Avj〉
2
x and TrA =

∑

i viAvi where {vi}ni=1 is some arbitrary orthonormal basis of TxM .

In particular, we have that Ric(γ′(t)) = TrR(t).

2.1.3 Hessian manifolds

Recall that a manifold is called Hessian if it is a subset of Rn and its metric is given by gij =
∂2

∂xi∂xj φ
for some smooth convex function φ. We let gij be entries of the inverse matrix of gij . For example,

we have
∑

j g
ijgjk = δik. We use φij to denote ∂2

∂xi∂xj φ and φijk to denote ∂2

∂xi∂xj∂xkφ.
Since a Hessian manifold is a subset of Euclidean space, we identify tangent spaces TpM by

Euclidean coordinates. The following lemma gives formulas for the Levi-Civita connection and
curvature under Euclidean coordinates.

Lemma 10 ([30]). Given a Hessian manifold M , vector fields v, u,w, z on M , we have the following:

1. (Levi-Civita connection) ∇vu =
∑

ik vi
∂uk
∂xi

ek +
∑

ijk viujΓ
k
ijek where ek are coordinate vectors

and the Christoffel symbol

Γk
ij =

1

2

∑

l

gklφijl.

2. (Riemann curvature tensor) 〈R(u, v)w, z〉 =∑ijlkRklijuivjwlzk where

Rklij =
1

4

∑

pq

gpq (φjkpφilq − φikpφjlq) .
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3. (Ricci curvature) Ric(v) = 1
4

∑

ijlkpq g
pqgjl (φjkpφilq − φikpφjlq) vivk.

As an exercise, the reader can try to prove Fact 3 for Hessian manifolds using the above lemma
as a definition. The proof is given in the appendix.

In this paper, geodesics are everywhere and we will be using the following lemma in all of our
calculations.

Lemma 11 ([27, Cor 3.1]). If φ is a self-concordant function, namely,
∣

∣D3f(x)[h, h, h]
∣

∣ ≤ 2(D2f(x)[h, h])3/2,
then the corresponding Hessian manifold M is geodesically complete, namely, for any p ∈ M , the
exponential map is defined on the entire tangent space TpM and for any two points p, q ∈M , there
is a length minimizing geodesic connecting them.

In particular, for a polytope M = {x : Ax > b}, the Hessian manifold induced by the function
φ(x) = −∑i log(a

T
i x− bi) is geodesically complete.

2.1.4 Normal coordinates

For any manifold M , and any p ∈M , the exponential map expx maps from TxM to M . Since TxM
is isomorphic to R

n, exp−1
x gives a local coordinate system of M around x. We call this system the

normal coordinates at x. In a normal coordinate system, the metric is locally constant.

Lemma 12. In normal coordinates, we have

gij(x) = δij −
1

3

∑

kl

Rikjl(x)x
kxl +O(|x|3).

For a Hessian manifold, one can do a linear transformation to make the normal coordinates
coincide with Euclidean coordinates up to the first order.

Lemma 13. Given a Hessian manifold M and any point x ∈M . We pick a basis of TxM such that

expx(tv) = x+ tv +O(t2).

Let F :M → R
n be the normal coordinates defined by F (y) = exp−1

x . Then, we

DF [h] = h and D2Fk(x)[h, h] = hTΓkh

where Fk is the kth coordinate of F and Γk is the matrix with entries Γk
ij defined in Lemma 10.

2.2 Stochastic calculus

A stochastic differential equation (SDE) describes a stochastic process over a domain Ω. It has
the form dxt = µ(xt, t)dt + σ(xt, t)dWt where xt is the current point at time t, Wt is a standard
Brownian motion, and µ(xt, t), σ(xt, t) are the mean and covariance of the next infinitesimal step
at time t.

Lemma 14 (Itō’s lemma). Given a SDE dxt = µ(xt)dt+σ(xt)dWt and any smooth function f , we
have

df(t, xt) =

{

∂f

∂t
+ 〈∇f, µ〉+ 1

2
Tr
[

σT
(

∇2f
)

σ
]

}

dt+ (∇f)T σdWt.
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SDEs are closely related to diffusion equations:

∂

∂t
p(x, t) =

1

2
∇ · (A(x, t)∇p(x, t))

where p(x, t) is the density at point x and time t, ∇· is the usual divergence operator, ∇p is the
gradient of p and the matrix A(x, t) represents the diffusion coefficient at point x and time t. When
A(x, t) = I, we get the familiar heat equation:

∂

∂t
p(x, t) =

1

2
∆p(x, t).

In this paper, the diffusion coefficient will be a symmetric positive definite matrix given by the
Hessian

(

∇2φ(x)
)−1

of a convex function φ(x).
The Fokker-Planck equation connects an SDE to a diffusion equation.

Theorem 15 (Fokker-Planck equation). For any stochastic differential equation (SDE) of the form

dxt = µ(xt, t)dt+
√

A(xt, t)dWt,

the probability density of the SDE is given by the diffusion equation

∂

∂t
p(x, t) = −

n
∑

i=1

∂

∂xi
[µi(x, t)p(x, t)] +

1

2

n
∑

i=1

n
∑

j=1

∂2

∂xixj
[Aij(x, t)p(x, t)].

2.2.1 Derivation of the Geodesic walk

Given a smooth convex function φ on the convex domain M , namely that it is convex and is infinitely
differentiable at every interior point of M , we consider the corresponding diffusion equation

∂

∂t
p(x, t) =

1

2
∇ ·
(

∇2φ
)−1∇p.

We can expand it by

∂

∂t
p(x, t) =

1

2

n
∑

i=1

∂

∂xi





n
∑

j=1

(

(

∇2φ
)−1
)

ij

∂

∂xj
p(x, t)





=
1

2

n
∑

i=1

n
∑

j=1

∂2

∂xixj

(

(

(

∇2φ
)−1
)

ij
p(x, t)

)

− 1

2

n
∑

i=1

n
∑

j=1

∂

∂xi

(

∂

∂xj

(

(

∇2φ
)−1
)

ij
p(x, t)

)

.

The uniform distribution is the stationary distribution of this diffusion equation. Now applying the
Fokker-Planck equation (Theorem 15) with A =

(

∇2φ
)−1

, the SDE for the above diffusion is given
by:

dxt = µ(xt)dt+
(

∇2φ(xt)
)−1/2

dWt.

This explains the definition of (1.1). To simplify the notation, we write the SDE as

dxt = µ(xt)dt+ σ(xt)dWt (2.3)

where σ(xt) =
(

∇2φ(xt)
)−1/2

. One way to simulate this is via the Euler–Maruyama method, namely

x(t+1)h = xth + µ(xth)h+ σ(xth)wth

√
h

16



where wth ∼ Nxth
(0, I). We find the direction we are heading and take a small step along that

direction. However, if we view M as a manifold, then directly adding the direction µ(xth)h +
σ(xth)wth

√
h to xth is not natural; the Euclidean coordinate is just an arbitrary coordinate system

and we could pick any other coordinate systems and add the direction into xth, giving a different
step. Instead, we take the step in normal coordinates (Section 2.1.4).

In particular, given an initial point x0, we define F = exp−1
x0

and we note that F (xt) is another
SDE. To see the defining equation of this transformed SDE, we use Itō’s lemma (Lemma 14) to
show that the transformed SDE looks the same but with half the drift term. This explains the
formulation of geodesic walk: x(j+1) = expx(j)(

√
hw + h

2µ(x
(j))).

Lemma 16. Let F = exp−1
x0

and xt satisfies the SDE (2.3) Then we have

dF (x0) =
1

2
µ(x0)dt+ σ(x0)dW0. (2.4)

Proof. Itō’s lemma (Lemma 14) shows that

dFk(xt) =

{

〈∇Fk, µ〉+
1

2
Tr
[

σT
(

∇2Fk

)

σ
]

}

dt+ (∇Fk)
T σdWt

where Fk indicates the kth coordinate of F .
From Lemma 13, we have that 〈∇Fk(x0), µ〉 = µk, (∇Fk(x0))

T σ = eTk σ and

Tr
[

σ(x0)
T
(

∇2Fk(x0)
)

σ(x0)
]

=
∑

i

D2Fk[σei, σei]

=
∑

i

eTi σ
TΓkσei

= Tr
(

σTΓkσ
)

=
∑

eTi Γ
k
(

∇2φ
)−1

ei.

Now, using Lemma 10, we have that

Tr
[

σ(x0)
T
(

∇2Fk(x0)
)

σ(x0)
]

=
1

2

∑

ijl

gklφijlg
ji

Hence, we have that

dFk(x0) =







µk +
1

4

∑

ijl

gklφijlg
ji







dt+ eTk σdWt

Recall that the drift term (1.2) is given by

µk =
1

2

n
∑

i=1

∂

∂xi

(

(

∇2φ
)−1
)

ki

= −1

2

∑

i

eTk
(

∇2φ
)−1 ∂

∂xi
∇2φ

(

∇2φ
)−1

ei

= −1

2

∑

l,i,j

gkl
∂

∂xi
φljg

ji

= −1

2

∑

ijl

gklφijlg
ji. (2.5)

Therefore, we have the result.
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To understand why Euler-Maruyama method works especially better on normal coordinates, we
recall the following theorem:

Theorem 17 (Euler-Maruyama method). Given a SDE dxt = µ(xt)dt + σ(xt)dWt where both
µ(xt) ∈ R

d and σ(xt) ∈ R
d×m are Lipschitz smooth functions, consider the algorithm

x(i+1)h = xih + µ(xih)h+ σ(xih)(W(i+1)h −Wih) for all i ≥ 0

x0 = x0.

For some small enough h > 0, we have that

E ‖x1 − x1‖ = O(
√
h).

As a comparision, it is known that there is better method such as the following that gives better
error.

Theorem 18 (Milstein method). Given a SDE dxt = µ(xt)dt + σ(xt)dWt where both µ(xt) ∈ R
d

and σ(xt) ∈ R
d×m are Lipschitz smooth functions, consider the algorithm

x(i+1)h = xih + µ(xih)h+ σ(xih)(W(i+1)h −Wih) +

m
∑

j1,j2=1

Lj1
i σ

k,j2(xih)Ij1j2,i for all i ≥ 0

x0 = x0.

where Lj
i =

∑d
k=1 σ

k,j(xih)
∂

∂xk and Ij1j2,i ∼
∫ h
0

∫ ih+t1
ih dW j2

t2 dW
j1
t1 . For some small enough h > 0,

we have that
E ‖x1 − x1‖ = O(h).

Note that under normal coordinates, the metric σ is locally constant (Lemma 12). Due to
this, the term

∑

Lj1σk,j2Ij1j2 in the Milstein method vanishes. Hence, Euler-Maruyama method is
equivalent to Milstein method under normal coordinates. This is one of the reasons we use geodesic
instead of straight line as in Dikin walk.

2.3 Complex analysis

A complex function is said to be (complex) analytic (equivalently, holomorphic) if it is locally defined
by a convergent power series. Hartog’s theorem shows that a complex function in several variables
f : Cn → C is holomorphic iff it is analytic in each variable (while fixing all the other variables).
For any power series expansion, we define the radius of convergence at x as the largest number r
such that the series converges on the sphere with radius r centered at x. In this paper, we use the
fact that complex analytic functions behave very nicely up to the radius of convergence, and one
can avoid complex and tedious computations by using general convergence theorems.

Theorem 19 (Cauchy’s Estimates). Suppose f is holomorphic on a neighborhood of the ball B
def
=

{z ∈ C : |z − z0| ≤ r}, then we have that

∣

∣

∣f (k)(z0)
∣

∣

∣ ≤ k!

rk
sup
z∈B

|f(z)| .

In particular, for any rational function f(z) =
∏α

i=1(z−ai)
∏β

j=1(z−bj)
and any ball B

def
= {z ∈ C : |z − z0| ≤ r}

such that bj /∈ B, we have that
∣

∣

∣f (k)(z0)
∣

∣

∣ ≤ k!

rk
sup
z∈B

|f(z)| .
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A similar estimate holds for analytic functions in several variables. We will also use the following
classical theorem.

Theorem 20 (Simplified Version of Cauchy–Kowalevski theorem). If f is a complex analytic func-
tion defined on a neighborhood of (z0, α) ∈ C

n+1, then the problem

dw

dz
= f(z, w), w(z0) = α,

has a unique complex analytic solution w defined on a neighborhood around z0.
Similarly, for a complex analytic function f defined in a neighborhood of (z0, α, β) ∈ C

2n+1, the
ODE

d2w

dz2
= f(z, w,

dw

dz
), w(z0) = α,

dw

dz
(z0) = β

has a unique complex analytic solution w defined in a neighborhood around z0.
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3 Convergence of the Geodesic Walk

The geodesic walk is a Metropolis-filtered Markov chain, whose stationary distribution is the uniform
distribution over the polytope to be sampled. We will prove that the conductance of this chain is
large with an appropriate choice of the step-size parameter. Therefore, its mixing time to converge
to the stationary distribution will be small. The proof of high conductance involves showing (a) the
acceptance probability of the Metropolis filter is at least a constant (b) the induced metric satisfies
a strong isoperimetric inequality (c) two points that are close in metric distance are also close in
probabilistic distance, namely, the one-step distributions from them have large overlap. Besides
bounding the number of steps, we also have to show that each step of the Markov chain can be
implemented efficiently. We do this in later sections via an efficient algorithm for approximately
solving ODEs.

In this section, we present the general conductance bound for Hessian manifolds. The bound on
the conductance will use several parameters determined by the specific barrier function. In Section
4, we bound these parameters for the logarithmic barrier.

For a Markov chain with state space M , stationary distribution Q and next step distribution
Pu(·) for any u ∈M , the conductance of the Markov chain is

φ = inf
S⊂M

∫

S Pu(M \ S)dQ(u)

min {Q(S), Q(M \ S)} .

The conductance of an ergodic Markov chain allows us to bound its mixing time, i.e., the rate of
convergence to its stationary distribution, e.g., via the following theorem of Lovász and Simonovits.

Theorem 21 ([21]). Let Qt be the distribution of the current point after t steps of a Markov chain
with stationary distribution Q and conductance at least φ, starting from initial distribution Q0.
Then,

dTV (Qt, Q) ≤
√

d0

(

1− φ2

2

)t

where d0 = EQ0(dQ0(u)/dQ(u)) is a measure of the distance of the starting distribution from the
stationary and dTV is the total variation distance.

3.1 Hessian parameters

The mixing of the walk depends on the maximum values of several smoothness parameters of the
manifold. Since each step of our walk involves a Gaussian vector which can be large with some
probability, many smoothness parameters inevitably depend on this Gaussian vector. Formally, let
γ be the geodesic used in a step of the geodesic walk with the parameterization γ : [0, ℓ] → M

where ℓ
def
=

√
nh. Note that ℓ is not exactly the length of the geodesic step, but it is close with high

probability due to Gaussian concentration. Rather than using supremum bounds for our smoothness
parameters, it suffices to use large probability bounds, where the probability is over the choice of
geodesic at any point x ∈ Ω. To capture this notion that “most geodesics are good”, we allow the
use of an auxiliary function V (γ) ≥ 0 to measure how good a geodesic is. Several of the smoothness
parameters assume that this function is bounded and Lipshitz for a sufficiently large step size h.
More precisely, viewing geodesics as maps γ : [0, ℓ] → M, we assume that there exists an auxiliary
real function on the tangent bundle (union of tangent manifolds for all points in M), V : TM → R+,
satisfying
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1. For h ≤ H and any variation of geodesics γs with V (γs) ≤ V0, there is a V1 ≥ V0 s.t.
∣

∣

d
dsV (γs)

∣

∣ ≤ V1

(

∥

∥

d
dsγs(0)

∥

∥

γs(0)
+ ℓ ‖Dsγs‖γs(0)

)

2. For any x ∈M ,

Pgeodesic γ from x(V (γ) ≤ 1

2
V0) ≥ 1− V0

100V1
. (3.1)

Definition 22. Given a Hessian manifold M , maximum step size H and auxiliary function V with
parameters V0, V1, we define the smoothness parameters D0,D1,D2,G1, G2, R1, R2 depending only
on M and the step size h ≤ H as follows:

1. The maximum norm of the drift in the local metric, D0 = supx∈M ‖µ(x)‖x.

2. The smoothness of the norm of the drift, D1 = suph≤H,V (γ)≤V0,0≤t≤ℓ
d
dt ‖µ(γ(t))‖

2
γ(t).

3. The smoothness of the drift, D2 = supx∈M,‖s‖x≤1 ‖∇sµ(x)‖x.

4. The smoothness of the local volume, G1 = suph≤H,V (γ)≤V0,0≤t≤ℓ |log det(g(γ(t))))′′′ | where
g(x) is the metric at x.

5. The smoothness of the metric, G2 = sup d(x,y)
dH (x,y) where dH is the Hilbert distance (defined in

Section 3.2) and d is the shortest path distance in M .

6. The stability of the Jacobian field, R1 = suph≤H,V (γ)≤V0,0≤t≤ℓ ‖R(t)‖F where R(t) is defined
in Definition 8.

7. The smoothness of the Ricci curvature, R2 = suph≤H,V (γ)≤V0

∣

∣

d
dsRic(γ

′
s(t))

∣

∣ (see Definition
37).

We refer to these as the parameters of a Hessian manifold. Our main theorem for convergence can
be stated as follows.

Theorem 23. On a Hessian manifold of dimension n with an auxiliary function, step-size upper
bound H and parameters D0,D1,D2,G1, G2, R1, R2, the geodesic walk with step size

h ≤ Θ(1)min

{

1

n1/3D
2/3
1

,
1

D2
,

1

nR1
,

1

(nD0R1)2/3
,

1

(nR2)
2/3

,
1

nG
2/3
1

,H

}

has conductance Ω(
√
h/G2) and mixing time O(G2

2/h).

In the rest of this section, we prove this theorem. It can be sepecialized to any Hessian manifold
by bounding the parameters. In later sections, we do this for the log barrier, by defining the auxiliary
function and bounding the manifold parameters.

3.2 Isoperimetry

For a convex body K, the cross-ratio distance of x and y is

dK(x, y) =
|x− y||p− q|
|p− x||y − q|

where p and q are on the boundary of K such that p, x, y, q are on the straight line xy and are in
order. In this section, we show that if the distance d(x, y) induced by the Riemannian metric is
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upper bounded by the cross-ratio distance, then the body has good isoperimetric constant in terms
of d. We note that although the cross-ratio distance is not a metric, the closely-related Hilbert
distance is a metric:

dH(x, y) = log

(

1 +
|x− y||p− q|
|p − x||y − q|

)

.

Theorem 24. For a Hessian manifold M with smoothness parameters G2, for any partition of M
into three measurable subsets S1, S2, S3, we have that

vol(S3) ≥
d(S1, S2)

G2
min{vol(S1), vol(S2)}.

The theorem follows from the following isoperimetric inequality from [18], the definition of G2

and the fact dH ≤ dK .

Theorem 25 ([18]). For any convex body K and any partition of K into disjoint measurable subsets
S1, S2, S3

vol(S3) ≥ dK(S1, S2)vol(S1)vol(S2).

3.3 1-step distribution

We first derive a formula for the drift term — it is in fact a classical Newton step of the volumetric
barrier function log det∇2φ(x).

Lemma 26. We have
µ(x) = −

(

∇2φ(x)
)−1∇ψ(x)

where ψ(x) = 1
2 log det∇2φ(x).

Proof. We note that

∂

∂xj
log det

(

∇2φ
)−1

= Tr

(

(

∇2φ
) ∂

∂xj

(

∇2φ
)−1
)

= −Tr

(

(

∇2φ
) (

∇2φ
)−1

(

∂

∂xj
∇2φ

)

(

∇2φ
)−1
)

= −
∑

k

eTk

(

∂

∂xj
∇2φ

)

(

∇2φ
)−1

ek.

Hence, we have

1

2
eTi
(

∇2φ
)−1 ∇ log det

(

∇2φ
)−1

= −1

2

∑

jk

(

∇2φ
)−1

ij
eTk

(

∂

∂xj
∇2φ

)

(

∇2φ
)−1

ek

= −1

2

∑

jk

eTi
(

∇2φ
)−1

(

∂

∂xk
∇2φ

)

(

∇2φ
)−1

ek

On the other hand, we have

µi =
1

2

∑

k

∂

∂xk

(

(

∇2φ
)−1
)

ik

= −1

2

∑

k

eTi
(

∇2φ
)−1

(

∂

∂xk
∇2φ

)

(

∇2φ
)−1

ek.
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To have a uniform stationary distribution, the geodesic walk uses a Metropolis filter. The
transition probability before applying the filter is given as follows.

Lemma 27. For any x ∈ M and h > 0, the probability density of the 1-step distribution from x
(before applying the Metropolis filter) is given by

px(y) =
∑

vx:expx(vx)=y

det(d expx(vx))
−1

√

det (g(y))

(2πh)n
exp



−1

2

∥

∥

∥

∥

∥

vx − h
2µ(x)√
h

∥

∥

∥

∥

∥

2

x



 (3.2)

where y = expx(vx) and d expx is the differential of the exponential map at x.

Proof. We prove the formula by separately considering each vx ∈ TxM s.t. expx(vx) = y, then
summing up. In the tangent space TxM , the point vx is a Gaussian step. Therefore, the probability
density of vx in TxM as follows.

pTxM
x (vx) =

1

(2πh)n/2
exp



−1

2

∥

∥

∥

∥

∥

vx − h
2µ(x)√
h

∥

∥

∥

∥

∥

2

x



 .

Note that vx, µ(x) ∈ TxM. Let y = expx(vx). In the tangent space TyM, we have that y maps to 0.
Let F : TxM → K defined by F (v) = idM→K ◦ expx(v). Here K is the same set as M but endowed
with the Euclidean metric. Hence, we have

dF (vx) = didM→K(y)d expx(vx).

The result follows from px(y) = det(dF (vx))
−1pTxM

x (vx) and

det dF (vx) = det (didM→K(y)) det (d expx(vx))

= det(g(y))−1/2 det (d expx(vx)) .

In Section 3.6, we bound the acceptance probability of the Metropolis filter. This is a crucial
aspect of the analysis.

Theorem 28. Given a geodesic γ with γ(0) = x, γ′(0) = vx, γ(ℓ) = y, γ′(ℓ) = −vy with ℓ =
√
nh.

Suppose that h ≤ min(H, 1
nR1

) and V (γ) ≤ V0, then we have that

∣

∣

∣

∣

∣

log

(

p(x
vx→ y)

p(y
vy→ x)

)∣

∣

∣

∣

∣

= O
(√

nh3/2D1 + (nh)3/2G1 + (nhR1)
2
)

.

In Section 3.7, we bound the overlap of one-step distributions from nearby points.

Theorem 29. For h ≤ min
(

H, 1
106nR1

)

, then the one-step distributions Px, Pz from x, z satisfy

dTV (Px, Pz) = O

(

nhR2 +D2

√
h+

1√
h
+ nhD0R1

)

d(x, z) +
1

20
.

Combining the above two theorems lets us bound the conductance and mixing time of the walk,
as we show in the next section.
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3.4 Conductance and mixing time

Proof of Theorem 23. The proof follows the standard outline for geometric random walks (see e.g.,
[31]). Let Q be the uniform distribution over M and S be any measurable subset of M . Then our
goal is to show that

∫

S Px(M \ S) dQ(x)

min {Q(S), Q(M \ S)} = Ω

(√
h

G2

)

.

Since the Markov chain is time-reversible (For any two subsets A,B,
∫

A Px(B) dx =
∫

B Px(A) dx),
we can write the numerator of the LHS above as

1

2

(

∫

S
Px(M \ S) dQ(x) +

∫

M\S
Px(S) dQ(x)

)

.

Define

S1 = {x ∈ S : Px(M \ S) < 0.05}
S2 = {x ∈M \ S : Px(S) < 0.05}
S3 =M \ S1 \ S2.

We can assume wlog that Q(S1) ≥ (1/2)Q(S) and Q(S2) ≥ (1/2)Q(M \S) (if not, the conductance
is Ω(1)).

Next, we note that for any two points x ∈ S1 and y ∈ S2, dTV (Px, Py) > 0.9. Therefore,
by Theorem 25, we have that d(x, y) = Ω(

√
h) and hence d(S1, S2) = Ω(

√
h). Therefore, using

Theorem 24,

vol(S3) = Ω

(√
h

G2

)

min{vol(S1), vol(S2)}.

Going back to the conductance,

1

2

(

∫

S
Px(M \ S) dQ(x) +

∫

M\S
Px(S) dQ(x)

)

≥ 1

2

∫

S3

(0.05)dQ(x)

= Ω

(√
h

G2

)

min{vol(S1), vol(S2)}
1

vol(M)

= Ω

(√
h

G2

)

min

{

vol(S)

vol(M)
,
vol(M \ S)

vol(M)

}

= Ω

(√
h

G2

)

min{Q(S), Q(M \ S)}

Therefore, φ(S) ≥ Ω
(√

h
G2

)

.

Corollary 30. Let K be a polytope. Let Q be the uniform distribution over K and Qt be the distri-
bution obtained after t steps of the geodesic walk started from a distribution Q0 with d0 = supK

dQ0

dQ .

Then after t > O(G2
2/h) log

(

d0
ǫ

)

steps, with probability at least 1− δ, we have dTV (Qt, Q) ≤ ǫ.
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3.5 Warm-up: Interval and hypercube

The technical core of the proof is in Theorems 28 and 29. Before we get to those, in this section,
we analyze the geodesic walk for one-dimensional Hessian manifolds and the hypercube (product of
intervals), which we can do by more elementary methods.

Lemma 31. Given a barrier function φ on one dimension interval (α, β) such that
∣

∣φ(3)(x)
∣

∣ =

O(φ′′(x)3/2),
∣

∣φ(4)(x)
∣

∣ = O(φ′′(x)4/2) and
∣

∣φ(5)(x)
∣

∣ = O(φ′′(x)5/2) for x ∈ (α, β). For step size h
smaller than some constant, the geodesic walk on the Hessian manifold (α, β) induced by φ satisfies
that

∣

∣

∣

∣

log

(

p(x→ y)

p(y → x)

)∣

∣

∣

∣

= O(h3/2)

with constant probability.

The first assumption above
∣

∣φ(3)(x)
∣

∣ = O(φ′′(x)3/2) is called self-concordance, and the others
can be viewed as its extensions to higher derivatives. It is easy to check that the logarithmic barrier
φ(x) = − log(1 + x) − log(1 − x) on (−1, 1) satisfies all the assumptions. Our main theorem for
general manifolds (Theorem 28) implies the same bound after substituting the parameters for the
log barrier on the interval with n = 1 and m = 2.

Proof. Since the walk is affine-invariant and the conditions are scale-invariant, we can assume the
domain is the interval (−1, 1). Let the metric p(x) = φ′′(x). The drift is given by (1.2):

µ(x) =
1

2

d

dx

(

1

p(x)

)

=
−p′(x)
2p2(x)

.

Let f(x)
def
=
∫ x
0

√

p(t)dt be the mapping from (−1, 1) to R such that for any x, y ∈ (−1, 1), we have
that |f(x) − f(y)| is the manifold distance on (−1, 1) using the metric p. In particular, we have
that

expx(v) = f−1
(

f(x) + p1/2(x)v
)

.

Therefore, the probability density on R (as in Lemma 27 for the one-dimensional case) is given by

pR(x→ y) =
1√
2πh

exp

[

− 1

2h

(

f(x)− hp′(x)

4p3/2(x)
− f(y)

)2
]

.

Hence,

p(x→ y) =

√

p(y)

2πh
exp

[

− 1

2h

(

f(x)− hp′(x)

4p3/2(x)
− f(y)

)2
]

.

Hence, we have that

p(x→ y)

p(y → x)

=

√

p(y)

p(x)
exp

[

1

2h

(

f(y)− f(x)− hp′(y)

4p3/2(y)

)2

− 1

2h

(

f(y)− f(x) +
hp′(x)

4p3/2(x)

)2
]

= exp

[

log(p(y))− log(p(x))

2
− f(y)− f(x)

4

(

p′(x)

p3/2(x)
+

p′(y)

p3/2(y)

)

+
h

32

(

(p′(y))2

p3(y)
− (p′(x))2

p3(x)

)]

.
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Note that

log(p(y))− log(p(x)) = log(p(f−1(f(y))))− log(p(f−1(f(x))))

=

∫ f(y)

f(x)

p′(f−1(t))

p(f−1(t))f ′(f−1(t))
dt

=

∫ f(y)

f(x)

p′(f−1(t))

p3/2(f−1(t))
dt.

Note that for any second differentiable function φ, Lemma 32 shows that that

∣

∣

∣

∣

∫ α

β
φ(t)dt− (α− β) (φ(α) + φ(β))

∣

∣

∣

∣

≤ |α− β|3
12

max
α≤t≤β

∣

∣φ′′(t)
∣

∣ .

Hence,

∣

∣

∣

∣

log(p(y))− log(p(x)) − f(y)− f(x)

2

(

p′(x)

p3/2(x)
+

p′(y)

p3/2(y)

)∣

∣

∣

∣

≤ |f(x)− f(y)|3
12

max
f(x)≤t≤f(y)

∣

∣

∣

∣

d2

dt2
p′(f−1(t))

p3/2(f−1(t))

∣

∣

∣

∣

.

For the other term, we note that

∣

∣

∣

∣

(p′(y))2

p3(y)
− (p′(x))2

p3(x)

∣

∣

∣

∣

≤ |y − x| max
x≤t≤y

∣

∣

∣

∣

d

dt

(p′(t))2

p3(t)

∣

∣

∣

∣

.

Hence,

∣

∣

∣

∣

log

(

p(x→ y)

p(y → x)

)∣

∣

∣

∣

≤ O

(

|f(x)− f(y)|3 max
f(x)≤t≤f(y)

∣

∣

∣

∣

d2

dt2
p′(f−1(t))

p3/2(f−1(t))

∣

∣

∣

∣

)

+O

(

h |y − x| max
x≤t≤y

∣

∣

∣

∣

d

dt

(p′(t))2

p3(t)

∣

∣

∣

∣

)

.

Note that
d

dt

p′(f−1(t))

p3/2(f−1(t))
= −3

2

(p′(f−1(t)))2

p3(f−1(t))
+
p′′(f−1(t))

p2(f−1(t))

and
d2

dt2
p′(f−1(t))

p3/2(f−1(t))
=

9

2

(p′(f−1(t)))3

p9/2(f−1(t))
− 3p′(f−1(t))p′′(f−1(t))

p7/2(f−1(t))
+

p′′′(f−1(t))

p5/2(f−1(t))
.

Also, we have that
d

dt

(p′(t))2

p3(t)
=

2p′(t)p′′(t)
p3(t)

− 3(p′(t))3

p4(t)
.

Hence, we have that

∣

∣

∣

∣

log

(

p(x→ y)

p(y → x)

)∣

∣

∣

∣

= O

(

|f(x)− f(y)|3 max
x≤t≤y

(∣

∣

∣

∣

(p′(t))3

p9/2(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

p′(t)p′′(t)

p7/2(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

p′′′(t)

p5/2(t)

∣

∣

∣

∣

))

+O

(

h |y − x| max
x≤t≤y

(∣

∣

∣

∣

p′(t)p′′(t)
p3(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

(p′(t))3

p4(t)

∣

∣

∣

∣

))

.
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Since φ is self-concordant, i.e.,
∣

∣φ(3)(x)
∣

∣ = O(φ′′(x)3/2), we know that p(t) ≤ O(1)p(s) for all s, t ∈
[x, y] if p(x)|x − y| is smaller than a constant. Noting that p(x)|x − y|2 = Θ(h) with constant
probability, we have that p(t) ≤ O(1)p(s) for all s, t ∈ [x, y]. Therefore, we have that

|f(x)− f(y)| = O(|x− y|
√

p(x)) = O(
√
h),

|x− y| = O(p−1/2(x)
√
h).

Hence, we have
∣

∣

∣

∣

log

(

p(x→ y)

p(y → x)

)∣

∣

∣

∣

= O

(

h3/2 max
x≤t≤y

(∣

∣

∣

∣

(p′(t))3

p9/2(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

p′(t)p′′(t)

p7/2(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

p′′′(t)

p5/2(t)

∣

∣

∣

∣

))

+O

(

h3/2 max
x≤t≤y

(∣

∣

∣

∣

p′(t)p′′(t)

p7/2(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

(p′(t))3

p9/2(t)

∣

∣

∣

∣

))

.

Using our assumption on φ, we get our result.

Remark. The hypercube in R
n is a product of intervals. In fact, the next-step density function is a

product function, and the quantity log
(

p(x→y)
p(y→x)

)

is a sum over the same quantity in each coordinate.

Viewing the coordinates as independent processes, this is a sum of independent random variables,
w.h.p. of magnitude O(h

3
2 ). The signs are random since ratio is symmetric in x, y. Thus, the overall

log ratio is O
(√

nh
3
2

)

. To keep this bounded, it suffices to choose h = O
(

n−
1
3

)

. Moreover, since

the isoperimetric ratio (G2 in our parametrization) is O (1) for the hypercube, this gives an overall

mixing time of O
(

n
1
3

)

, much lower than the mixing time of n2 for the ball walk and hit-and-run,

or the current bound for the Dikin walk.

3.6 Rejection probability

The goal of this section is to prove Theorem 28, i.e., the rejection probability of the Metropolis
filter is small. For a transition from x to y on the manifold, the filter is applied with respect to a
randomly chosen vx, i.e., for one geodesic from x to y. We will bound the ratio of the transition
probabilities (without the filter) as follows:

log

(

p(x
vx→ y)

p(y
vy→ x)

)

= log

(

det (d expx(vx))
−1

det
(

d expy(vy)
)−1

)

+
1

2
log det (g(y))− 1

2
log det (g(x))

−1

2

∥

∥

∥

∥

∥

vx − h
2µ(x)√
h

∥

∥

∥

∥

∥

2

x

+
1

2

∥

∥

∥

∥

∥

vy − h
2µ(y)√
h

∥

∥

∥

∥

∥

2

y

.

Since a geodesic has constant speed, we have ‖vx‖x = ‖vy‖y. Therefore, we have that

log

(

p(x
vx→ y)

p(y
vy→ x)

)

= log

(

det
(

d expy(vy)
)

det (d expx(vx))

)

+
1

2
log det (g(y)) − 1

2
log det (g(x)) (3.3)

+
1

2
〈vx, µ(x)〉x −

h

8
‖µ(x)‖2x −

1

2
〈vy, µ(y)〉y +

h

8
‖µ(y)‖2y .

We separate the proof into three parts:

•
∣

∣

∣
‖µ(x)‖2x − ‖µ(y)‖2y

∣

∣

∣
≤

√
nhD1, immediate from the definition of D1 and the parameterization

γ : [0, ℓ
def
=

√
nh] →M .
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• Sec 3.6.1:
∣

∣

∣log det (g(y))− log det (g(x)) + 〈vx, µ(x)〉x − 〈vy, µ(y)〉y
∣

∣

∣ = O((nh)3/2G1),

• Sec 3.6.2:

∣

∣

∣

∣

log

(

det(d expy(vy))
det(d expx(vx))

)∣

∣

∣

∣

= O((nhR1)
2).

Together, these facts imply Theorem 28.

3.6.1 Trapezoidal rule

Recall that the trapezoidal rule is to approximate
∫ h
0 f(t)dt by h

2 (f(0) + f(h)). The nice thing
about this rule is that the error is O(h3) instead of O(h2) because the second order term cancels by
symmetry. Our main observation here is that the geodesic walk implicitly follows a trapezoidal rule
on the metric and hence it has a small error. We include the proof of the trapezoidal rule error for
completeness.

Lemma 32. We have that
∣

∣

∣

∣

∫ ℓ

0
f(t)dt− ℓ

2
(f(0) + f(ℓ))

∣

∣

∣

∣

≤ ℓ3

12
max
0≤t≤ℓ

∣

∣f ′′(t)
∣

∣ .

Proof. Note that

∫ ℓ

0
f(t)dt− ℓ

2
(f(0) + f(ℓ)) =

∫ ℓ

0

(

f(0) +

∫ t

0
f ′(s)ds

)

dt− ℓf(0)− ℓ

2

∫ ℓ

0
f ′(s)ds

=

∫ ℓ

0

∫ t

0
f ′(s)dsdt− ℓ

2

∫ ℓ

0
f ′(s)ds

=

∫ ℓ

0
(
ℓ

2
− s)f ′(s)ds

=

∫ ℓ

0
(
ℓ

2
− s)

(

f ′(
ℓ

2
) +

∫ s

ℓ/2
f ′′(t)dt

)

ds

=

∫ ℓ

0
(
ℓ

2
− s)

∫ s

ℓ/2
f ′′(t)dtds

≤ ℓ3

12
max
0≤t≤ℓ

∣

∣f ′′(t)
∣

∣ .

We apply this to the logdet function.

Lemma 33. Let f(t) = log det(g(γ(t)) where γ(t) = expx(
t
ℓvx). If h ≤ H and V (γ) ≤ V0, we have

∣

∣

∣
log det(g(y)) − log det(g(x)) + 〈vx, µ(x)〉x − 〈vy, µ(y)〉y

∣

∣

∣
= O((nh)3/2G1).

Proof. Let f(t) = log det g(γ(t)). By Lemma 26, µ(γ(t)) = −1
2g(γ(t))

−1∇f(γ(t)). Using this,

f ′(t) = 〈∇γ(t) log det g(γ(t)), γ
′(t)〉2

= 〈g(γ(t))−1∇γ(t) log det g(γ(t)), γ
′(t)〉γ(t)

= −〈2µ(γ(t)), γ′(t)〉γ(t).
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Noting that vx = ℓγ′(0) and vy = −ℓγ′(ℓ), and using Lemma 32, we have

∣

∣

∣
log det(g(y)) − log det(g(x)) + 〈vx, µ(x)〉x − 〈vy, µ(y)〉y

∣

∣

∣

=
∣

∣

∣log det(g(y)) − log det(g(x)) + ℓ
(

〈

γ′(0), µ(x)
〉

x
+
〈

γ′(ℓ), µ(y)
〉

y

)∣

∣

∣

=

∣

∣

∣

∣

∫ ℓ

0
f ′(t)dt− ℓ

2

(

f ′(0) + f ′(ℓ)
)

∣

∣

∣

∣

≤ ℓ3

12
max
0≤t≤ℓ

∣

∣f ′′′(t)
∣

∣ = O
(

(nh)3/2G1

)

.

3.6.2 Smoothness of exponential map

First, we show the relation between the differential of exponential map d expx(vx) and the Jacobi
field along the geodesic expx(tvx). This can be viewed as the fundamental connection between
geodesics and the Jacobi field in matrix notation, which will be convenient for our purpose.

Lemma 34. Given a geodesic γ(t) = expx(
t
ℓvx), let {Xi(t)}ni=1 be the parallel transport of some

orthonormal frame along γ(t). Then, for any w ∈ R
n, we have that

d expx(vx)
(

∑

wiXi(0)
)

=
∑

i

ψw(ℓ)iXi(ℓ)

where ψw satisfies the following Jacobi equation along γ(t):

d2

dt2
ψw(t) +R(t)ψw(t) = 0 for all 0 ≤ t ≤ ℓ,

d

dt
ψw(0) =

w

ℓ
, (3.4)

ψw(0) = 0,

and R(t) is defined in Definition 8.

Proof. We want to compute d expx(vx)(w) for some w ∈ TyM . By definition, we have that

d expx(vx)(w) =
d

ds
γ(t, s)|t=ℓ,s=0

where γ(t, s) = expx(tvx/ℓ + sw). It is known that ηw(t) =
d
dsγ(t, s)|s=0 is a Jacobi field given by

the formula (Sec 2.1.2)

DtDtηw +R(ηw, γ
′(t))γ′(t) = 0, for 0 ≤ t ≤ ℓ

Dtηw(0) = w/ℓ,

ηw(0) = 0.

Recall that the parallel transport of an orthonormal frame remains orthonormal because

d

dt
〈Xi(t),Xj(t)〉γ(t) = 〈DtXi(t),Xj(t)〉γ(t) + 〈Xi(t),DtXj(t)〉γ(t) = 0.
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Since Xi(t) is an orthonormal basis at Tγ(t)M , we can write

ηw(t) =
∑

i

ψw,i(t)Xi(t).

Now, we need to verify ψw satisfies (3.4). The second and last equation is immediate.
Since ηw satisfies the ODE above, we have

DtDt

∑

i

ψw,i(t)Xi(t) +R(
∑

i

ψw,i(t)Xi(t), γ
′(t))γ′(t) = 0.

Since Xi(t) is a parallel transport, we have that DtDt (ψw,i(t)Xi(t)) =
d2

dt2ψw,i(t)Xi(t) and hence

∑

i

d2

dt2
ψw,i(t)Xi(t) +

∑

i

ψw,i(t)R(Xi(t), γ
′(t))γ′(t) = 0

Let Rij(t) = 〈R(Xi(t), γ
′(t))γ′(t),Xj(t)〉. Since R(t) is a symmetric matrix (Fact 5), we have

d2

dt2
ψw(t) +R(t)ψw(t) = 0.

This verifies the first equation in (3.4).

Next, we have an elementary lemma about the determinant.

Lemma 35. Suppose that E is a matrix (not necessarily symmetric) with ‖E‖2 ≤ 1
4 , we have

|log det(I + E)− TrE| ≤ ‖E‖2F .

Proof. Let f(t) = log det(I + tE). Then, by Jacobi’s formula, we have

f ′(t) = Tr
(

(I + tE)−1E
)

,

f ′′(t) = −Tr((I + tE)−1E(I + tE)−1E).

Since ‖E‖2 ≤ 1
4 , we have that

∥

∥(I + tE)−1
∥

∥

2
≤ 4

3 and hence

∣

∣f ′′(t)
∣

∣ =
∣

∣Tr((I + tE)−1E(I + tE)−1E)
∣

∣

≤
∣

∣

∣
Tr(ET

(

(I + tE)−1
)T

(I + tE)−1E)
∣

∣

∣

≤ 2
∣

∣Tr(ETE)
∣

∣ = 2 ‖E‖2F .

The result follows from

f(1) = f(0) + f ′(0) +
∫ 1

0
(1− s)f ′′(s)ds

= Tr(E) +

∫ 1

0
(1− s)f ′′(s)ds.

Using lemma 35 along with bounds on the solution to the Jacobi field equation (Lemma 42 in
Sec. 3.8) , we have the following:
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Lemma 36. Given a geodesic walk γ(t) = expx(
t
ℓvx) with step size h satisfying 0 < h ≤ 1

nR where
R = max0≤t≤ℓ ‖R(t)‖F . We have that d expx(vx) is invertible,

∣

∣

∣

∣

log det (d expx(vx))−
∫ ℓ

0

s(ℓ− s)

ℓ
Ric(γ′(s))ds

∣

∣

∣

∣

≤ (nhR)2

6
(3.5)

and
∣

∣log det (d expx(vx))− log det
(

d expy(vy)
)∣

∣ ≤ (nhR)2

3
.

If we further assume V (γ) ≤ V0 and h ≤ H, then we have that R ≤ R1.

Proof. Let Ψ be the solution of the ODE Ψ′′(t) + R(t)Ψ(t) = 0, Ψ′(0) = I/ℓ and Ψ(0) = 0. We
know that ‖R(t)‖2 ≤ ‖R(t)‖F ≤ R for all 0 ≤ t ≤ ℓ. Hence, Lemma 42 shows that

‖Ψ(t)− I‖F ≤ max
0≤s≤ℓ

‖R(s)‖F
(

ℓ3

5
‖I/ℓ‖2

)

≤ 1

5
nhR ≤ 1

5
(3.6)

By the Lemma 35, we have that

|log det(Ψ(ℓ)) − Tr (Ψ(ℓ)− I)| ≤
(

1

5
nhR

)2

. (3.7)

Now, we need to estimate Tr(Ψ(ℓ)− I). Note that

Ψ(ℓ) = Ψ(0) + Ψ′(0)ℓ+
∫ ℓ

0
(ℓ− s)R(s)Ψ(s)ds

= I +

∫ ℓ

0
(ℓ− s)R(s)Ψ(s)ds.

Hence, we have

Ψ(ℓ)− I −
∫ ℓ

0

s(ℓ− s)

ℓ
R(s)ds =

∫ ℓ

0
(ℓ− s)R(s)

(

Ψ(s)− s

ℓ
I
)

ds.

Using Lemma (3.6), we have
∣

∣

∣

∣

Tr

(

Ψ(ℓ)− I −
∫ ℓ

0

s(ℓ− s)

ℓ
R(s)ds

)∣

∣

∣

∣

≤
∫ ℓ

0
(ℓ− s)

∣

∣

∣
TrR(s)

(

Ψ(s)− s

ℓ
I
)∣

∣

∣
ds

≤
∫ ℓ

0
(ℓ− s) ‖R(s)‖F

∥

∥

∥
Ψ(s)− s

ℓ
I
∥

∥

∥

F
ds

≤ ℓ2

2
· R · 1

5
Rnh ≤ (nhR)2

10
. (3.8)

Combining (3.7) and (3.8), we have that

∣

∣

∣

∣

log det(Ψ(ℓ))−
∫ ℓ

0

s(ℓ− s)

ℓ
R(s)ds

∣

∣

∣

∣

≤
(

1

5
Rnh

)2

+
(nhR)2

10
≤ (nhR)2

6
.

By Lemma 34, for any w, we have that d expx(vx) (
∑

wiXi(0)) =
∑

i ψw(ℓ)iXi(ℓ) =
∑

i(Ψ(ℓ)w)iXi(ℓ).
Since {Xi(t)}ni=1 are orthonormal, this shows that

d expx(vx) = X(ℓ)Ψ(ℓ)X(0)T
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where X is the matrix [X1,X2, · · · ,Xn]. Since ‖Ψ(ℓ)− I‖2 ≤ 1
5 (3.6), we have that Ψ(ℓ) is invertible

and so is d expx(vx).
Since X(ℓ) and X(0) are orthonormal, we have that

log det (d expx(vx)) = log detΨ(ℓ).

Therefore, this gives

∣

∣

∣

∣

log det (d expx(vx))−
∫ ℓ

0

s(ℓ− s)

ℓ
TrR(s)ds

∣

∣

∣

∣

≤ (nhR)2

6
.

By the definition of Ricci curvature and Fact 5, we have that

TrR(s) =
∑

i

〈

R(Xi(s), γ
′(s))γ′(s),Xj(s)

〉

= Ric(γ′(s)).

This gives the result (3.5).
Since the geodesic expx(tvx) is the same as the geodesic expy(tvy) except for swapping the

parameterization, and since
∫ ℓ
0

s(ℓ−s)
ℓ TrR(s)ds is invariant under this swap, (3.5) implies that

log det (d expx(vx)) is close to log det
(

d expy(vy)
)

.

3.7 Smoothness of one-step distributions

Here we prove Theorem 25. Recall that the probability density of going from x to y is given by the
following formula:

px(y) =
∑

vx:expx(vx)=y

det (d expx(vx))
−1

√

det (g(y))

(2πh)n
exp



−1

2

∥

∥

∥

∥

∥

vx − h
2µ(x)√
h

∥

∥

∥

∥

∥

2

x





To simplify the calculation, we apply Lemma 36 and consider the following estimate of px(y) instead

p̃x(y) =
∑

vx:expx(vx)=y

√

det (g(y))

(2πh)n
exp



−
∫ ℓ

0

t(ℓ− t)

ℓ
Ric(γ′vx(t))dt−

1

2

∥

∥

∥

∥

∥

vx − h
2µ(x)√
h

∥

∥

∥

∥

∥

2

x



 (3.9)

where γvx(t) be the geodesic from γvx(0) = x with γ′vx(0) = vx. Lemma 36 shows that |log (p̃x(y)/px(y))|
is small and hence it suffices to prove the smoothness of p̃x(y).

Let c(s) be an unit speed geodesic going from x to some point z very close to x. Lemma 44
shows that there is an unique vector field v(s) on c(s) such that expc(s)(v(s)) = y and v(0) = vx.
Now, we define

ζ(v, s) =

√

det (g(y))

(2πh)n
exp



−
∫ ℓ

0

t(ℓ− t)

ℓ
Ric(γ′s(t))dt −

1

2

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)





where γs(t) = expc(s)(
t
ℓv(s)). Then, we have that

p̃c(s)(y) =
∑

v:expc(s)(v(s))=y

ζ(v, s)
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and hence

d

ds
p̃c(s)(y) =

∑

v:expc(s)(v(s))=y



−
∫ ℓ

0

t(ℓ− t)

ℓ

d

ds
Ric(γ′s(t))dt−

1

2

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)



 ζ(v, s).

(3.10)
Hence, it suffices to bound the terms in parenthesis.

In Lemma 38, we analyze d
dsRic(γ′s(t)) and prove that

∣

∣

∣

∣

∫ ℓ

0

t(ℓ− t)

ℓ

d

ds
Ric(γ′s(t))dt

∣

∣

∣

∣

= O (nhR2) .

In Lemma 39, we analyze d
ds

∥

∥

∥

∥

v(s)−h
2
µ(c(s))√
h

∥

∥

∥

∥

2

c(s)

and prove that

EV (γ)≤V0

∣

∣

∣

∣

∣

∣

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣

s=0

∣

∣

∣

∣

∣

∣

= O

(

D2

√
h+

1√
h
+ nhD0R1

)

where γ is a random geodesic walk starting from x (before the filtering step). This implies Thm.
29, restated below for convenience.

Theorem 29. For h ≤ min
(

H, 1
106nR1

)

, then the one-step distributions Px, Pz from x, z satisfy

dTV (Px, Pz) = O

(

nhR2 +D2

√
h+

1√
h
+ nhD0R1

)

d(x, z) +
1

20
.

Proof. Given z such that d(x, z) < V0
4V1

. Let c(s) be an unit speed minimal length geodesic connecting
x and z, p̃c(s) is defined by (3.9).

By (3.1), with probability 1− V0
100V1

in y, we have that V (γ) ≤ 1
2V0. Let Y be the set of y such

that V (γ) ≤ 1
2V0. Since the distance from x to z is less than V0

4V1
and V (γ) ≤ 1

2V0 for those y,
Lemma 36 shows there is a family of geodesic γs which connects c(s) to y. Furthermore, we have
that V (γs) ≤ V0.

For any y ∈ Y , we have that V (γs) ≤ V0. By Lemma 36, we have that

exp

(−1

6
(nhR1)

2

)

pc(s)(y) ≤ p̃c(s)(y) ≤ exp

(

1

6
(nhR1)

2

)

pc(s)(y).

Using our assumption on h, we have that

exp
(

3(nhR1)
2
)

≤ C
def
= 1.01.

Therefore, we have that

px(y)− pz(y) ≤(1− C−2)px(y) + C−2px(y)−C−1p̃z(y)

≤(1− C−2)px(y) + C−1(p̃x(y)− p̃z(y)).

Similarly, we have

px(y)− pz(y) ≥(1−C2)px(y) + C(p̃x(y)− p̃z(y)).
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Since
∫

Y px(y)dy ≥ 1− V0
100V1

, we have that

dTV (px, pz) ≤
V0

100V1
+

∫

Y
|px(y)− pz(y)| dy

≤ V0
100V1

+
1

50

∫

Y
|px(y)| dy + 2

∫

|p̃x(y)− p̃z(y)| dy

≤ V0
20V1

+ 2

∫ ∫

Y

∣

∣

∣

∣

d

ds
p̃c(s)(y)

∣

∣

∣

∣

dyds. (3.11)

Recall from (3.10) that

d

ds
p̃c(s)(y) =

∑

v:expc(s)(v(s))=y



−
∫ ℓ

0

t(ℓ− t)

ℓ

d

ds
Ric(γ′s(t))dt−

1

2

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)



 ζ(v, s).

Using Lemma 36 again, we have that ζ(v, s) ≤ C · p(c(s) v(s)→ y) ≤ 2p(c(s)
v(s)→ y) and hence

∣

∣

∣

∣

d

ds
p̃c(s)(y)

∣

∣

∣

∣

≤ 2
∑

v:expc(s)(v(s))=y





∣

∣

∣

∣

∫ ℓ

0

t(ℓ− t)

ℓ

d

ds
Ric(γ′s(t))dt

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣



 p(c(s)
v(s)→ y).

Since V (γs) ≤ V0, we can use Lemma 38 to get

∣

∣

∣

∣

∫ ℓ

0

t(ℓ− t)

ℓ

d

ds
Ric(γ′s(t))dt

∣

∣

∣

∣

≤ O (nhR2) .

Hence, we have that

∫

Y

∣

∣

∣

∣

d

ds
p̃c(s)(y)

∣

∣

∣

∣

dy

≤nhR2

∫

Y

∑

v:expc(s)(v(s))=y

p(c(s)
v(s)→ y)dy + 2

∫

Y

∑

v:expc(s)(v(s))=y

∣

∣

∣

∣

∣

∣

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣

p(c(s)
v(s)→ y)dy.

For the first term, we note that
∫

Y

∑

v:expc(s)(v(s))=y p(c(s)
v(s)→ y)dy ≤ 1.

For the second term, we note that y ∈ Y implies V (γs) ≤ V0. Hence, we have that

∫

Y

∑

v:expc(s)(v(s))=y

∣

∣

∣

∣

∣

∣

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣

p(c(s)
v(s)→ y)dy

≤
∫

V (γs)≤V0

∑

v:expc(s)(v(s))=y

∣

∣

∣

∣

∣

∣

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣

p(c(s)
v(s)→ y)dy

=EV (γs)≤V0

∣

∣

∣

∣

∣

∣

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣

=O

(

D2

√
h+

1√
h
+ nhD0R1

)
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where we used Lemma 39 at the end.
Hence, we have that

∫

Y

∣

∣

∣

∣

d

ds
p̃c(s)(y)

∣

∣

∣

∣

dy = O

(

nhR2 +D2

√
h+

1√
h
+ nhD0R1

)

.

Putting this into (3.11), we get

dTV (px, pz) = O

(

nhR2 +D2

√
h+

1√
h
+ nhD0R1

)

d(x, z) +
V0

20V1

for any d(x, z) < V0
4V1

. By summing along a path, for any x and z and using that V1 ≥ V0, we have
that

dTV (px, pz) = O

(

nhR2 +D2

√
h+

1√
h
+ nhD0R1 + 1

)

d(x, z) +
1

20
.

Definition 37. Given a manifold M and a family of geodesic γs(t) with step size h such that h ≤ H
and V (γ0) ≤ V0. Let R2 be a constant depending on the manifold M and the step size h such that
for any t such that 0 ≤ t ≤ ℓ, any curve c(s) starting from γ(t) and any vector field v(s) on c(s)
with v(0) = γ′(t), we have that

∣

∣

∣

∣

d

ds
Ric(v(s))|s=0

∣

∣

∣

∣

≤
(∥

∥

∥

∥

dc

ds

∣

∣

∣

∣

s=0

∥

∥

∥

∥

+ ℓ ‖Dsv|s=0‖
)

R2.

Lemma 38. For h ≤ min(H, 1
2nR1

) and V (γs) ≤ V0, we have

∣

∣

∣

∣

∫ ℓ

0

t(ℓ− t)

ℓ

d

ds
Ric(γ′s(t))dt

∣

∣

∣

∣

≤ O (nhR2)

where γs is as defined in the beginning of Section 3.7.

Proof. By Definition 37, we have that

∣

∣

∣

∣

d

ds
Ric(γ′s(s))

∣

∣

∣

∣

≤
(∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

+ ℓ
∥

∥Dsγ
′
s(0)

∥

∥

)

R2. (3.12)

By definition of γs, we have that d
dsγs(0) = d

ds expc(s)(0) = d
dsc(s) is an unit vector and hence

∥

∥

d
dsγs(0)

∥

∥ = 1. To bound the second term, we note that ψ(t) = ∂
∂sγs is a Jacobi field and Lemma

41 shows that

‖ψ(t)− ψ(0) − tDtψ(0)‖ ≤ λt2 ‖ψ(0)‖ + λt3

5
‖Dtψ(0)‖

where λ = max0≤s≤ℓ ‖R(s)‖F ≤ R1. Putting t = ℓ, ψ(ℓ) = 0 and λℓ2 ≤ R1nh ≤ 1
2 , we have

‖ψ(0) + ℓDtψ(0)‖ ≤ 1

2
‖ψ(0)‖ + ℓ

10
‖Dtψ(0)‖ .

Hence, we have that

‖Dtψ(0)‖ ≤ 3

ℓ
‖ψ(0)‖ =

3

ℓ
.

Using these, we have that ‖ψ(t)‖ = O(1) and ‖Dtψ(t)‖ = O(1ℓ ) for 0 ≤ t ≤ ℓ.
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Fix any 0 ≤ t ≤ ℓ, we define c(s) = γs(t) and v(s) = γ′s(t). Using ψ(t) = dc
ds and Dtψ(t) =

Dt
d
dsγs = Dsv, (3.12) shows that

∣

∣

∣

∣

d

ds
Ric(γ′s(s))

∣

∣

∣

∣

≤ O (R2) .

Lemma 39. Given an unit geodesic c(s) from x to z. For any geodesic γ(t) from x, we define a
corresponding vector field v(s) on c(s) such that γ(t) = expx(

t
ℓv(0)) and expc(s)(v(s)) = γ(ℓ) for all

s near 0. Suppose that h ≤ H, then we have that

EV (γ)≤V0

∣

∣

∣

∣

∣

∣

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣

s=0

∣

∣

∣

∣

∣

∣

= O

(

D2

√
h+

1√
h
+ nhD0R1

)

where γ is a random geodesic walk starting from x (before the filtering step).

Proof. Note that

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣

s=0

=
2

h

〈

Dsv|s=0 −
h

2
Dsµ|s=0 , v −

h

2
µ

〉

. (3.13)

Since v − h
2µ is a random Gaussian vector N(0, nhI) in TxM independent of Dsµ, we have that

Eγ

∣

∣

∣

∣

〈

h

2
Dsµ|s=0 , v −

h

2
µ

〉∣

∣

∣

∣

≤ O

(
∥

∥

h
2 Dsµ|s=0

∥

∥

√
nh√

n

)

≤ O
(

h3/2D2

)

. (3.14)

By (3.1), we have that P(V (γ) < V0) ≥ 1
2 and hence

EV (γ)≤V0

∣

∣

∣

∣

〈

h

2
Dsµ|s=0 , v −

h

2
µ

〉∣

∣

∣

∣

= O
(

h3/2D2

)

.

By Lemma 43, we know that Dsv|s=0 = −c′ + ζ where ζ ⊥ v(0) and ‖ζ‖ ≤ 3
2nhR1 when

V (γ) ≤ V0. Since v − h
2µ is a random Gaussian vector independent of c′, we have that

EV (γ)≤V0

∣

∣

∣

∣

〈

Dsv, v −
h

2
µ

〉∣

∣

∣

∣

≤ EV (γ)≤V0

∣

∣

∣

∣

〈

c′, v − h

2
µ

〉∣

∣

∣

∣

+
h

2
E |〈ζ, µ〉|

≤ O

(

‖c′‖
√
nh√
n

)

+ nh2R1

∥

∥c′
∥

∥ ‖µ‖

≤ O
(√

h+ nh2D0R1

)

. (3.15)

Combining the bounds (3.13), (3.14) and (3.15), we have that

EV (γ)≤V0

∣

∣

∣

∣

∣

∣

d

ds

∥

∥

∥

∥

∥

v(s)− h
2µ(c(s))√
h

∥

∥

∥

∥

∥

2

c(s)

∣

∣

∣

∣

∣

∣

s=0

∣

∣

∣

∣

∣

∣

≤ O

(

D2

√
h+

1√
h
+ nhD0R1

)

.
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3.8 Approximate solution of Jacobi field equations

Let γ(t) be a geodesic and {Xi(t)}ni=1 be the parallel transport of some orthonormal frame along
γ(t). As we demonstrated in the proof of Lemma 34, Jacobi fields can be expressed as linear
combinations of Xi and the coefficients are given by the following matrix ODE:

d2

dt2
ψ(t) +R(t)ψ(t) = 0,

d

dt
ψ(0) = β, (3.16)

ψ(0) = α

where ψ(t), α, β ∈ R
n and R(t) is defined in Definition 8.

In this section, we give estimates for Jacobi equations (3.16). The estimates we get can be
viewed as small variants of the Rauch comparison theorem (See [?, Sec 4.5]). The Rauch comparison
theorem gives upper and lower bound on the magnitude of Jacobi field. Our bounds instead show
how fast Jacobi field deviates from its linear approximation.

First, we give a basic bound on the solution in terms of hyperbolic sine and cosine functions,
which is a direct consequence of the Rauch comparison theorem. We include a direct proof of this
for completeness.

Lemma 40. Let ψ be the solution of (3.16). Suppose that ‖R(t)‖2 ≤ λ for all 0 ≤ t ≤ ℓ. Then, we
have that

‖ψ(t)‖2 ≤ ‖α‖2 cosh(
√
λt) +

‖β‖2√
λ

sinh(
√
λt)

for all 0 ≤ t ≤ ℓ.

Proof. Note that

ψ(t) = ψ(0) + ψ′(0)t+
∫ t

0
(t− s)ψ′′(s)ds

= α+ βt−
∫ t

0
(t− s)R(s)ψ(s)ds.

Let a(t) = ‖ψ(t)‖2, then we have that

a(t) ≤ ‖α‖2 + ‖β‖2 t+ λ

∫ t

0
(t− s)a(s)ds.

Let a(t) be the solution of the integral equation

a(t) = ‖α‖2 + ‖β‖2 t+ λ

∫ t

0
(t− s)a(s)ds.

By induction, we have that a(t) ≤ a(t) for all t ≥ 0. By taking derivatives on both sides, we have
that

a′′(t) = λa(t), a(0) = ‖α‖2 , a′(0) = ‖β‖2 .
Solving these equations, we have

‖ψ(t)‖2 = a(t) ≤ a(t) = ‖α‖2 cosh(
√
λt) +

‖β‖2√
λ

sinh(
√
λt)

for all t ≥ 0.
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Next, we give an approximate solution of (3.16).

Lemma 41. Let ψ be the solution of (3.16). Suppose that ‖R(t)‖2 ≤ λ for all 0 ≤ t ≤ 1√
λ
. For any

0 ≤ t ≤ 1√
λ
, we have that

‖ψ(t)− α− βt‖2 ≤ λt2 ‖α‖2 +
λt3

5
‖β‖2

and
∥

∥ψ′(t)− β
∥

∥

2
≤ 2λt ‖α‖2 +

3λt2

5
‖β‖2

Proof. Note that

ψ(t) = α+ βt−
∫ t

0
(t− s)R(s)ψ(s)ds.

Using Lemma 40 and ‖R(t)‖2 ≤ λ, we have that

‖ψ(t) − α− βt‖2 ≤ λ

∫ t

0
(t− s) ‖ψ(s)‖2 ds

≤ λ

∫ t

0
(t− s)

(

‖α‖2 cosh(
√
λs) +

‖β‖2√
λ

sinh(
√
λs)

)

ds

= ‖α‖2
(

cosh(
√
λt)− 1

)

+
‖β‖2√
λ

(

sinh(
√
λt)−

√
λt
)

.

Since 0 ≤ t ≤ 1√
λ
, we have that

∣

∣

∣cosh(
√
λt)− 1

∣

∣

∣ ≤ λt2 and
∣

∣

∣sinh(
√
λt)−

√
λt
∣

∣

∣ ≤ λ3/2t3

5 . This gives

the result.
Similarly, we have that

ψ′(t) = ψ′(0) +
∫ t

0
ψ′′(s)ds = ψ′(0) +

∫ t

0
R(s)ψ(s)ds.

and hence

∥

∥ψ′(t)− β
∥

∥

2
≤ λ

∫ t

0

(

‖α‖2 cosh(
√
λs) +

‖β‖2√
λ

sinh(
√
λs)

)

ds

≤
√
λ ‖α‖2 sinh(

√
λt) + ‖β‖2

(

cosh(
√
λt)− 1

)

≤ 2λt ‖α‖2 +
3

5
λt2 ‖β‖2

The following is a matrix version of the above result.

Lemma 42. Let Ψ be the solution of

d2

dt2
Ψ(t) +R(t)Ψ(t) = 0,

d

dt
Ψ(0) = B,

Ψ(0) = A
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where Ψ, A and B are matrices with a compatible size. Suppose that ‖R(t)‖2 ≤ λ. For any 0 ≤ t ≤
1√
λ
, we have that

‖Ψ(t)−A−Bt‖F ≤ max
0≤s≤t

‖R(s)‖F
(

t2 ‖A‖2 +
t3

5
‖B‖2

)

.

Proof. Note that Ψ(t)x is the solution of (3.16) with β = Bx and α = Ax. Therefore, Lemma 40
shows that

‖Ψ(t)x‖2 ≤ ‖Ax‖2 cosh(
√
λt) +

‖Bx‖2√
λ

sinh(
√
λt)

≤
(

‖A‖2 cosh(
√
λt) +

‖B‖2√
λ

sinh(
√
λt)

)

‖x‖2

for all x. Therefore, we have that

Ψ(t)TΨ(t) �
(

‖A‖2 cosh(
√
λt) +

‖B‖2√
λ

sinh(
√
λt)

)2

I.

Hence, we have that

Ψ(t)Ψ(t)T �
(

‖A‖2 cosh(
√
λt) +

‖B‖2√
λ

sinh(
√
λt)

)2

I.

Using this, we have that

‖Ψ(t)−A−Bt‖F =

∥

∥

∥

∥

∫ t

0
(t− s)R(s)Ψ(s)ds

∥

∥

∥

∥

F

≤
∫ t

0
(t− s)

√

TrΨT (s)RT (s)R(s)Ψ(s)ds

=

∫ t

0
(t− s)

√

TrR(s)Ψ(s)ΨT (s)RT (s)ds

≤
∫ t

0
(t− s)

(

‖A‖2 cosh(
√
λs) +

‖B‖2√
λ

sinh(
√
λs)

)

‖R(s)‖F ds.

≤ max
0≤s≤t

‖R(s)‖F
∫ t

0
(t− s)

(

‖A‖2 cosh(
√
λs) +

‖B‖2√
λ

sinh(
√
λs)

)

ds

= max
0≤s≤t

‖R(s)‖F
(

‖A‖2
(

cosh(
√
λt)− 1

)

+
‖B‖2√
λ

(

sinh(
√
λt)−

√
λt
)

)

.

Since 0 ≤ t ≤ 1√
λ
, we have that

∣

∣

∣
cosh(

√
λt)− 1

∣

∣

∣
≤ λt2 and

∣

∣

∣
sinh(

√
λt)−

√
λt
∣

∣

∣
≤ λ3/2t3

5 . This gives

the result.

3.9 Almost one-to-one correspondence of geodesics

We do not know if every pair x, y ∈M has a unique geodesic connecting x and y. Due to this, the
probability density px at y on M can be the sum over all possible geodesics connect x and y. The
goal of this section is to show there is a 1-1 map between geodesics paths connecting x to y as we
move x.
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Lemma 43. Given a geodesic γ(t) = expx(
t
ℓvx). Let the end points x = γ(0) and y = γ(ℓ). Suppose

that ℓ2 ≤ 1
R where R = ‖R(t)‖F and R(t) defined in Definition 8, then there is an unique smooth

invertible function v : U ⊂M → V ⊂ TxM such that

y = expz(v(z))

for any z ∈ U where U is a neighborhood of x and V is a neighborhood of vx = v(x). Furthermore,
for any η = αvx + η2 with η2 ⊥ vx and scale α, we have that

∇ηv(x) = −η + ζ

where ‖ζ‖x ≤ 3
2ℓ

2R ‖η2‖x ≤ 3
2 ‖η2‖x and ζ ⊥ vx. In particular, we have that ‖∇ηv(x)‖x ≤ 5

2 ‖η‖x.
Proof. Consider the smooth function f(z, w) = expz(w). From Lemma 36, the differential of w at
(x, vx) on the w variables, i.e. d expx(vx), is invertible. Hence, the implicit function theorem shows
that there is a open neighborhood U of x and a unique function v on U such that f(z, v(z)) =
f(x, vx), i.e. y = expx(vx) = expz(v(z)).

To compute ∇ηv, let c(s) be a geodesic starting from x with c′(0) = η and c(t, s) = expc(s)(
t
ℓv(c(s)))

be a family of geodesics with the end points c(ℓ, s) = expc(s)(v(c(s))) = y. Note that ψ(t)
def
=

∂c(t,s)
∂s |s=0 satisfies the Jacobi field equation

D2
tψ(t) +R(ψ,

∂c

∂t
)
∂c

∂t
= 0.

Let χ = ∇ηv(x), we know that

ψ(0) =
∂c(0, s)

∂s
|s=0 = γ′(0) = η,

Dtψ(0) = Dt
∂c(t, s)

∂s
|t,s=0 = Ds

∂c(t, s)

∂t
|t,s=0 =

1

ℓ
∇ηv(x) =

χ

ℓ
,

ψ(ℓ) =
∂c(ℓ, s)

∂s
|s=0 = 0

where we used Dt
∂
∂s = Ds

∂
∂t (torsion free-ness, Fact 3).

From Fact 7, we know that ψ can be split into the tangential part ψ1 and the normal part ψ2.
For the tangential part ψ1, we know that

ψ1(t) =
(

〈

ψ(0), γ′(0)
〉

γ(0)
+
〈

Dtψ(0), γ
′(0)
〉

γ(0)
t
)

γ′(t)

=
(

〈η, vx〉x +
〈χ

ℓ
, vx

〉

x
t
)

γ′(t)

=
(

α ‖vx‖2x +
〈χ

ℓ
, vx

〉

x
t
)

γ′(t).

Since ψ1(ℓ) = 0, we have that
〈χ, vx〉 = −α ‖vx‖2x . (3.17)

For the normal part ψ2, it is easier to calculate using orthogonal frames. Similar to Lemma 34,
we pick an arbitrary orthogonal frame Xi(t) parallel transported along the curve γ(t) and let ψ̄(t)
be ψ2(t) represented in that orthogonal frame. Hence, we have that

d2

dt2
ψ̄(t) +R(t)ψ̄(t) = 0,

ψ̄(0) = η2,

ψ̄′(0) =
χ2

ℓ
,

ψ̄(ℓ) = 0

40



where χ2 = χ−
〈

χ, vx
‖vx‖

〉

x

vx
‖vx‖ = χ+αvx by (3.17) and R(t)ij = 〈R(Xi(t), γ

′(t))γ′(t),Xj(t)〉. Since

‖R(t)‖2 ≤ ‖R(t)‖F ≤ R and ℓ2 ≤ 1
R , Lemma 41 shows that

‖η2 + χ2‖2 =
∥

∥ψ̄(ℓ)− η2 − χ2

∥

∥

2
≤ Rℓ2 ‖η2‖2 +

Rℓ2

5
‖χ2‖2

≤ 6

5
Rℓ2 ‖η2‖2 +

Rℓ2

5
‖η2 + χ2‖2 .

Hence, we have that ‖η2 + χ2‖2 ≤ 3
2Rℓ

2 ‖η2‖2. Therefore, we have that

∇ηv(x) = χ

= −αvx + χ2

= −η + (η2 + χ2)

where ‖χ2 + η2‖x ≤ 3
2Rℓ

2 ‖η2‖x. Furthermore, we have that both η2 and χ2 are orthogonal to η.

Remark. If the above lemma holds without the assumption ℓ2 ≤ 1
R , this would imply uniqueness of

geodesics.

The following lemma shows there is a 1-1 map between geodesics paths connecting x to y as we
move x. When we move x, the geodesic γ from x to y changes and hence we need to bound V (γ).

Lemma 44. Given a geodesic γ(t) = expx(
t
ℓvx) with step size h satisfying h ≤ min(H, 1

2nR1
), let

c(s) be any geodesic starting at γ(0). Let x = c(0) = γ(0) and y = γ(1). Suppose that the length of
c(s) is less than V0

4V1
and V (γ) ≤ V0

2 . Then, there is a unique vector field v on c such that

y = expc(s)(v(s)).

Furthermore, this vector field is uniquely determined by the geodesic c(s) and any v(s) on this vector
field. Also, we have that V (expc(s)(v(s))) ≤ V0 for all s.

Proof. Let smax be the supremum of s such that v(s) can be defined continuously such that
y = expc(s)(v(s)) and V (γs) ≤ V0 where γs(t) = expc(s)(

t
ℓv(s)). Lemma 43 shows that there is

a neighborhood N at x and a vector field u on N such that for any z ∈ N , we have that

y = expz(u(z)).

Also, this lemma shows that u(s) is smooth and hence the parameter V1 shows that V (γs) is Lipschitz
in s. Therefore, V (γs) ≤ V0 for a small neighborhood of 0. Hence smax > 0.

Now, we show smax > 1 by contraction. By the definition of smax, we have that V (γs) ≤ V0 for
any 0 ≤ s < smax. Hence, we can apply Lemma 43 with R = R1. In particular, this shows that

‖Dsv(s)‖ =
∥

∥

∥
∇ d

ds
cu(x)

∥

∥

∥
≤ 5

2

∥

∥

d
dsc
∥

∥ = 5
2L where L is the length of c. Therefore, the function v is

Lipschitz and hence v(smax) is well-defined and V (γsmax) ≤ V0 by continuity. Hence, we can apply
Lemma 43 at v(smax) and extend the domain of v(s) beyond smax.

To bound V (γs), we note that ‖Dsγ
′
s‖ = 1

ℓ ‖Dsv(s)‖ ≤ 5
2ℓL and

∥

∥

d
dsc
∥

∥ = L. Hence,
∣

∣

d
dsV (γs)

∣

∣ ≤
(L + 5

2L)V1 by the definition of V1. Therefore, if L ≤ V0
4V1

, we have that V (γs) ≤ V (γ) + V0
2 ≤ V0

for all s ≤ 1.1 whenever v(s) is defined. Therefore, this draws a contradiction that smax is not the
supremum. Hence, smax ≥ 1.

The uniqueness follows from Lemma 43.
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3.10 Implementation

Here, we explain in high level how to implement the geodesic walk in general via an efficient algorithm
for approximately solving ODEs. Note that to implement the step, we need to compute the geodesic

and compute the probabilities p(x
w→ y) and p(y

w′

→ x). From the formula (3.3), we see that they
involve the term d expx(w). Lemma 34 shows that d expx(w) can be computed by a Jacobi field and
the latter can be computed by an ODE if it is written in the orthonormal frame systems. Therefore,
to implement the geodesic walk, we need to compute geodesic, parallel transport and Jacobi field
(See Algorithm 2). All of these are ODEs and can be solved using the collocation method. In the
later sections, we will see how to use the collocation method to solve these ODEs in nearly matrix
multiplication time.

Algorithm 2: Geodesic Walk (Detailed)

Pick a Gaussian random vector w ∼ Nx(0, I).

/* Compute y = expx(
√
hw + h

2µ(x)) where µ(x) is given by (1.2). */

/* Compute a corresponding w′ s.t. x = expy(
√
hw′ + h

2µ(y)). */

Generate a random direction d =
√
hw + h

2µ(x) where µ(x) is given by (1.2).
Solve the geodesic equation Dγ′γ′ = 0 with γ(0) = x and γ′(0) = d using collocation method
(Sec 5).
Set y = γ(1) and w′ = −γ′(1).

/* Compute the probability p(x
w→ y) of going from x to y using the step w. */

Pick an orthonormal frame {Xi}ni=1 at x.
Compute the parallel transport of {Xi}ni=1 along γ(t) using collocation method.
Compute d expx(w) via solve the Jacobi field equation (3.4) (in the coordinate systems
{Xi(t)}).

Set p(x
w→ y) = det(d expx(w))

−1
√

det(g(y))
(2πh)n

exp

(

−1
2

∥

∥

∥

∥

w−h
2
µ(x)√
h

∥

∥

∥

∥

2

x

)

.

Compute p(y
w′

→ x) similarly.

With probability min

(

1, p(y
w′

→x)

p(x
w→y)

)

, go to y; otherwise, stay at x.
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4 Logarithmic barrier

For any polytope M = {Ax > b}, the logarithmic barrier function φ(x) is defined as

φ(x) = −
m
∑

i=1

log(aTi x− bi).

We denote the Hessian manifold induced by the logarithmic barrier on M by ML. The goal of this
section is to analyze the geodisic walk on ML.

In section 4.1, we give explicit formulas for various Riemannian geometry concepts on ML. In
Section 4.2, we describe the geodesic walk specialized to ML. In Sections 4.3 to ??, we bound the
parameters required by Theorem 23, resulting in the following theorem.

Theorem 45. The geodesic walk on ML with step size h = c
n3/4 has mixing time O(mn3/4) for

some universal constant c.

In later sections, we show how to implement geodesic walk and calculate the rejection probability.
To implement these, we apply the techniques developed in Section 5 to solve the corresponding
ODEs, after showing that the geodesic, parallel transport and Jacobi field are complex analytic
(Section 6.1), for a large radius of convergence (Section 6.1).

Theorem 46. There exists a universal constant c > 0 s.t. for the standard logarithmic barrier, one
step of the geodesic walk with step size h ≤ c√

n
can be implemented in time O(mnω−1 log2(n)).

4.1 Riemannian geometry on ML (G2)

We use the following definitions throughout this section:

• Ax = S−1
x A.

• sx = Ax− b, Sx = Diag(sx), sx,v = Axv, Sx,v = Diag(Axv).

• Px = Ax(A
T
xAx)

−1AT
x , σx = Diag(Px),

(

P
(2)
x

)

ij
= (Px)

2
ij .

• Gradient of φ: φi = −∑ℓ

(

eTℓ Axei
)

.

• Hessian of φ and its inverse: gij = φij =
∑

ℓ

(

eTℓ Axei
) (

eTℓ Axej
)

, gij = eTi
(

AT
xAx

)−1
ej .

• Third derivatives of φ: φijk = −2
∑

ℓ

(

eTℓ Axei
) (

eTℓ Axej
) (

eTℓ Axek
)

.

• For brevity (overloading notation), we define sγ′ = sγ,γ′ , sγ′′ = sγ,γ′′ , Sγ′ = Sγ,γ′ and
Sγ′′ = Sγ,γ′′ for a curve γ(t).

• Formula for the transition probability:

p(x
vx→ y) =

∑

vx:expx(vx)=y

det(d expx(vx))
−1

√

det
(

AT
y Ay

)

(2πh)n
exp

(

− 1

2h

∥

∥

∥

∥

Ax

(

vx −
h

2
µ(x)

)∥

∥

∥

∥

2
)

where the formula of µ(x) is given in Lemma 51.
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In this and subsequent sections, we will frequently use the following elementary calculus facts (using
only the chain/product rules and formula for derivative of inverse of a matrix):

dAγ

dt
= −Sγ′Aγ ,

dPγ

dt
= −Sγ′Pγ − PγSγ′ + 2PγSγ′Pγ ,

dSγ′

dt
= Diag(−Sγ′Aγγ

′ +Aγγ
′′) = −S2

γ′ + Sγ′′ ,

dσγ
dt

= Diag(
dPγ

dt
).

We also use these matrix inequalities: Tr(AB) = Tr(BA), Tr(PAP ) ≤ Tr(A) for any psd ma-
trix A; Tr(ABAT ) ≤ Tr(AZAT ) for any B � Z; the Cauchy-Schwartz, namely, Tr(AB) ≤
Tr(AAT )

1
2Tr(BBT )

1
2 . We also use P 2 = P since P is a projection matrix.

Since the Hessian manifold ML is naturally embedded in R
n, we identify TxML by Euclidean

coordinates unless otherwise stated. Therefore, we have that

〈u, v〉x = uT∇2φ(x)v

= uTAT
xAxv.

Lemma 47. Let u(t) be a vector field defined on a curve γ(t) in ML. Then, we have that

∇γ′u =
du

dt
−
(

AT
γAγ

)−1
AT

γ Sγ′sγ,u.

In particular, the geodesic equation on ML is given by

γ′′ =
(

AT
γAγ

)−1
AT

γ s
2
γ′ (4.1)

and the equation for parallel transport on a curve γ(t) is given by

d

dt
v(t) =

(

AT
γAγ

)−1
AT

γ Sγ′Aγv. (4.2)

Proof. By Lemma 10, the Christoffel symbols respect to the Euclidean coordinates is given by

Γk
ij =

1

2

∑

l

gklφijl

= −
∑

z

∑

l

eTk
(

AT
xAx

)−1
el (Axei)z (Axej)z (Axel)z

= −eTk
(

AT
xAx

)−1
AT

x ((Axei) (Axej)) .

Recall that the Levi-Civita connection is given by

∇vu =
∑

ik

vi
∂uk
∂xi

ek +
∑

ijk

viujΓ
k
ijek.

Therefore, we have

∇vu =
∑

ik

vi
∂uk

∂xi
ek −

(

AT
xAx

)−1
AT

xSx,vsx,u.

Since U is a vector field defined on a curve γ(t), we have that
∑

ik γ
′
i
∂uk

∂xi ek = du
dt .

The geodesic equation follows from ∇γ′γ′ = 0 and the parallel transport equation follows from
∇γ′v = 0.
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Lemma 48. Given u, v, w, z ∈ TxML, the Riemann Curvature Tensor is given by

〈R(u, v)w, z〉 = (sx,usx,w)
T Px (sx,vsx,z)− (sx,usx,z)

T Px (sx,vsx,w) ,

R(u, v)w =
(

AT
xAx

)−1
AT

x (Sx,vPxSx,w − diag(Pxsx,vsx,w))Axu

and the Ricci curvature is given by

Ric(u) = sTx,uP
(2)
x sx,u − σTx Pxs

2
x,u.

Proof. By Lemma 10, we have that

〈R(u, v)w, z〉 =
1

4

∑

pqijlk

gpq (φjkpφilq − φikpφjlq) uivjwlzk

=
∑

pq

gpq
(

eTp A
T
x (sx,vsx,z) e

T
q A

T
x (sx,usx,w)− eTpA

T
x (sx,usx,z) e

T
q A

T
x (sx,vsx,w)

)

= (sx,usx,w)
T Ax

(

AT
xAx

)−1
AT

x (sx,vsx,z)− (sx,usx,z)
T Ax

(

AT
xAx

)−1
AT

x (sx,vsx,w) .

Rewriting it, we have that

〈R(u, v)w, z〉 = sx,uSx,wPxSx,vsx,z − (sx,usx,z)
T Px (sx,vsx,w)

= zTAT
xSx,wPxSx,vAxu− zTAT

x diag(Pxsx,vsx,w)Axu

= zTAT
x (Sx,wPxSx,v − diag(Pxsx,vsx,w))Axu

Since 〈α, β〉 = αTAT
xAxβ, we have that

R(u, v)w =
(

AT
xAx

)−1
AT

x

(

AT
xSx,wPxSx,v − diag(Pxsx,vsx,w)

)

Axu.

For the Ricci curvature, we have that

Ric(u) =
∑

jl

gjl
〈

R(u,
∂

∂xj
),

∂

∂xl
, u

〉

=
∑

jl

gjl
(

(sx,usx,el)
T Px

(

sx,ejsx,u
)

−
(

s2x,u
)T
Px

(

sx,ejsx,el
)

)

=
∑

jl

gjleTl A
T
x

(

Sx,uPxSx,u − diag(Pxs
2
x,u)
)

Axej

= Tr
(

(AT
xAx)

−1AT
x

(

Sx,uPxSx,u − diag(Pxs
2
x,u)
)

Ax

)

= TrPxSx,uPxSx,u − TrPxdiag(Pxs
2
x,u)

= sTx,uP
(2)
x sx,u − σTx Pxs

2
x,u.

Lemma 49. Given a geodesic γ(t) on ML and an orthogonal frame {xi}ni=1 on γ(t). The Jacobi
field equation (in the orthogonal frame coordinates) is given by

d2u

dt2
+X−1(AT

γAγ)
−1
(

AT
γ Sγ′PγSγ′Aγ −AT

γDiag(Pγs
2
γ′)Aγ

)

Xu = 0

where X(t) = [x1(t), x2(t), · · · , xn(t)].
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Proof. The equation for Jacobi field along is

D2
t v +R(v, γ′)γ′ = 0.

By Lemma 48, under Euclidean coordinates, we have

D2
t v + (AT

γAγ)
−1
(

AT
γ Sγ′PγSγ′Aγ −AT

γ diag(Pγs
2
γ′)Aγ

)

v = 0

We write v in terms of the orthogonal frame, namely, v(t) = X(t)u(t) where u(t) ∈ R
n. Then, we

have that D2
t v = X(t)d

2u(t)
dt2 . Hence, under the orthogonal frame coordinate, we have that

d2u

dt2
+X−1(AT

γAγ)
−1
(

AT
γ Sγ′PγSγ′Aγ −AT

γDiag(Pγs
2
γ′)Aγ

)

Xu = 0.

Now, we show the relation between the distance induced by the metric and the Hilbert metric.

Lemma 50. For any x, y ∈ML, we have that

d(x, y)

dH(x, y)
≤

√
m.

Hence, we have that G2 ≤
√
m.

Proof. First, we note that it suffices to prove that d(x,y)
dH (x,y) ≤ (1 +O(ε))

√
m for any x, y ∈ML with

d(x, y) ≤ ε. Then, one can run a limiting argument as follows. Let xt = t · x+ (1 − t) · y, then we
have that

dH(x, y) = lim
n→∞

n−1
∑

i=0

dH(xk/n, x(k+1)/n).

Since dH(xk/n, x(k+1)/n) = Ox,y(
1
n) , we have that

dH(x, y) = lim
n→∞

n−1
∑

i=0

dH(xk/n, x(k+1)/n)

≥ lim
n→∞

(1−Ox,y(
1
n))√

m

n−1
∑

i=0

d(xk/n, x(k+1)/n)

=
1√
m

lim
n→∞

n−1
∑

i=0

d(xk/n, x(k+1)/n)

≥ 1√
m
d(x, y) =

d(x, y)√
m

.

Now, we can assume d(x, y) ≤ ε. Let p and q are on the boundary of ML such that p, x, y, q
are on the straight line xy and are in order. Without loss of generality, we assume p is closer to x.
Then, we have that p ∈ML ∩ (x−ML), equivalently, we have that

∣

∣aTi p− aTi x
∣

∣ ≤ aTi x− bi for all i
and hence ‖Ax(p − x)‖∞ ≤ 1. Therefore, we have that

‖Ax(p− x)‖2 ≤
√
m ‖Ax(p− x)‖∞ ≤

√
m.
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Since p, x, y are on the same line, we have that

‖x− y‖2 ‖p− q‖2
‖p− x‖2 ‖y − q‖2

≥ ‖x− y‖2
‖p− x‖2

=
‖Ax(x− y)‖2
‖Ax(p− x)‖2

≥ ‖Ax(x− y)‖2√
m

.

Since d(x, y) < ε, Lemma 3.1 in [27] shows that

d(x, y) ≤ − log (1− ‖Ax(x− y)‖2) .

Hence, we have that ‖Ax(x− y)‖2 ≥ (1−O(ε))d(x, y) and hence

dH(x, y) =
‖x− y‖2 ‖p− q‖2
‖p− x‖2 ‖y − q‖2

≥ (1−O(ε))
d(x, y)√

m
.

4.2 Geodesic walk on ML

Recall that the geodesic walk is given by

x(new) = expx(
√
hw +

h

2
µ(x))

where w ∼ Nx(0, I). In many proofs in this section, we consider the geodesic γ from x with the
initial velocity

γ′(0) =
w√
n
+

1

2

√

h

n
µ(x).

The scaling is to make the speed of geodesic γ close to one. Since w is a Gaussian vector, we have
that 0.9 ≤ ‖γ′(0)‖γ(0) ≤ 1.1 with high probability. Due to this rescaling, the geodesic is defined

from 0 to ℓ =
√
nh.

We often work in Euclidean coordinates. In this case, the geodesic walk is given by the following
formula.

Lemma 51. Given x ∈ ML and step size h > 0, one step of the geodesic walk starting at x in
Euclidean coordinates is given by the solution γ(ℓ) of the following geodesic equation

γ′′(t) =
(

AT
γAγ

)−1
AT

γ s
2
γ′ for 0 ≤ t ≤ ℓ

γ′(0) =
w√
n
+

1

2

√

h

n
µ(x)

γ(0) = x

where ℓ =
√
nh, w ∼ N(0, (AT

xAx)
−1) and µ(x) =

(

AT
xAx

)−1
AT

xσx.
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Proof. The geodesic equation is given by Lemma 47. From (1.2), the drift term is given by

µi(x) =
1

2

n
∑

j=1

∂

∂xj

(

(

∇2φ(Xt)
)−1
)

ij
=

1

2

n
∑

j=1

∂

∂xj

(

(

AT
xAx

)−1
)

ij

=
∑

j

eTi (A
T
xAx)

−1AT
xSx,ejAx(A

T
xAx)

−1ej

=
∑

j

∑

k

Vike
T
kAxejVjk where V = (AT

xAx)
−1AT

x

=
∑

k

Vike
T
kAx

∑

j

eje
T
j (A

T
xAx)

−1AT
x ek

=
∑

k

Vike
T
kAx(A

T
xAx)

−1AT
x ek

= Viσx = eTi (A
T
xAx)

−1AT
xσx.

4.3 Randomness and stability of the geodesic (V0)

Many parameters of a Hessian manifold relates to how fast a geodesic approaches the boundary of
the polytope. Since the initial velocity of the geodesic consists mainly the Gaussian part (plus a

small drift term), one can imagine that
∥

∥sγ′(0)

∥

∥

∞ = O
(

1√
n

)

∥

∥sγ′(0)

∥

∥

2
, namely, the geodesic initial

approaches/leaves every facet of the polytope in roughly same slow pace. If this holds on the whole
geodesic, this would allowed us to give very tight bounds on various parameters. Although we are
not able to prove that

∥

∥sγ′(t)

∥

∥

∞ is stable throughout 0 ≤ t ≤ ℓ, we can show that
∥

∥sγ′(t)

∥

∥

4
is stable

and that allows us to give a good bound on
∥

∥sγ′(t)

∥

∥

∞.

Throughout this section, we only use the randomness of geodesic to prove that both
∥

∥sγ′(t)

∥

∥

4
and

∥

∥sγ′(t)

∥

∥

∞ is small with high probability. Since
∥

∥sγ′(t)

∥

∥

4
= O(n−1/4) and

∥

∥sγ′(t)

∥

∥

∞ = O(
√

logn
n +

√
h)

with high probability (Lemma 53), we define

V (γ)
def
= max

0≤t≤ℓ





∥

∥sγ′(t)

∥

∥

4

n−1/4
+

∥

∥sγ′(t)

∥

∥

∞
√

logn
n +

√
h





to capture this randomness involves in generating the geodesic walk. This allows us to perturb the
geodesic (Lemma 44) without worrying about the dependence on randomness.

Here, we first prove the the geodesic is stable in L4 norm and hence V (γ) can be simply approx-
imated by

∥

∥sγ′(0)

∥

∥

4
and

∥

∥sγ′(0)

∥

∥

∞.

Lemma 52. Let γ be a geodesic in ML starting at x. Let v4 =
∥

∥sγ′(0)

∥

∥

4
. Then, for 0 ≤ t ≤ 1

10v4
,

we have that

1.
∥

∥sγ′(t)

∥

∥

4
≤ 1.25v4.

2. ‖γ′′(t)‖2γ(t) ≤ 3v44.
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Proof. Let u(t) =
∥

∥sγ′(t)

∥

∥

4
. Then, we have

du

dt
≤

∥

∥

∥

∥

d

dt

(

Aγγ
′)
∥

∥

∥

∥

4

=
∥

∥

∥
Aγγ

′′ −
(

Aγγ
′)2
∥

∥

∥

4

≤
∥

∥Aγγ
′′∥
∥

4
+ u2(t). (4.3)

Under the Euclidean coordinates, the geodesic equation is given by

γ′′ =
(

AT
γAγ

)−1
AT

γ s
2
γ′ .

Hence, we have that

∥

∥γ′′
∥

∥

2

γ
=

(

s2γ′

)T
Aγ

(

AT
γAγ

)−1 (
AT

γAγ

) (

AT
γAγ

)−1
AT

γ s
2
γ′

≤
∑

i

(s4γ′)i = u4(t). (4.4)

Therefore, we have
∥

∥Aγγ
′′∥
∥

4
≤
∥

∥Aγγ
′′∥
∥

2
≤ u2(t).

Plugging it into (4.3), we have that

du

dt
≤ u2(t) + u2(t) ≤ 2u2(t).

Since u(0) = v4, for all t ≥ 0, we have

u(t) ≤ v4
1− 2v4t

. (4.5)

For 0 ≤ t ≤ 1
10v4

, we have u(t) ≤ 1.25v4 and this gives the first inequality. Using (4.4), we get the
second inequality.

Using this, we prove that V (γ) is small with high probability.

Lemma 53. Assume that h ≤ 1
1000

√
n
. We have that

P (V (γ) ≤ 24) ≥ 1− 3

n

where γ is generated from geodesic walk.

Proof. From the definition of the geodesic walk (Lemma 51), we have that

γ′(0) = u+ v

where u ∼ N
(

0, 1n
(

AT
γAγ

)−1
)

and v = 1
2

√

h
n

(

AT
γAγ

)−1
AT

γ σγ . Therefore, we have

∥

∥Aγγ
′(0)
∥

∥

4
≤ ‖Aγu‖4 +

∥

∥

∥

∥

∥

1

2

√

h

n
Aγ

(

AT
γAγ

)−1
AT

γ σγ

∥

∥

∥

∥

∥

2

= ‖Aγu‖4 +
1

2

√

h

n

√

σTγ Aγ

(

AT
γAγ

)−1
AT

γ σγ .
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Note that Aγu = Bx where B = 1√
n
Aγ

(

AT
γAγ

)−1/2
and x ∼ N(0, I). Since

∑

i

∥

∥eTi B
∥

∥

4

2
=

1
n2

∑

i(σγ)
2
i ≤ 1

n and ‖B‖2→4 ≤ ‖B‖2→2 =
1√
n
. Hence, Lemma 90 shows that

P



‖Aγu‖44 ≤
(

(

3

n

)1/4

+
t√
n

)4


 ≤ 1− exp

(

− t
2

2

)

.

Using our assumption on h, we have that

v4
def
=
∥

∥Aγγ
′(0)
∥

∥

4
≤ 31/4 +

√
2

n1/4
+

1

2

√
h ≤ 3

n1/4

with probability at least 1− exp(−√
n). Now, we apply Lemma 52 to get that

∥

∥sγ′(t)

∥

∥

4
≤ 1.25v4 ≤ 4

n1/4

for all 0 ≤ t ≤ ℓ ≤ 1
10v4

.

Next, we estimate
∥

∥sγ′(t)

∥

∥

∞. Since eTi Aγu = eTi Bx ∼ N(0, σi
n ), we have

Pu

(

∣

∣eTi Aγu
∣

∣ ≥
√

σi
n
t

)

≤ 2 exp

(

− t
2

2

)

.

Hence, we have that

Pu

(

‖Aγu‖∞ ≥ 2

√

log n

n

)

≤ 2
∑

i

exp

(

−2 log n

σi

)

Since
∑

i exp
(

−2 logn
σi

)

is concave , the maximum of
∑

i exp
(

− logn
σi

)

on the feasible set {0 ≤ σ ≤
1,
∑

σi = n} occurs on its vertices. Hence, we have that

Pu

(

‖Aγu‖∞ ≥ 2

√

log n

n

)

≤ 2n exp (−2 log n) =
2

n
.

Therefore, with probability 1− 2
n , we have that

∥

∥Aγγ
′(0)
∥

∥

∞ ≤ ‖Aγu‖∞ +

∥

∥

∥

∥

∥

1

2

√

h

n
Aγ

(

AT
γAγ

)−1
AT

γ σγ

∥

∥

∥

∥

∥

∞

≤ 2

√

log n

n
+

1

2

√

h

n

√

σTγ Aγ

(

AT
γAγ

)−1
AT

γ σγ

≤ 2

√

log n

n
+

1

2

√
h.

Lemma 52 shows that ‖Aγγ
′′‖∞ ≤ ‖γ′′‖γ(t) ≤

√
3v24 ≤ 16n−1/2. Hence, for any 0 ≤ t ≤ ℓ, we have

that

∥

∥sγ′(t)

∥

∥

∞ ≤
∥

∥Aγγ
′(0)
∥

∥

∞ +

∫ ℓ

0

∥

∥Aγ(t)γ
′′(t)

∥

∥

∞ dt

≤ 2

√

log n

n
+

1

2

√
h+ 16ℓn−1/2

= 20

(
√

log n

n
+

√
h

)

.
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Combining with our estimate on
∥

∥sγ′(t)

∥

∥

4
, we have that

P





∥

∥sγ′(t)

∥

∥

4

n−1/4
+

∥

∥sγ′(t)

∥

∥

∞
√

logn
n +

√
h
≥ 24



 ≤ e−
√
n +

2

n
≤ 3

n
.

Due to this lemma, we set
V0 = 48. (4.6)

Here, we collect some simple consequences of small V (γ) that we will use through this section.

Lemma 54. Given a geodesic γ on ML with V (γ) ≤ V0. For any 0 ≤ t ≤ ℓ,

1. ‖Aγγ
′(t)‖4 ≤ 48n−1/4.

2. ‖Aγγ
′(t)‖∞ ≤ 48

(

√

logn
n +

√
h

)

.

3. ‖Aγγ
′(t)‖2 ≤ 48.

4. ‖γ′′(t)‖2γ ≤ 108n−1.

Proof. The first two inequality simply follows from the definition of V (γ). The third inequality
comes from the calculation

∥

∥Aγγ
′∥
∥

2
≤ n1/4

∥

∥Aγγ
′∥
∥

4
≤ 48.

Since ‖Aγγ
′(0)‖4 ≤ 48n−1/4, Lemma 52 shows the last inequality.

4.4 Stability of Drift (D0, D1 and D2)

Lemma 55. For any x ∈ML, we have that ‖µ(x)‖2x ≤ n. Hence, D0 ≤
√
n.

Proof. We have

‖µ(x)‖2x = σTxAx

(

AT
xAx

)−1
Axσx ≤

∑

i

(σx)
2
i ≤ n.

Lemma 56. Let γ(t) be a geodesic on ML with V (γ) ≤ V0. Then, we have that

D1 = sup
0≤t≤ℓ

∣

∣

∣

∣

d

dt
‖µ(γ(t))‖2

∣

∣

∣

∣

= O(n
√
h+

√

n log n).

Proof. Note that

‖µ(γ(t))‖2γ = σTγ Aγ

(

AT
γAγ

)−1
Aγσγ

= 1TDiag(Pγ)PγDiag(Pγ)1.
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Using d
dtPγ = −Sγ′Pγ − PγSγ′ + 2PγSγ′Pγ , we have

d

dt
‖µ(γ(t))‖2γ = −2 · 1TDiag(Sγ′Pγ)PγDiag(Pγ)1

−2 · 1TDiag(PγSγ′)PγDiag(Pγ)1

+4 · 1TDiag(PγSγ′Pγ)PγDiag(Pγ)1

−1TDiag(Pγ)Sγ′PγDiag(Pγ)1

−1TDiag(Pγ)PγSγ′Diag(Pγ)1

+2 · 1TDiag(Pγ)PγSγ′PγDiag(Pγ)1

= −2 · 1TDiag(Sγ′Pγ)PγDiag(Pγ)1

−4 · 1TDiag(Pγ)Sγ′PγDiag(Pγ)1

+4 · 1TDiag(PγSγ′Pγ)PγDiag(Pγ)1

+2 · 1TDiag(Pγ)PγSγ′PγDiag(Pγ)1.

Now, we bound these 4 terms separately. Note that

∣

∣1TDiag(Sγ′Pγ)PγDiag(Pγ)1
∣

∣ ≤
√

1TDiag(Sγ′Pγ)PγDiag(Sγ′Pγ)1
√

1TDiag(Pγ)PγDiag(Pγ)1

≤
√

∑

i

(σγsγ′)2i

√

∑

i

(σγ)2i ≤
∥

∥γ′
∥

∥

γ

√
n,

∣

∣1TDiag(Pγ)Sγ′PγDiag(Pγ)1
∣

∣ ≤
√

1TDiag(Pγ)Sγ′PγSγ′Diag(Pγ)1
√

1TDiag(Pγ)PγDiag(Pγ)1

≤
√

∑

i

(σγsγ′)2i

√

∑

i

(σγ)
2
i ≤

∥

∥γ′
∥

∥

γ

√
n,

∣

∣1TDiag(PγSγ′Pγ)PγDiag(Pγ)1
∣

∣ ≤
√

1TDiag(PγSγ′Pγ)PγDiag(PγSγ′Pγ)1
√

1TDiag(Pγ)PγDiag(Pγ)1

≤
√

∑

i

(PγSγ′Pγ)2ii

√

∑

i

(σγ)2i

≤
∥

∥Sγ′

∥

∥

∞
∑

i

(σγ)
2
i ≤

∥

∥Sγ′

∥

∥

∞ n,

1TDiag(Pγ)PγSγ′PγDiag(Pγ)1 ≤
∥

∥Sγ′

∥

∥

∞ 1TDiag(Pγ)PγPγDiag(Pγ)1

≤
∥

∥Sγ′

∥

∥

∞
∑

i

(σγ)
2
i ≤

∥

∥Sγ′

∥

∥

∞ n.

Since ‖γ′‖γ ≤ 48 and ‖Aγγ
′‖∞ ≤ 48

(

√

logn
n +

√
h

)

(Lemma 54), we have

D1 = sup

∣

∣

∣

∣

d

dt
‖µ(γ(t))‖2

∣

∣

∣

∣

≤ 288
√
n+ 288n

(
√

log n

n
+

√
h

)

≤ 576
√

n log n+ 288n
√
h
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Lemma 57. Given x ∈ML and any curve c(t) starting at x with unit speed. We have that

‖Dtµ(c(t))‖ = O(
√
n).

Hence, D2 = O(
√
n).

Proof. By Lemma 47, we have that

Dtµ(c(t)) =
dµ(c)

dt
− (AT

c Ac)
−1AT

c Sc′sc,µ.

We bound the terms separately.
For the second term, since c is an unit speed curve, we have that ‖sc′‖2 = 1 and

∥

∥(AT
c Ac)

−1AT
c Sc′sc,µ

∥

∥

c
≤ ‖Sc′sc,µ‖2 ≤ ‖Sc,µ‖∞
=

∥

∥Ac(A
T
c Ac)

−1AT
c σc
∥

∥

∞
≤

∥

∥Ac(A
T
c Ac)

−1AT
c σc
∥

∥

2

≤ ‖σc‖2 ≤
√
n.

For the first term,

d

dt
(Acµ(c)) =

d

dt
(Pcdiag(Pc))

= −Sc′Pcdiag(Pc)− PcSc′diag(Pc) + 2PcSc′Pcdiag(Pc)

−Pcdiag(Sc′Pc)− Pcdiag(PcSc′) + 2Pcdiag(PcSc′Pc).

Using ‖sc′‖2 = 1, we have

∥

∥

∥

∥

d

dt
µ(c)

∥

∥

∥

∥

c

≤ ‖Sc′Acµ(c)‖2
+ ‖Sc′Pcdiag(Pc)‖2 + 2 ‖PcSc′diag(Pc)‖2 + 2 ‖PcSc′Pcdiag(Pc)‖2
+ ‖Pcdiag(PcSc′)‖2 + ‖Pcdiag(PcSc′Pc)‖2

≤ 8 ‖Sc′‖∞
√
n ≤ 8

√
n.

Combining both terms, we have the result.

4.5 Smoothness of the metric (G1)

Lemma 58. Let γ(t) be a geodesic on ML with V (γ) ≤ V0. Let f(t) = log det(AT
γ(t)Aγ(t)). Then,

we have

sup
0≤t≤ℓ

∣

∣f ′′′(t)
∣

∣ = O

(

√
h+

√

log n

n

)

.

Hence, G1 = O

(

√

logn
n +

√
h

)

.

Proof. Note that
f ′(t) = −2Tr(AT

γAγ)
−1AT

γ Sγ′Aγ = −2TrPγSγ′ .
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Since d
dtPγ = −Sγ′Pγ − PγSγ′ + 2PγSγ′Pγ and d

dsSγ′ = −S2
γ′ + Sγ′′ , we have

f ′′(t) =2TrSγ′PγSγ′ + 2TrPγS
2
γ′ − 4TrPγSγ′PγSγ′

+ 2TrPγS
2
γ′ − 2TrPγSγ′′

=− 4TrPγSγ′PγSγ′ + 6TrPγS
2
γ′ − 2TrPγSγ′′ .

So, we have

f ′′′(t) = + 8TrSγ′PγSγ′PγSγ′ + 8TrPγS
2
γ′PγSγ′ − 16TrPγSγ′PγSγ′PγSγ′

+ 8TrPγS
2
γ′PγSγ′ − 8TrPγSγ′′PγSγ′

− 6TrSγ′PγS
2
γ′ − 6TrPγSγ′S2

γ′ + 12TrPγSγ′PγS
2
γ′

− 12TrPγS
3
γ′ + 12TrPγSγ′Sγ′′

+ 2TrSγ′PγSγ′′ + 2TrPγSγ′Sγ′′ − 4TrPγSγ′PγSγ′′

+ 2TrPγSγ′Sγ′′ − 2TrPγSγ′′′

=− 16TrPγSγ′PγSγ′PγSγ′ + 36TrPγS
2
γ′PγSγ′

− 12TrPγSγ′′PγSγ′ − 24TrPγS
3
γ′

+ 16TrPγSγ′Sγ′′ − 2TrPγ
d

dt
Sγ′′ .

Hence, we have

∣

∣f ′′′(t)
∣

∣ ≤ (16 + 36 + 24)
√

TrS4
γ′TrS2

γ′ + (12 + 16)
√

TrS2
γ′′TrS2

γ′ + 2

∣

∣

∣

∣

TrPγ
d

dt
Sγ′′

∣

∣

∣

∣

.

Since TrS2
γ′ ≤ 48, TrS4

γ′ ≤ 484n−1, TrS2
γ′′ ≤ 108n−1 (Lemma 54), we have

∣

∣f ′′′(t)
∣

∣ = O(n−1/2) + 2

∣

∣

∣

∣

TrPγ
d

dt
Sγ′′

∣

∣

∣

∣

.

To bound the last term, we start with the geodesic equation:

sγ′′ = Pγs
2
γ′ .

Since d
dtPγ = −Sγ′Pγ − PγSγ′ + 2PγSγ′Pγ , we have that

d

dt
sγ′′ = −Sγ′Pγs

2
γ′ − PγSγ′s2γ′ + 2PγSγ′Pγs

2
γ′

+2Pγsγ′sγ′′ − 2Pγs
3
γ′

= −Sγ′Pγs
2
γ′ − 3Pγs

3
γ′ + 2PγSγ′Pγs

2
γ′ + 2Pγsγ′sγ′′

= −Sγ′Pγs
2
γ′ − 3Pγs

3
γ′ + 4PγSγ′Pγs

2
γ′ .
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Hence, we have that

∣

∣

∣

∣

TrPγ
d

dt
Sγ′′

∣

∣

∣

∣

≤
∣

∣σTγ Sγ′Pγs
2
γ′

∣

∣+ 3
∣

∣σTγ Pγs
3
γ′

∣

∣+ 4
∣

∣σTγ PγSγ′Pγs
2
γ′

∣

∣

=
∣

∣(Sγ′σγ)
TPγs

2
γ′

∣

∣+ 3
∣

∣(Sγ′Pγσγ)
T s2γ′

∣

∣+ 4(Sγ′Pγσγ)
T (Pγs

2
γ′)

≤
√

∑

s2γ′

∑

s4γ′ +
√

∑

s4γ′

√

σTγ PγS2
γ′Pγσγ

= O
(

n−1/2
)

+O
(

n−1
)

O

(
√

log n

n
+

√
h

)

O (n)

≤ O

(
√

log n

n
+

√
h

)

.

Hence, we have that

∣

∣f ′′′(t)
∣

∣ ≤ O

(
√

log n

n
+

√
h

)

.

4.6 Stability of Curvatures (R1 and R2)

Lemma 59. Let γ(t) be a geodesic on ML with V (γ) ≤ V0. Then, we have that

sup
0≤t≤ℓ

‖R(t)‖F = O(n−1/2)

where R(t) defined in Definition 8. Hence, R1 = O(n−1/2).

Proof. Let R(t) such that 〈R(u, γ′(t))γ′(t), v〉 = uTR(t)v. Lemma 48 shows that

uTR(t)v = sTuSγ′PγSγ′sv − (svsu)
TPγs

2
γ′ .

Hence, we have

R(t) = AT
γ Sγ′PγSγ′Aγ −AT

γDiag(Pγs
2
γ′)Aγ .

Pick Xi = (ATAγ)
−1/2ei. Then, we can write R(t) in the coordinate systems {Xi}i and get

R(t) = (AT
γAγ)

−1/2
(

AT
γ Sγ′PγSγ′Aγ −AT

γDiag(Pγs
2
γ′)Aγ

)

(AT
γAγ)

−1/2.

Therefore, we have that

‖R(t)‖2F
≤ 2

∥

∥

∥
(AT

γAγ)
−1/2AT

γ Sγ′PγSγ′Aγ(A
T
γAγ)

−1/2
∥

∥

∥

2

F
+ 2

∥

∥

∥
(AT

γAγ)
−1/2AT

γDiag(Pγs
2
γ′)Aγ(A

T
γAγ)

−1/2
∥

∥

∥

2

F

= 2TrPγSγ′PγSγ′PγSγ′PγSγ′ + 2TrPγDiag(Pγs
2
γ′)PγDiag(Pγs

2
γ′)

≤ 4
∥

∥sγ′

∥

∥

4

4
.

The claim follows from Lemma 54.
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Lemma 60. Given a geodesic γ(t) on ML with V (γ) ≤ V0. Assume that h ≤ 1√
n
. For any t such

that 0 ≤ t ≤ ℓ, any curve c(s) starting from γ(t) and any vector field v(s) on c(s) with v(0) = γ′(t),
we have that

∣

∣

∣

∣

d

ds
Ric(v(s))|s=0

∣

∣

∣

∣

≤ O

(

1 +

√

log n

nh

)

(∥

∥

∥

∥

dc

ds

∥

∥

∥

∥

+ ℓ ‖Dsv‖
)

.

Therefore, R2 = O(1 +
√

logn
nh ).

Proof. By Lemma 48, we know that

Ric(v(s)) = sTc(s),v(s)P
(2)
c(s)sc(s),v(s) − σTc(s)Pc(s)s

2
c(s),v(s)

= Tr(Sc(s),v(s)Pc(s)Sc(s),v(s)Pc(s))− Tr(Diag(Pc(s)s
2
c(s),v(s))Pc(s)).

Note that the “s” in c(s) is the parameter of the curve s while the first letter “s” in both sc(s) and
Sc(s) denotes the slack. For simplicity, we suppress the parameter s and hence, we have

Ric(v) = Tr(Sc,vPcSc,vPc)− Tr(Diag(PcS
2
c,v)Pc).

We write d
dsc = cs and d

dsv = vs (in Euclidean coordinate). Since d
dsPc = −ScsPc−PcScs +2PcScsPc

and d
dsSc,v = −ScsSc,v + Sc,vs , we have that

d

ds
Ric(v)

= −2Tr(Sc,vScsPcSc,vPc)− 2Tr(Sc,vPcScsSc,vPc) + 4Tr(Sc,vPcScsPcSc,vPc)

−2Tr(ScsSc,vPcSc,vPc) + 2Tr(Sc,vsPcSc,vPc)

+Tr(Diag(Pcs
2
c,v)ScsPc) + Tr(Diag(Pcs

2
c,v)PcScs)− 2Tr(Diag(Pcs

2
c,v)PcScsPc)

+Tr(Diag(PcScss
2
c,v)Pc) + Tr(Diag(ScsPcs

2
c,v)Pc)− 2Tr(Diag(PcScsPcs

2
c,v)Pc)

+2Tr(Diag(PcSc,vScssc,v)Pc)− 2Tr(Diag(PcSc,vsc,vs)Pc)

= −6Tr(Sc,vScsPcSc,vPc) + 4Tr(Sc,vPcScsPcSc,vPc) + 2Tr(Sc,vsPcSc,vPc)

+3Tr(Diag(Pcs
2
c,v)ScsPc)− 2Tr(Diag(Pcs

2
c,v)PcScsPc)

+3Tr(Diag(PcScss
2
c,v)Pc)− 2Tr(Diag(PcScsPcs

2
c,v)Pc)

−2Tr(Diag(PcSc,vsc,vs)Pc).

Let d
dsRic(v) = (1) + (2) where (1) is the sum of all terms not involving vs and (2) is the sum of

other terms.
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For the first term (1), we have that

|(1)| ≤ 6 |Tr(Sc,vScsPcSc,vPc)|+ 4 |Tr(Sc,vPcScsPcSc,vPc)|
+3
∣

∣Tr(Diag(Pcs
2
c,v)ScsPc)

∣

∣+ 2
∣

∣Tr(Diag(Pcs
2
c,v)PcScsPc)

∣

∣

+3
∣

∣Tr(Diag(PcScss
2
c,v)Pc)

∣

∣+ 2
∣

∣Tr(Diag(PcScsPcs
2
c,v)Pc)

∣

∣

≤ 6 ‖Scs‖∞
√

∑

i

(sc,v)2i

√

∑

i

(sc,v)2i + 4 ‖Scs‖∞ |Tr(PcSc,vPcSc,vPc)|

+3

√

∑

i

(sc,v)4i ‖Scs‖2 + 2

√

∑

i

(sc,v)4i

√

∑

i

(PcScsPc)2ii

+3 ‖Scs‖∞
√

∑

i

(sc,v)
4
i

√

∑

i

(Pc)
2
ii + 2 ‖Scs‖∞

√

∑

i

(sc,v)
4
i

√

∑

i

(Pc)
2
ii

≤ 10 ‖Scs‖∞ ‖Sc,v‖22 + 3 ‖Sc,v‖24 ‖Scs‖2 + 7 ‖Scs‖∞ ‖Sc,v‖24
√
n

≤ 20 ‖Scs‖2 ‖Sc,v‖
2
4

√
n.

Since sc,v = sγ′ at s = 0, we have that ‖Sc,v‖24 ≤ 482n−1/2 and hence

|(1)| = O (1) ‖scs‖2 .

For the second term (2), we have that

|(2)| ≤ 2 |Tr(Sc,vsPcSc,vPc)|+ 2 |Tr(Diag(PcSc,vsc,vs)Pc)|

≤ 2 ‖sc,vs‖2 ‖sc,v‖2 + 2
√
n

√

∑

i

(sc,vssc,v)
2
i

≤ O (1) ‖sc,vs‖2 +O
(

√

log n+
√
nh
)

‖sc,vs‖2
= O

(

√

log n+
√
nh
)

‖sc,vs‖2

where we used ‖sc,v‖∞ =
∥

∥sγ′

∥

∥

∞ = O

(

√

logn
n +

√
h

)

and ‖sc,v‖2 =
∥

∥sγ′

∥

∥

2
= O(1) at s = 0 in the

second last line.
Note that at s = 0, we have

Dsv =
dv

ds
−
(

AT
c Ac

)−1
AT

c Scssc,v.

Therefore, we have

sc,vs = Ac (Dsv)−Ac

(

AT
c Ac

)−1
AT

c Scssc,v

and hence

‖sc,vs‖2 ≤ ‖Dsv‖+
∥

∥

∥
Ac

(

AT
c Ac

)−1
AT

c Scssc,v

∥

∥

∥

2

≤ ‖Dsv‖+
∥

∥sγ′

∥

∥

∞ ‖scs‖2
Therefore, we have

|(2)| = O
(

√

log n+
√
nh
)

(

‖Dsv‖+
(
√

log n

n
+

√
h

)

‖scs‖2

)

.
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Therefore, we have
∣

∣

∣

∣

d

ds
Ric(v(s))|s=0

∣

∣

∣

∣

=O (1) ‖scs‖2 +O
(

√

log n+
√
nh
)

‖Dsv‖

+O
(

√

log n+
√
nh
)

(
√

log n

n
+

√
h

)

‖scs‖2

=O

(

1 +

√

log n

nh

)

(∥

∥

∥

∥

dc

ds

∥

∥

∥

∥

+ ℓ ‖Dsv‖
)

.

where we used h ≤ 1√
n

at the last line.

4.7 Stability of L4 + L∞ norm (V1)

Lemma 61. Given a family of geodesic γs(t) on ML with V (γ0) ≤ V0. Suppose that h ≤ 1√
n
, we

have that
∣

∣

∣

∣

d

ds
V (γs)

∣

∣

∣

∣

≤ O

(

1√
nh+

√
h log n

)

(

∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

γs(0)

+ ℓ
∥

∥Dsγ
′
s

∥

∥

γs(0)

)

.

Hence, we have that V1 = O
(

1√
nh+

√
h logn

)

.

Proof. Since d
dssγ′ = −sγ′Aγ

d
dsγ +Aγ

d
dsγ

′, we have

∥

∥

∥

∥

d

ds
sγ′

∥

∥

∥

∥

2

≤
∥

∥sγ′

∥

∥

∞

∥

∥

∥

∥

Aγ
d

ds
γ

∥

∥

∥

∥

2

+

∥

∥

∥

∥

Aγ
d

ds
γ′
∥

∥

∥

∥

2

.

For the last term, we note that

Dsγ
′ =

dγ′

ds
−
(

AT
γAγ

)−1
AT

γ S dγ
ds
sγ′ .

Hence, we have
∥

∥

∥

∥

Aγ
d

ds
γ′
∥

∥

∥

∥

2

≤
∥

∥Dsγ
′∥
∥+

∥

∥

∥S dγ
ds
sγ′

∥

∥

∥

2
≤
∥

∥Dsγ
′∥
∥+

∥

∥sγ′

∥

∥

∞

∥

∥

∥S dγ
ds

∥

∥

∥

2
.

Therefore, we have that
∥

∥

∥

∥

d

ds
sγ′

∥

∥

∥

∥

2

≤ 2
∥

∥sγ′

∥

∥

∞

∥

∥

∥

∥

Aγ
d

ds
γ

∥

∥

∥

∥

2

+
∥

∥Dsγ
′∥
∥

= O

(
√

log n

n
+

√
h

)

∥

∥

∥

∥

d

ds
γ

∥

∥

∥

∥

+
∥

∥Dsγ
′∥
∥ . (4.7)

By Lemma 59, we have that ‖R(t)‖F = O(n−1/2). Since γs is a family of geodesic, d
dsγ(t) is a

Jacobi field and Lemma 41 shows that
∥

∥

∥

∥

d

ds
γ(t)− α− βt

∥

∥

∥

∥

≤ λt2
∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

+
λt3

5

∥

∥Dsγ
′
s(0)

∥

∥

and
∥

∥

∥

∥

Dt
d

ds
γ(t)− β

∥

∥

∥

∥

≤ 2λt

∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

+
3λt2

5

∥

∥Dsγ
′
s(0)

∥

∥
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with λ = O(n−1/2). Using h ≤ 1√
n
, for any 0 ≤ t ≤ ℓ, we have that

∥

∥

∥

∥

d

ds
γ(t)

∥

∥

∥

∥

≤ O (1)

(∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

+ ℓ
∥

∥Dsγ
′
s(0)

∥

∥

)

and

ℓ

∥

∥

∥

∥

Dt
d

ds
γ(t)

∥

∥

∥

∥

≤ O (1)

(∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

+ ℓ
∥

∥Dsγ
′
s(0)

∥

∥

)

.

Putting these into (4.7) and using h ≤ 1√
n
, we have

∥

∥

∥

∥

d

ds
sγ′

∥

∥

∥

∥

2

= O

(
√

log n

n
+

√
h+

1√
nh

)

(∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

+ ℓ
∥

∥Dsγ
′
s(0)

∥

∥

)

= O

(

1√
nh

)(∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

+ ℓ
∥

∥Dsγ
′
s(0)

∥

∥

)

.

Hence, we have that

d

ds





∥

∥sγ′(t)

∥

∥

4

n−1/4
+

∥

∥sγ′(t)

∥

∥

∞
√

logn
n +

√
h



 ≤
∥

∥

d
dssγ′(t)

∥

∥

4

n−1/4
+

∥

∥

d
dssγ′(t)

∥

∥

∞
√

logn
n +

√
h

=O





1
√

logn
n +

√
h





∥

∥

∥

∥

d

ds
sγ′(t)

∥

∥

∥

∥

2

=O

(

1√
nh+

√
h log n

)(∥

∥

∥

∥

d

ds
γs(0)

∥

∥

∥

∥

+ ℓ
∥

∥Dsγ
′
s(0)

∥

∥

)

.

Hence, we have that the result.

4.8 Mixing Time

Proof of Theorem 45. In the last previous sections, we proved that if h ≤ 1
1000

√
n

1. V0 = 48 (4.6)

2. V1 = O
(

1√
nh+

√
h logn

)

(Lemma 61)

3. D0 = O(
√
n) (Lemma 55)

4. D1 = O(n
√
h+

√
n log n) (Lemma 56)

5. D2 = O(
√
n) (Lemma 57)

6. G1 = O(
√
h+

√

logn
n ) (Lemma 58)

7. G2 = O(
√
m) (Lemma 50)

8. R1 = O(1/
√
n) (Lemma 59)

9. R2 = O(1 +
√

logn
nh ) (Lemma 60)
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Lemma 53 proved that

P (V (γ) ≤ 24) ≥ 1− 3

n
.

Therefore, if we set h = Ω(n−1), we have that

P (V (γ) ≤ 24) ≥ 1− V0
100V1

.

Hence, these are valid parameters for ML with H = 1
1000

√
n
.

Theorem 23 implies that the walk has mixing time O(G2
2/h) as long as

h ≤ Θ(1)min

{

1

n1/3D
2/3
1

,
1

D2
,

1

nR1
,

1

(nD0R1)2/3
,

1

(nR2)
2/3

,
1

nG
2/3
1

,H

}

≤ 1

Θ(n3/4)

if n is large enough.

Remark. The bottleneck of the proof occurs in the parameters D1 and G1.
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5 Collocation Method for ODE

In this section, we study a collocation method for solving ordinary differential equation (ODE) and
show how to solve a nice enough ODE in nearly constant number of iterations without explicitly
computing higher derivatives.

Collocation method is a general framework for solving differential equations. This framework
finds a solution to the differential equation by finding a low degree polynomial (or other finite
dimensional space that approximate the function space) that satisfies the differential equation at
a set of predesignated points (called collocation points). By choosing the finite dimensional space
and the collocation points carefully, one can make sure there is an unique solution and that the
solution can be found using simple iterative methods (See [?, Sec 3.4] for an introduction). One key
departure of our analysis to the standard analysis is that we use L4 norm (instead of the standard
L2 norm). This is essential to take advantage of the stability of the L4 norm of the geodesic.

5.1 First Order ODE

We first consider the following first order ODE

d

dt
u(t) = F (u(t), t), for 0 ≤ t ≤ ℓ (5.1)

u(0) = v

where F : R
n+1 → R

n and u(t) ∈ R
n. The idea of collocation methods is to find a degree d

polynomial p such that

d

dt
p(t) = F (p(t), t), for t = c1, c2, · · · , cd (5.2)

p(0) = v

where c1, c2, · · · , cd are carefully chosen distinct points on [0, ℓ]. Here, we call p : R → R
n is a degree

d polynomial if p(t) = [p1(t); p2(t); · · · ; pn(t)] and each pi(t) is an univariate polynomial with degree
at most d. The first part of the proof shows the existence of a solution for the systems (5.2). To
describe the algorithm, it is easier to consider an equivalent integral equation.

Lemma 62. Given distinct points c1, c2, · · · , cd ∈ R and F : Rn+1 → R
n, consider the nonlinear

map T : Rd×n → R
d×n defined by

T (ζ)(i,k) =

∫ ci

0

d
∑

j=1

F (ζj , cj)kφj(s)ds for i ∈ [d], k ∈ [n]

where φi(s) =
∏

j 6=i
s−cj
ci−cj

are the Lagrange basis polynomials. Given any ζ ∈ R
d×n such that

ζi = v + T (ζ)i, for i ∈ [d] (5.3)

the polynomial

p(t) = v +

∫ t

0

d
∑

j=1

F (ζj , cj)φj(s)ds

is a solution of the system (5.2).
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Proof. Define the polynomials φi(s) =
∏

j 6=i
s−cj
ci−cj

. Note that φi(cj) = δij . Therefore, we have

d
∑

j=1

αjφj(ci) = αi.

Therefore, p(0) = v and

d

dt
p(ci) =

d
∑

j=1

F (ζj , cj)φj(ci) = F (ζj , cj).

Since ζi = v + T (ζ)i, we have that

ζi = v +

∫ ci

0

d
∑

j=1

F (ζj , cj)φj(s)ds = p(ci).

Hence, we have d
dtp(ci) = F (p(ci), ci). Therefore, p is a solution to the system (5.2).

From Lemma 62, we see that it suffices to solve the system (5.3). We solve it by a simple fix
point iteration shown in Algorithm 3.

Algorithm 3: CollocationMethod

Input: An ordinary differential equation d
dtu(t) = F (u(t), t) for 0 ≤ t ≤ ℓ with initial

condition u(0) = v.
Define T (ζ)(i,k) =

∫ ci
0

∑d
j=1 F (ζj , cj)kφj(s)ds for i ∈ [d], k ∈ [n] as defined in Lemma 62.

ci =
ℓ
2 +

ℓ
2 cos(

2i−1
2d π) for all i ∈ [d], K = 4000ℓmaxt∈[0,ℓ] ‖F (v, t)‖p, Z = log2(K/ε)

ζ
(0)
i = v + T (v)i for all i ∈ [d] where v = (v, v, · · · , v) ∈ R

d×n.
for z = 0, · · · , Z do

ζ
(z+1)
i = v + T (ζ(z))i for i ∈ [d].

end

Output: p(t) = v +
∫ t
0

∑d
j=1 F (ζ

(Z+1)
j , cj)φj(s)ds.

In the following lemma, we show that T is a contraction mapping if F is smooth enough and hence

this algorithm converges linearly. We will use the following norm: ‖x‖∞;p = maxi∈[d]
(

∑

k∈[n]
∣

∣x(i,k)
∣

∣

p
)1/p

.

Lemma 63. Given x, y ∈ R
d×n, suppose that ‖F (xi, t)− F (yi, t)‖p ≤ L ‖xi − yi‖p for all 0 ≤ t ≤ ℓ

and all i ∈ [d]. For ck = ℓ
2 + ℓ

2 cos(
2k−1
2d π) and T defined Lemma 62, we have that

‖T (x)− T (y)‖∞;p ≤ 1000ℓL ‖x− y‖∞;p .

Also, for any α ∈ R
d×n, we have that

∫ t

0

d
∑

j=1

αjφj(s)ds ≤ 1000ℓmax
i

‖αi‖p
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Proof. Using the definition of T and ‖·‖∞;p, we have

‖T (x)− T (y)‖∞;p = max
i

∥

∥

∥

∥

∥

∥

∫ ci

0

d
∑

j=1

F (xj , cj)φj(s)ds −
∫ ci

0

d
∑

j=1

F (yj , cj)φj(s)ds

∥

∥

∥

∥

∥

∥

p

≤



max
i

d
∑

j=1

∣

∣

∣

∣

∫ ci

0
φj(s)ds

∣

∣

∣

∣





(

max
i

‖F (xi, ci)− F (yi, ci)‖p
)

≤ L ‖x− y‖∞;p



max
i

d
∑

j=1

∣

∣

∣

∣

∫ ci

0
φj(s)ds

∣

∣

∣

∣



 .

To bound maxi
∑d

j=1

∣

∣

∫ ci
0 φj(s)ds

∣

∣, it is easier to work with the function ψj(x)
def
= φj(

2
ℓx − 1).

Note that ψk is the Lagrange basis polynomials on the nodes {cos(2k−1
2d π)}dk=1 and hence we have

ψk(x) =
(−1)k−1

√

1− x2k cos
(

d cos−1 x
)

d(x− xk)

where xk = cos(2k−1
2d π). Lemma 91 at the end of this section shows that

∣

∣

∣

∫ t
−1 ψk(x)dx

∣

∣

∣ ≤ 2000
d for

all t. Therefore, we have that maxi
∑d

j=1

∣

∣

∫ ci
0 φj(s)ds

∣

∣ ≤ 1000ℓ. This gives the first inequality. The
second inequality is similar.

In each iteration of the collation method, we need to compute
∫ ci
0

∑

αjφj(s)ds for some αj . The
following theorem shows that this can be done in O(d log(d/ε)) time using multipole method.

Theorem 64 ([6, Sec 5]). Let φi(s) be the Lagrange basis polynomials on the Chebyshev nodes on
[0, ℓ], namely, φi(s) =

∏

j 6=i
s−cj
ci−cj

with ci =
ℓ
2+

ℓ
2 cos(

2i−1
2d π). Given a polynomial p(s) =

∑

j αjφj(s)

and a point set {x1, x2, · · · , xd}, one can compute ti such that

∣

∣

∣

∣

ti −
∫ xi

0
p(s)ds

∣

∣

∣

∣

≤ εℓ

√

∑

j 6=k

(αj − αk)2 for i ∈ [d]

in time O(d log(d/ε)).

Now we have everything to state our main result in this subsection.

Theorem 65. Let u(t) ∈ R
n be the solution of the ODE (5.1). Suppose we are given ε, ℓ > 0 and

1 ≤ p ≤ ∞ such that

1. There is a degree d polynomial q from R to R
n such that q(0) = v and

∥

∥

d
dtu(t)− d

dtq(t)
∥

∥

p
≤ ε

ℓ
for all 0 ≤ t ≤ ℓ.

2. We have that ‖F (x, t)− F (y, t)‖p ≤ 1
2000ℓ ‖x− y‖p for all ‖x− v‖p ≤ K and ‖y − v‖p ≤ K

with K = 4000ℓmaxt∈[0,ℓ] ‖F (v, t)‖p .

Then, Algorithm CollocationMethod outputs a degree d polynomial p(t) such that max0≤t≤ℓ ‖u(t)− p(t)‖p ≤
4003ε in O(nd log2(dK/ε)) time and O(d log(K/ε)) evaluations of F .
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Proof. First, we estimate the initial error. Let ζ(∞) be the solution to (5.3), ζ
(0)
i = v+T (v)i be the

initial vector and v = (v, v, · · · , v) ∈ R
d×n. Then, we have that

∥

∥

∥
ζ(∞) − ζ(0)

∥

∥

∥

∞;p
= max

i

∥

∥

∥
(v + T (ζ(∞))i)− (v + T (v)i)

∥

∥

∥

p

=
∥

∥

∥
T (ζ(∞))− T (v)

∥

∥

∥

∞;p

≤ 1

2

∥

∥

∥ζ(∞) − v
∥

∥

∥

∞;p

≤ 1

2

(

∥

∥

∥
ζ(∞) − ζ(0)

∥

∥

∥

∞;p
+
∥

∥

∥
ζ(0) − v

∥

∥

∥

∞;p

)

.

Therefore, we have that

∥

∥

∥
ζ(∞) − ζ(0)

∥

∥

∥

∞;p
≤

∥

∥

∥
ζ(0) − v

∥

∥

∥

∞;p

= ‖T ((v, v, · · · , v))‖∞;p

≤ 1000ℓmax
i

‖F (v, ci)‖p

≤ K

4
.

Hence, we have that
∥

∥ζ(∞) − v
∥

∥

∞;p
≤ K

2 .

Using the assumption on F , Lemma 63 shows that ‖T (x)− T (y)‖∞;p ≤ 1
2 ‖x− y‖∞;p and hence

∥

∥

∥
ζ(∞) − ζ(k)

∥

∥

∥

∞;p
≤ K

2k+1
.

Thus, it takes log2(K/ε) iteration to get a point ζ(k) with

∥

∥

∥ζ(∞) − ζ(k)
∥

∥

∥

∞;p
≤ ε. (5.4)

Also, this shows that
∥

∥ζ(∞) − v
∥

∥

∞;p
≤ K. Hence, we only requires the assumption (2) to be satisfied

in this region.
Now, we show that ζ(k) is close to the solution by using the existence of q. By the assumption

on q, we have that
∥

∥

d
dtu(t)− d

dtq(t)
∥

∥

p
≤ ε

ℓ and hence ‖u(t)− q(t)‖p ≤ ε. Using the smoothness of

F , we have that ‖F (u(t), t) − F (q(t), t)‖p ≤ ε
ℓ for all 0 ≤ t ≤ ℓ. Therefore, we have that

∥

∥

∥

∥

d

dt
q(t)− F (q(t), t)

∥

∥

∥

∥

p

≤
∥

∥

∥

∥

d

dt
q(t)− d

dt
u(t)

∥

∥

∥

∥

p

+ ‖F (q(t), t)− F (u(t), t)‖p

≤ 2
ε

ℓ

for all 0 ≤ t ≤ 1. Therefore, we have

q(t) = v +

∫ t

0

d
∑

j=1

d

dt
q(cj)φj(s)ds

= v +

∫ t

0

d
∑

j=1

(F (q(cj), cj) + δj)φj(s)ds
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where ‖δi‖p ≤ 2ε
ℓ for all i ∈ [d]. By Lemma 63, we have that

∥

∥

∥

∥

∥

∥

q(t)− v −
∫ t

0

d
∑

j=1

F (q(cj), cj)φj(s)ds

∥

∥

∥

∥

∥

∥

p

≤ 2000ε.

Now, we compare qj
def
= q(cj) with the approximate solution constructed by the fix point algorithm

q(k)(t) = v +

∫ t

0

d
∑

j=1

F (ζ
(k)
j , cj)φj(s)ds.

For 0 ≤ t ≤ ℓ, we have
∥

∥

∥q(t)− q(k)(t)
∥

∥

∥

p
≤

∥

∥

∥T (q)− T (ζ(k))
∥

∥

∥

∞;p
+ 2000ε

≤ 1

2

∥

∥

∥
q − ζ(k)

∥

∥

∥

∞;p
+ 2000ε. (5.5)

Setting t = ci, we have
∥

∥

∥
q − ζ(k+1)

∥

∥

∥

∞;p
= max

i

∥

∥

∥
q(ci)− q(k)(ci)

∥

∥

∥

p

≤ 1

2

∥

∥

∥
q − ζ(k)

∥

∥

∥

∞;p
+ 2000ε.

Since
∥

∥ζ(k+1) − ζ(k)
∥

∥

∞;p
≤
∥

∥ζ(k+1) − ζ(∞)
∥

∥

∞;p
+
∥

∥ζ(k) − ζ(∞)
∥

∥

∞;p
≤ 2ε, we have

∥

∥

∥
q − ζ(k)

∥

∥

∥

∞;p
≤ 1

2

∥

∥

∥
q − ζ(k)

∥

∥

∥

∞;p
+ 2ε + 2000ε

Therefore, we have
∥

∥

∥q − ζ(k)
∥

∥

∥

∞;p
≤ 4004ε.

Putting it into (5.5), we have
∥

∥

∥
q(t)− q(k)(t)

∥

∥

∥

p
≤ 4002ε

for all 0 ≤ t ≤ ℓ. Using that ‖u(t)− q(t)‖p ≤ ε, we have
∥

∥

∥
u(t)− q(k)(t)

∥

∥

∥

p
≤ 4003ε.

Hence, it proves the guarantee.

Each iteration involves computing vk +
∫ ci
0

∑d
j=1 F (ζ

(z)
j , cj)kφj(s)ds for all i ∈ [d], k ∈ [n]. Note

that
∑d

j=1 F (ζ
(z)
j , cj)kφj(s) is a polynomial expressed by Lagrange polynomials. Theorem 64 shows

they can be computed in O(d log(dK/ε))) with ε
KdO(1) accuracy. Since there are n coordinates, it

takes O(nd log(dK/ε))) time plus d evaluation per iteration.

The theorem above essentially says that if the solution is well approximated by a polynomial
and if the F has small enough Lipschitz constant, then we can reconstruct the solution efficiently.
Note that this method is not useful for stochastic differential equation because Taylor expansion of
the solution involves the high moments of probability distributions which is very expensive to store.

The assumption on the Lipschitz constant of F holds for our application. For the rest of this
subsection, we show that this assumption is not necessary by taking multiple steps. This is mainly
to make the result easier to use for other applications and not needed for this paper. First, we prove
that the collocation method is stable under small perturbation of the initial solution.

65



Lemma 66. Let p(t) and p̃(t) be the outputs of CollocationMethod for the initial value v and the
initial value ṽ. We make the same assumption as Theorem 65 for the initial condition v (albeit a
small change in the constants). Suppose that ‖ṽ − v‖p ≤ cℓmaxt∈[0,ℓ] ‖F (v, t)‖p with small enough
constant c, we have that

max
0≤t≤ℓ

‖p(t)− p̃(t)‖p = O(‖ṽ − v‖p).

Proof. With a proof similar to Theorem 65, we know that T is 1
2 Lipschitz. Here, we use that F is

Lipschitz in a neighbour of v and a neighbour of ṽ. Since ṽ is close to v, we only need to make the
assumption on a neighbour of v.

Let ζ(k) , ζ̃(k) be the corresponding intermediate variables in the algorithm. Since ζ
(0)
i =

v + T (v, v, · · · )i and ζ̃
(0)
i = ṽ + T (ṽ, ṽ, · · · )i, we have that

∥

∥

∥
ζ̃(0) − ζ(0)

∥

∥

∥

∞;p
≤ ‖ṽ − v‖p + ‖T (ṽ, ṽ, · · · )− T (v, v, · · · )‖∞;p

≤ ‖ṽ − v‖p +
1

2
‖ṽ − v‖p =

3

2
‖ṽ − v‖p ≤ 2 ‖ṽ − v‖p .

Since ζ
(k+1)
i = v + T (ζ(k))i and ζ̃

(k+1)
i = ṽ + T (ζ̃(k))i, by induction, we have that

∥

∥

∥
ζ̃(k+1) − ζ(k+1)

∥

∥

∥

∞;p
≤ ‖ṽ − v‖p +

1

2

∥

∥

∥
ζ̃(k) − ζ(k)

∥

∥

∥

∞;p

≤ ‖ṽ − v‖p +
1

2
· 2 ‖ṽ − v‖p ≤ 2 ‖ṽ − v‖p .

Now, we note that p(t) = v +
∫ t
0

∑d
j=1 F (ζ

(Z+1)
j , cj)φj(s)ds. By our assumption on F , we have

that

∥

∥

∥
F (ζ

(Z+1)
j , cj)− F (ζ̃

(Z+1)
j , cj)

∥

∥

∥

p
= O(

1

ℓ
)
∥

∥

∥
ζ
(Z+1)
j − ζ̃

(Z+1)
j

∥

∥

∥

p

= O(
1

ℓ
) ‖ṽ − v‖p .

Apply second part of Lemma 63, we have that

‖p(t)− p̃(t)‖p = O(‖ṽ − v‖p)

for any 0 ≤ t ≤ ℓ.

Now, we give the main theorem of this subsection.

Theorem 67. Let u(t) ∈ R
n be the solution of the ODE (5.1). Suppose we are given ε > 0 and

1 ≤ p ≤ ∞ such that

1. There is a degree d polynomial q from R to R
n such that q(0) = v and

∥

∥

d
dtu(t)− d

dtq(t)
∥

∥

p
≤ ε

for all 0 ≤ t ≤ 1.

2. For some L ≥ 1, we have that ‖F (x, t)− F (y, t)‖p ≤ L ‖x− y‖p for all x, y and 0 ≤ t ≤ 1.

Then, we can compute u such that ‖u− u(1)‖p = O(ε) in O(ndL3 log2(dK/ε)) time and

O(dL2 log(K/ε)) evaluations of F where K = maxx,0≤t≤1 ‖F (x, t)‖p.
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Proof. Let ℓ = 1
2000L . By Theorem 65, we can compute u(ℓ) in O(nd log2(dK/ε)) time and

O(d log(K/ε)) evaluations of F . Now, we can apply 65 again with our approximate of u(ℓ) to
get u(2ℓ). Repeating this process, we can compute u(1).

Lemma 66 shows that if the initial value of u(0) has δ error, the collocation method would
output u(ℓ) with O(δ) + ε error. Therefore, to compute u(1) with ε error, we need to iteratively
compute y(iℓ) with error ε/Θ(1)1/ℓ−i. Hence, the total running time is

1/ℓ
∑

i=1

O(nd log2(Θ(1)1/ℓ−idK/ε)) = O

(

nd

(

1

ℓ

)3

log2(dK/ε)

)

with
1/ℓ
∑

i=1

O(d log(Θ(1)1/ℓ−idK/ε)) = O

(

d

(

1

ℓ

)2

log2(dK/ε)

)

evaluations of F .

Remark 68. The main bottleneck of this algorithm is that the error blows up exponentially when we
iteratively apply the collocation method. We believe this can be alleviated by using the collocation
method in one shot but with a more smart initialization. Since we do not face this problem for our
main application, we left this as a future investigation.

5.2 Second Order ODE

Now, we consider the following second order ODE

d2

dt2
u(t) = F (

d

dt
u(t), u(t), t), for 0 ≤ t ≤ ℓ (5.6)

d

dt
u(0) = w,

u(0) = v

where F : R2n+1 → R
n and u(t) ∈ R

n. Using a standard reduction from second order ODE to first
order ODE, we show how to apply our first order ODE method to second order ODE.

Theorem 69. Let x(t) ∈ R
n be the solution of the ODE (5.6). Given some ε, ℓ > 0 and 1 ≤ p ≤ ∞,

let α = 4000ℓ and suppose that

1. There is a degree d polynomial q from R to R
n such that q(0) = v, q′(0) = w,

∥

∥

d
dt2
x(t)− d

dt2
q(t)

∥

∥

p
≤

ε
ℓ2 for all 0 ≤ t ≤ ℓ.

2. We have that ‖F (x, γ, t) − F (y, η, t)‖p ≤ 1
α ‖x− y‖p + 1

α2 ‖γ − η‖p for all ‖x− w‖p ≤ K,
‖y − w‖p ≤ K, ‖γ − v‖p ≤ αK, ‖η − v‖p ≤ αK where K = αmaxt∈[0,ℓ] ‖F (w, v, t)‖p + ‖w‖p.

Then, in O(nd log2(dK/ε)) time plus O(d log(K/ε)) evaluations of F , we can find p(t) such that

max
0≤t≤ℓ

‖u(t)− p(t)‖p = O(ε) and max
0≤t≤ℓ

∥

∥u′(t)− p′(t)
∥

∥

p
= O(ε/ℓ).
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Proof. Let α = 4000ℓ. Let x(t) = (αu′(αt), u(αt)) ∈ R
2n. Note that x(t) satisfies the following

ODE

d

dt
x(t) = F (x(t), t) for 0 ≤ t ≤ ℓ (5.7)

x(0) = (αw, v).

where F (x(t), t) = (α2F (α−1x(1)(t), x(2)(t), αt), x(1)(t)), x(1)(t) is the first n variables of x(t) and
x(2)(t) is the last n variables of x(t). Next, we verify the conditions of Theorem 65 for this ODE.

Let ℓ = 1
6000 and K = 4000ℓmaxt∈[0,ℓ]

∥

∥F (x(0), t)
∥

∥

p
. Note that

K ≤ α2 max
t∈[0,ℓ]

‖F (w, v, t)‖p + α ‖w‖p .

For any y, z such that ‖y − x(0)‖p ≤ K and ‖z − x(0)‖p ≤ K, we apply the assumption on F and
get that

∥

∥F (y, t)− F (z, t)
∥

∥

p

≤ α2
∥

∥F (α−1y(1), y(2), αt) − F (α−1z(1), z(2), αt)
∥

∥

p
+
∥

∥y(1) − z(1)
∥

∥

p

≤ α2

(

1

α

∥

∥α−1y(1) − α−1z(1)
∥

∥

p
+

1

α2

∥

∥y(2) − z(2)
∥

∥

p

)

+
∥

∥y(1) − z(1)
∥

∥

p

≤ 3 ‖y − z‖p .

Also, by our assumption on x, we have a polynomial q = (αq′(αt), q(αt)) such that

∥

∥

∥

∥

d

dt
x(t)− d

dt
q(t)

∥

∥

∥

∥

p

= O

(

ε

ℓ

)

where x is the solution of the ODE (5.7). Therefore, Theorem 65 shows that we can compute x
with O(ε) error in O(nd log2(dK/ε)) time plus O(d log(K/ε)) evaluations of F . Since x = (αu′, u),
this gives us an approximate of u with error O(ε) and u′ with error O(ε/ℓ).

5.3 Example: Discretization of Physarum dynamics

In this section, we use the Physarum dynamics as an example to showcase the usefulness of the
collocation method. We consider a linear program of the form

min
Ax=b,x≥0

cTx (5.8)

where A ∈ Z
m×n, c ∈ Z

n
>0 and b ∈ Z

m. Inspired by Physarum polycephalum (a slime mold),
Straszak and Vishnoi [?] introduce the following dynamics for solving the linear program:

dx

dt
=WAT (AWA)−1b− x (5.9)

where W is a diagonal matrix with the diagonal Wii = xi/ci. In this subsection, we follow their
notations/assumptions:

1. Assume that A is full rank and this linear program has a feasible solution.

2. Let OPT be the optimal value of the linear program (5.8).
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3. Let D be the maximum sub-determinant of A, i.e. D = maxA′ is a square submatrix of A |det(A′)|.
For graph problems, A is usually an unimodular matrix and hence D = 1.

4. Assume that we have an initial point x(0) such that Ax(0) = b and a parameter M such that

M−1 ≤ x(0) ≤M and cT s ≤M · OPT.

They showed that the continuous dynamics converges linearly to the solution:

Lemma 70 (Convergence of Physarum dynamics, [?, Thm 6.3]). Consider x(t) be the solution of
5.9 with initial point Ax(0) = b. Then, we have that

OPT ≤ cTx(t) ≤ OPT + (n+M)2e8D
2‖c‖1‖b‖1−D−3t.

Furthermore, they analyzed the Euler method for this dynamics and obtained the following
result:

Lemma 71 (Euler method for Physarum dynamics, [?, Thm 7.1]). Consider the discretization of
the Physarum dynamics

x(k+1) = (1− h)x(k) + hW (k)AT (AW (k)A)−1b,

x(0) = x(0)

with the diagonal matrix W
(k)
ii = x

(k)
i /ci. Then, for any ε > 0 and h = 1

6ε ‖c‖
−2
1 D−2, we have that

OPT ≤ cTx(k) ≤ (1 + ε)OPT

where k = O
(

lnM
ε2h2

)

= O
(

‖c‖41D4 lnM
ǫ4

)

.

Note that the continuous process converges linearly while the discrete process converges sub-
linearly. In this section, we show how to use collocation method to get a discrete process that
converges “linearly”.

Lemma 72 (Collocation method for Physarum dynamics). For any T ≥ 0 and 1 > ε > 0, we can
compute y such that

(1− ε)xi(T ) ≤ yi ≤ (1 + ε)xi(T )

for all i in time O
(

nω+3D6 ‖c‖31 T 3 log2(nD ‖c‖1 /ε)
)

.

Proof. Let y = lnx. The Physarum dynamics can be written as

dy

dt
= diag

(

1

c

)

AT

(

Adiag

(

ey

c

)

AT

)−1

b− 1

def
= F (y).

To use Theorem 65, we need to bound the Lipschitz constant of F and show that y(t) can be
approximated by polynomial.
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The Lipschitz constant of F : Given any path ỹ(t) in R
n. Let W (t) = diag

(

eỹ(t)

c

)

, C = diag (c)

and P (t) = AT
(

AW (t)AT
)−1

AW (t). Then, we have that

d

dt
F (ỹ(t)) =

d

dt
C−1AT

(

AW (t)AT
)−1

b

= −C−1AT
(

AW (t)AT
)−1

AW (t)diag

(

dỹ

dt

)

AT
(

AW (t)AT
)−1

b

= −C−1P (t)diag

(

dỹ

dt

)

P (t)c.

where we used Ax = b at the last line. By [?, Lem 5.2], we have that

‖P (t)‖1→∞ ≤ D. (5.10)

Hence, we have that
∥

∥

∥

∥

P (t)diag

(

dỹ

dt

)

P (t)c

∥

∥

∥

∥

∞
≤D

∥

∥

∥

∥

diag

(

dỹ

dt

)

P (t)c

∥

∥

∥

∥

1

≤nD
∥

∥

∥

∥

dỹ

dt

∥

∥

∥

∥

∞
‖P (t)c‖∞ ≤ nD2

∥

∥

∥

∥

dỹ

dt

∥

∥

∥

∥

∞
‖c‖1 .

Since c is integral, we have that
∥

∥

∥

∥

d

dt
F (ỹ(t))

∥

∥

∥

∥

∞
≤ nD2

∥

∥

∥

∥

dỹ

dt

∥

∥

∥

∥

∞
‖c‖1 . (5.11)

Hence, F has Lipschitz constant nD2 ‖c‖1 in L∞ norm.
Analyticity of y(t): Note that

dy

dt
= C−1P (t)c− 1. (5.12)

By (5.10), we have that
∥

∥

∥

dy
dt

∥

∥

∥

∞
≤ 1 +D ‖c‖1 ≤ 2D ‖c‖1. Note that

d

dt
P (t) = −P (t)diag(dy

dt
)P (t) + P (t)diag(

dy

dt
).

Hence, we have that

d2y

dt2
= −C−1P (t)diag(

dy

dt
)P (t)c+ C−1P (t)diag(

dy

dt
)c

and
∥

∥

∥

∥

d2y

dt2

∥

∥

∥

∥

∞
≤ nD

∥

∥

∥

∥

dy

dt

∥

∥

∥

∥

∞
D ‖c‖1 +D

∥

∥

∥

∥

dy

dt

∥

∥

∥

∥

∞
‖c‖

≤ 2nD2 ‖c‖1
∥

∥

∥

∥

dy

dt

∥

∥

∥

∥

∞
≤ 4nD3 ‖c‖21 .

By induction, one can show that

∥

∥

∥

∥

dky

dtk

∥

∥

∥

∥

∞
= O(1)kk!D2k−1nk−1 ‖c‖k1 .
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For d = log(1/ε) and ℓ = 1
Ω(nD2‖c‖1)

, we have that

∥

∥

∥

∥

∥

y(t)−
d−1
∑

k=0

1

k!
y(k)(0)tk

∥

∥

∥

∥

∥

∞

≤ O(1)dD2d−1nd−1 ‖c‖d1 ℓd ≤ ε

for any 0 ≤ t ≤ ℓ. Similarly, we have that

∥

∥

∥

∥

∥

d

dt
y(t)− d

dt

d−1
∑

k=0

1

k!
y(k)(0)tk

∥

∥

∥

∥

∥

∞
≤ ε

for any 0 ≤ t ≤ ℓ.

Since F has Lipschitz constant nD2 ‖c‖1, we can apply Theorem 65 with ℓ = O
(

1
nD2‖c‖1 log(1/ε)

)

,

d = log(1/ε), p = ∞. Hence, we can compute y(ℓ) with ε error in O(n log2(nD ‖c‖1 /ε)) time with
O(log(nD ‖c‖1 /ε)) evaluations of F . Since F can be computed in matrix multiplication time, we
can compute y(ℓ) with ε error in O(nω log2(nD ‖c‖1 /ε)) time.

Next, we note that if the initial value of y(0) has δ error, the collocation method would output
y(ℓ) with O(δ) + ε error. Therefore, to compute y(T ) with ε error, we need to iteratively compute
y(iℓ) with error ε/Θ(1)T/ℓ−i. Hence, the total running time is

T/ℓ
∑

i=1

O(nω log2(Θ(1)T/ℓ−inD ‖c‖1 /ε)) = O

(

nω
(

T

ℓ

)3

log2(nD ‖c‖1 /ε)
)

.

Remark 73. We use this example merely to showcase that the collocation method is useful for getting
a polynomial time algorithm for solving ordinary differential equations. The kth order derivatives
of the path x(t) can be computed efficiently in (kn)O(1) time and hence one can simply use Taylor
series to approximate Physarum dynamics. Alternatively, since the path x(t) is the solution of
certain convex optimization problem [?, Thm 4.2], we can be computed it directly in Õ(n3) time
[?].

5.4 Derivative Estimations

For any smooth one dimension function f , we know by Taylor’s theorem that

f(x) =

N
∑

k=0

f (k)(a)

k!
(x− a)k +

1

N !

∫ x

a
(x− t)Nf (N+1)(t)dt.

This formula provides a polynomial estimate of f around a. To analyze the accuracy of this estimate,
we need to bound

∣

∣f (N+1)(t)
∣

∣. In one dimension, we could simply give explicit formulas for the
derivatives of f and use it to estimate the remainder term. However, for functions in high dimension,
it is usually too tedious. Here we describe some techniques for bounding the derivatives of higher
dimensional functions.

The derivatives of one-variable functions can be bounded via Cauchy’s estimate (Theorem 19).
In Section 5.5, we give calculus rules that reduces the problem of estimating derivatives of high-
dimensional functions to derivatives of one-dimensional functions. In Section 5.6, we show how to
reduce bounding the derivative for an arbitrary ODE to an ODE in one dimension.
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5.5 Explicit Function

In this subsection, we show how to bound the derivatives of a complicated explicit function using
the following object, generating upper bound. We reduce estimates of the derivatives of functions
in high dimension to one variable rational functions. Since rational functions are holomorphic, one
can apply Cauchy’s estimates (Theorem (19)) to bound their derivatives.

Definition 74. Given a function F . We call that F ≤x f for some one variable function f : R → R

if
∥

∥

∥
D(k)F (x)[∆1,∆2, · · · ,∆k]

∥

∥

∥
≤ f (k)(0)

k
∏

i=1

‖∆i‖k (5.13)

for any k ≥ 0 and any ∆i.

Remark. In general, F ≤x f and f(t) ≤ g(t) point-wise does NOT imply F ≤x g. However, F ≤x f
and f ≤0 g does imply F ≤x g.

Remark. The bounds we give in this subsection only assume that ‖·‖ is a norm and it satisfies
‖ab‖ ≤ ‖a‖ ‖b‖. In the later sections, we always use ‖·‖2 for both matrix and scalar.

This concept is useful for us to reduce bounding derivatives of a high dimension function to
bounding derivatives of 1 dimension function. First of all, we note that upper bounds are compos-
able.

Lemma 75. Given F ≤x f and G ≤F (x) g, we have that

G ◦ F ≤x g ◦ f

where f(s) = f(s)− f(0).

Proof. Fix any ∆1,∆2, · · · be unit vectors in the domain of F . Let H(x) = G ◦ F (x). By chain
rule, we have that

DH(x)[∆1] = DG(F (x))[DF (x)[∆1]],

DH(x)[∆1,∆2] = DG(F (x))[D2F (x)[∆1,∆2]]

+D2G(F (x))[DF (x)[∆1],DF (x)[∆2]],

DH(x)[∆1,∆2,∆3] = DG(F (x))[D2F (x)[∆1,∆2,∆3]]

+D2G(F (x))[D2F (x)[∆1,∆2],DF (x)[∆3]]

+D2G(F (x))[D2F (x)[∆1,∆3],DF (x)[∆2]]

+D2G(F (x))[D2F (x)[∆2,∆3],DF (x)[∆1]]

+D3G(F (x))[DF (x)[∆1],DF (x)[∆2],DF (x)[∆3]],

...
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Since G ≤F (x) g, equation (5.13) shows that

‖DH(x)[∆1]‖ ≤ g(1)(0) ‖DF (x)[∆1]‖ ,
∥

∥D2H(x)[∆1,∆2]
∥

∥ ≤ g(1)(0)
∥

∥D2F (x)[∆1,∆2]
∥

∥

+g(2)(0) ‖DF (x)[∆1]‖2 ‖DF (x)[∆2]‖ ,
∥

∥D3H(x)[∆1,∆2,∆3]
∥

∥ ≤ g(1)(0)
∥

∥D2F (x)[∆1,∆2,∆3]
∥

∥

+g(2)(0)
∥

∥D2F (x)[∆1,∆2]
∥

∥ ‖DF (x)[∆3]‖
+g(2)(0)

∥

∥D2F (x)[∆1,∆3]
∥

∥ ‖DF (x)[∆2]‖
+g(2)(0)

∥

∥D2F (x)[∆2,∆3]
∥

∥ ‖DF (x)[∆1]‖
... +g(3)(0) ‖DF (x)[∆1]‖ ‖DF (x)[∆2]‖ ‖DF (x)[∆3]‖ .

Now, we use F ≤x f to get

‖DH(x)[∆1]‖ ≤ g(1)(0)f (1)(0) =
(

g ◦ f
)(1)

(0)
∥

∥D2H(x)[∆1,∆2]
∥

∥ ≤ g(1)(0)f (2)(0) + g(2)(0)f (1)(0)2 =
(

g ◦ f
)(2)

(0),
∥

∥D3H(x)[∆1,∆2,∆3]
∥

∥ ≤ g(1)(0)f (3)(0) + 2g(2)(0)f (2)(0)f (1)(0)

... +g(3)(0)f (1)(0)3 =
(

g ◦ f
)(3)

(0).

Therefore, we have that
∥

∥DkH(x)[∆i]
∥

∥ ≤
(

g ◦ f
)(k)

(0) for all k ≥ 1. For k = 0, we have that

‖H(x)‖ = ‖G(F (x))‖ ≤ g(0) = g(f(0)).

Next, we give some extra calculus rule for generating upper bounds.

Lemma 76. Given that Hi ≤x hi for all i = 1, · · · , k. Then, we have that

k
∑

i=1

Hi ≤x

k
∑

i=1

hi and

k
∏

i=1

Hi ≤x

k
∏

i=1

hi.

Given that H ≤x h and
∥

∥H−1(x)
∥

∥ ≤ C, we have that

H−1 ≤x
1

C−1 − (h(s)− h(0))
.

Proof. Fix ∆1,∆2, · · · be unit vectors. For the first claim, let H =
∑

Hi, we note that

DjH[∆1, · · · ,∆j ] =
k
∑

i=1

DjHi[∆1, · · · ,∆j ].

Therefore, we have that
∥

∥DjH[∆1, · · · ,∆j ]
∥

∥ ≤∑k
i=1

∥

∥DjHi[∆1, · · · ,∆j ]
∥

∥. Since H ≤x hi, we have

that
∥

∥DjH[∆1, · · · ,∆j ]
∥

∥ ≤∑k
i=1 h

(j)(0). Hence, we have H ≤x
∑k

i=1 hi.

For the second claim, we let G =
∏k

i=1Hi and note that

DjG =
∑

i1+i2+···+ik=j

k
∏

l=1

DilHl.
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Let g =
∏k

i=1 hi. Then, we have that

∥

∥DjG
∥

∥ ≤
∑

i1+i2+···+ik=j

k
∏

l=1

∥

∥DilHl

∥

∥ ≤
∑

i1+i2+···+ik=j

k
∏

l=1

h
(il)
i (0) = Djg(0).

Hence, G ≤x g.
For the last claim, we first consider the function Φ(M) =M−1. Note thatDΦ[∆1] = −M−1∆1M

−1,
D2Φ[∆] =M−1∆1M

−1∆2M
−1 +M−1∆2M

−1∆1M
−1 and hence

∥

∥DjΦ
∥

∥ ≤ j!
∥

∥M−1
∥

∥

j+1
= j!Cj+1

Hence, we have Φ ≤M
∑∞

j=0
j!Cj+1

j! sj = 1
C−1−s . By Lemma 75, we see that H−1 ≤x

1
C−1−(h(s)−h(0)) .

5.6 Explicit ODE

In this section, we study the Taylor expansion of the solution of ODE (5.1).

Lemma 77. Let u(t) be the solution of the ODE u′(t) = F (u(t)). Suppose that F ≤u(0) f and let
ψ(t) be the solution of the ODE ψ′(t) = f(ψ(t)) and ψ(0) = 0. Then, we have

∥

∥

∥
u(k)(0)

∥

∥

∥
≤ ψ(k)(0)

for all k ≥ 1.

Proof. Since u′(t) = F (u(t)), we have that

u(2)(t) = DF (u(t))[u(1)(t)],

u(3)(t) = DF (u(t))[u(2)(t)] +D2F (u(t))[u(1)(t), u(1)(t)],

u(4)(t) = DF (u(t))[u(3)(t)] + 2D2F (u(t))[u(2)(t), u(1)(t)]

+D3F (u(t))[u(1)(t), u(1)(t), u(1)(t)]

...

Therefore, we have
∥

∥

∥u(2)(0)
∥

∥

∥ ≤ f (1)(0)
∥

∥

∥u(1)(0)
∥

∥

∥ ,
∥

∥

∥
u(3)(0)

∥

∥

∥
≤ f (1)(0)

∥

∥

∥
u(2)(0)

∥

∥

∥
+ f (2)(0)

∥

∥

∥
u(1)(0)

∥

∥

∥

2
,

∥

∥

∥
u(4)(0)

∥

∥

∥
≤ f (1)(0)

∥

∥

∥
u(3)(0)

∥

∥

∥
+ 2f (2)(0)

∥

∥

∥
u(2)(0)

∥

∥

∥

∥

∥

∥
u(1)(0)

∥

∥

∥
+ f (3)(0)

∥

∥

∥
u(1)(0)

∥

∥

∥

3
,

...

By expanding ψ′(t) = f(ψ(t)) at t = 0, we see that

ψ(2)(0) = f (1)(0)ψ(1)(0),

ψ(3)(0) = f (1)(0)ψ(2)(0) + f (2)(0)
(

ψ(1)(0)
)2
,

ψ(4)(0) = f (1)(0)ψ(3)(0) + 2f (2)(0)ψ(2)(0)ψ(1)(0) + f (2)(0)
(

ψ(1)(0)
)3
,

...

Since
∥

∥u(1)(0)
∥

∥ = ‖F (u(0))‖ ≤ f(0) = ψ(1)(0), we have that
∥

∥u(k)(0)
∥

∥ ≤ ψ(k)(0) for all k ≥ 1.
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Now, we apply Lemma 77 to second order ODEs.

Lemma 78. Let u(t) be the solution of the ODE u′′(t) = F (u′(t), u(t), t). Given some α > 0 and
define F (y, x, t) = α2F (α−1y(t)+u′(0), x(t)+αtu′(0), αt). Suppose that F ≤(0,u(0),0) f and let ψ(t)
be the solution of the ODE ψ′(t) = 1 + ψ(t) + f(ψ(t)) and ψ(0) = 0. Then, we have

∥

∥

∥
u(k)(0)

∥

∥

∥
≤ ψ(k)(0)

αk

for all k ≥ 2.

Proof. Let x(t) = u(αt) − αtu′(0) and y(t) = αu′(αt) − αu′(0). Then, we can write the problem
into first order ODE

y′(t) = α2F (α−1y(t) + u′(0), x(t) + αtu′(0), αt) = F (y(t), x(t), t),

x′(t) = y(t),

t′ = 1.

Let F(y, x, t) = (F (y, x, t), y, 1). Then, we have that
∥

∥Dk
F
∥

∥ ≤
∥

∥DkF
∥

∥ +
∥

∥Dky
∥

∥ +
∥

∥Dk1
∥

∥. Using
F ≤(0,u(0),0) f , we have that

F ≤(0,x(0),0) f + t+ 1.

By Lemma 77, we know that

∥

∥

∥
u(k)(0)

∥

∥

∥
=

∥

∥x(k)(0)
∥

∥

αk
≤ ψ(k)(0)

αk
.
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6 Implementation of Geodesic walk for log barrier

6.1 Complex Analyticity of geodesics, parallel transport and Jacobi fields

The Cauchy–Kowalevski theorem (Theorem 20) shows that if a differential equation is complex
analytic, then the equation has a unique complex analytic solution. As we see in section 4.1, the
equations for geodesic, parallel transport and Jacobi field involve only rational functions. Since
rational functions are complex analytic, the Cauchy-Kowalevski theorem shows that geodesics, or-
thogonal frames and Jacobi fields are also complex analytic.

Lemma 79. Geodesics, parallel transport and Jacobi fields are complex analytic for the Hessian
manifold induced by the logarithmic barrier.

We bound the higher-order derivatives of geodesic, parallel transport and Jacobi field, using
techniques developed in Section 5.4. Since these are complex analytic, this gives us a bound for
their radius of convergence.

The purpose of these derivative bounds is to show that the solutions of the corresponding ODEs
are well-approximated by low-degree polynomials, where the degree of the polynomial grows as
log
(

1
ǫ

)

for desired accuracy ǫ. The bound on the degree also implies that the Collocation method
for solving ODEs is efficient (roughly matrix multiplication time).

6.1.1 Geodesic

Motivated from the geodesic equation under Euclidean coordinate (4.1), we define the following
auxiliary function

F η(y, x, t) =
(

AT
x+tηAx+tη

)−1
AT

x+tηs
2
x+tη,y+η. (6.1)

The derivative bounds on geodesic rely on the smoothness of this auxiliary function.

Lemma 80. Under the normalization ATA = I, Sx = I, we have that

F η(y, x, t) ≤(0,x,0)
3 (‖Aη‖4 + 1)2

1−max (8 + 8 ‖Aη‖∞ , 1) t

where F η is defined in (6.1).

Proof. By the assumption that Sx = I, we have that ‖Sx‖2 = 1. Using ATA = I, we have that

‖DSx+tη(x, t)[(dx, dt)]‖2 = ‖Diag(Adx + dtAη)‖2
≤ ‖Adx‖∞ + ‖dtAη‖∞
≤ ‖dx‖2 + |dt| ‖Aη‖∞
≤ (1 + ‖Aη‖∞) ‖(dx, dt)‖2 .

Let β = 1 + ‖Aη‖∞. Then, we have that Sx+tη ≤(x,t=0) 1 + βt.
By using the inverse formula (Lemma 76),

S−1
x+tη ≤(x,0)

1

1− βt
.

Using ATA = I, we have that A ≤(x,0) 1 and hence product formula (Lemma 76) shows that

Ax+tη = S−1
x+tηA ≤(x,0)

1

1− βt
.
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Since ATA = I, we have that AAT � I and hence AT
x+tη ≤(x,0)

1
1−βt . Therefore, we have that

AT
x+tηAx+tη ≤(x,0)

1

(1− βt)2
.

By using the inverse formula again,

(

AT
x+tηAx+tη

)−1 ≤(x,0)
1

2− 1
(1−βt)2

=
(1− βt)2

2(1− βt)2 − 1
.

Hence, we have that

(

AT
x+tηAx+tη

)−1
AT

x+tη ≤(x,0)
(1− βt)2

2(1 − βt)2 − 1

1

1− βt
=

1− βt

2(1− βt)2 − 1
.

Now, we consider the function H(y) = (A(y + η))2. Note that

‖H(y)‖2 ≤ ‖A(y + η)‖24 ,
‖DH(y)[d]‖2 = 2 ‖(A(y + η))Ad‖2 ≤ 2 ‖A(y + η)‖4 ‖d‖2 ,

∥

∥D2H(y)[d, d]
∥

∥

2
≤ 2

∥

∥(Ad)2
∥

∥

2
≤ 2 ‖d‖22 .

Therefore, we have that

H ≤y=0 ‖Aη‖24 + 2 ‖Aη‖4 t+ t2 = (‖Aη‖4 + t)2.

Hence, we have that

F η(y, x, t) =
(

AT
x+tηAx+tη

)−1
AT

x+tηs
2
x+tη,y+η ≤(0,x,0)

(1− βt) (‖Aη‖4 + t)2

2(1− βt)2 − 1

1

(1− βt)2
.

Let φ(t) =
(‖Aη‖4+t)

2

(2(1−βt)2−1)(1−βt)
and we write φ(t) =

∑∞
k=0 akt

k. For any complex |z| = 1
8 min

(

1
β , ‖Aη‖4 + 8

)

,

we have that

|φ(z)| ≤ (1− 1
8 )

(2(1− 1
8)

2 − 1)
(

1− 1
8

)2

(

‖Aη‖4 +
‖Aη‖4

8
+ 1

)2

≤ 3 (‖Aη‖4 + 1)2 (‖Aη‖4 + 1)2 .

Theorem 19 shows that

|ak| ≤ 3 (‖Aη‖4 + 1)2
(

8max
(

β, (‖Aη‖4 + 8)−1
))k

≤ 3 (‖Aη‖4 + 1)2 (max (8β, 1))k

Hence, we can instead bound F η by

F η ≤(0,x,0)
3 (‖Aη‖4 + 1)2

1−max (8 + 8 ‖Aη‖∞ , 1) t
.

Now, we prove the geodesic has large radius of convergence.
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Lemma 81. Under the normalization ATA = I, Sx = I and Euclidean coordinate, any geodesic
starting at x satisfies the bound

∥

∥

∥γ(k)(0)
∥

∥

∥

2
≤ k!ck

for all k ≥ 2 where c = 512 ‖Aγ′(0)‖4.
Proof. Recall that under Euclidean coordinate, the geodesic equation is given by

γ′′ =
(

AT
γAγ

)−1
AT

γ s
2
γ′

def
= F (γ′, γ).

So, we have that F η(y, x, t) = α2F (α−1y + γ′(0), x + αtγ′(0)) with η = αγ′(0).
Now, we estimate F η. Lemma 80 shows that

F η ≤(0,x,0)
3 (‖Aη‖4 + 1)2

1−max (8 + 8 ‖Aη‖∞ , 1) t
=

3 (α ‖Aγ′(0)‖4 + 1)2

1−max (8 + 8α ‖Aγ′(0)‖∞ , 1) t
.

Setting α = ‖Aγ′(0)‖−1
4 and using ‖Aγ′(0)‖∞ ≤ ‖Aγ′(0)‖4, we have that

F η ≤(0,x,0)
12

1− 16t
≤0

16

1− 16t
− 1− t.

Lemma 78 shows that
∥

∥

∥
γ(k)(0)

∥

∥

∥

2
≤ ψ(k)(0)

αk

for all k ≥ 2 where ψ(t) is the solution of

ψ′(t) =
16

1− 16ψ(t)
with ψ(0) = 0.

Solving it, we get that

ψ(t) =
1

16
(1−

√
1− 512t).

By Theorem 19, we have that
∣

∣

∣
ψ(k)(0)

∣

∣

∣
≤ k!(512)k .

Hence, we have that
∥

∥

∥γ(k)(0)
∥

∥

∥

2
≤ k!(512)k

αk
= k!(512)k

∥

∥Aγ′(0)
∥

∥

k

4

for all k ≥ 2.

6.1.2 Parallel Transport

Motivated from the equation for parallel transport under Euclidean coordinate 4.2, we define the
following auxiliary function

F (t) = (AT
γ(t)Aγ(t))

−1AT
γ(t)Sγ′(t)Aγ(t). (6.2)

The derivative bounds on parallel transport rely on the smoothness of this auxiliary function.

Lemma 82. Given a geodesic γ(t). Under the normalization that ATA = I, Sγ(0) = I, we have
that

F (t) ≤0
c

2(1− 2ct)2 − (1− ct)2
1− ct

1− 2ct

where F is defined in (6.2) and c = 512 ‖Aγ′(0)‖4.
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Proof. Lemma 81 shows that
∥

∥γ(k)(0)
∥

∥

2
≤ k!ck for all k ≥ 2. Therefore, we have that

Sγ(t) ≤0 1 + t
∥

∥Aγ′(0)
∥

∥

∞ +
∑

k≥2

(ct)k ≤0
1

1− ct
.

Using Lemma 76, we have that

Aγ(t) ≤0
1

2− 1
1−ct

=
1− ct

1− 2ct

and hence

(AT
γ(t)Aγ(t))

−1AT
γ(t) ≤0

(1− 2ct) (1− ct)

2(1− 2ct)2 − (1− ct)2
.

Now, we note that

Diag(Aγ′(t)) ≤0

∥

∥Aγ′(0)
∥

∥

∞ +
∑

k≥1

(k + 1)!ck+1tk

k!
≤0

c

(1− ct)2
(6.3)

and hence

Sγ′ = S−1
γ Diag(Aγ′(t)) ≤0

1− ct

1− 2ct

c

(1− ct)2
=

c

(1− 2ct)(1 − ct)
.

This gives the result.

Now, we prove parallel transport has large radius of convergence.

Lemma 83. Given a geodesic with γ(0) = x. Let v(t) be the parallel transport of a unit vector
along γ(t). Under the normalization that ATA = I, Sγ(0) = I, we have that

∥

∥

∥v(k)(0)
∥

∥

∥

2
≤ k! (16c)k

for all k ≥ 1 where c = 512 ‖Aγ′(0)‖4.

Proof. From (4.2), we have that

d

dt
v(t) = (AT

γ(t)Aγ(t))
−1AT

γ(t)Sγ′(t)Aγ(t)v(t).

Let u(t) = v(αt), then we have that

u′(t) = αv′(αt)

= α(AT
γ(αt)Aγ(αt))

−1AT
γ(αt)Sγ′(αt)Aγ(αt)u(t).

Let F (x, t) = α(AT
γ(αt)Aγ(αt))

−1AT
γ(αt)Sγ′(αt)Aγ(αt)x. Then, Lemma 82 shows that

F (x, t) ≤(v,0)
αc

2(1 − 2αct)2 − (1− αct)2
1− αct

1− 2αct
(1 + t).

Setting α = 1
8c , we have that

F (x, t) ≤(v,0)

1
8

2(1 − t
4)

2 −
(

1− t
8

)2

1− t
8

1− t
4

(1 + t) ≤0
1

1− t
.
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Lemma 77 shows that
∥

∥

∥
u(k)(0)

∥

∥

∥

2
≤ ψ(k)(0)

for all k ≥ 1 where ψ(t) is the solution of

ψ′(t) =
1

1− ψ(t)
with ψ(0) = 0.

Solving it, we get that
ψ(t) = 1−

√
1− 2t.

By Theorem 19, we have that for any 0 ≤ t ≤ 1
2 , we have that

∥

∥

∥
u(k)(0)

∥

∥

∥

2
≤
∣

∣

∣
ψ(k)(0)

∣

∣

∣
≤ k!2k

for all k ≥ 1. For k ≥ 1, we have that
∥

∥

∥
v(k)(0)

∥

∥

∥

2
≤ k! (16c)k .

6.1.3 Jacobi field

Motivated from the equation for Jacobi field under orthogonal frame basis (Lemma 49), we define
the following auxiliary function

F (t) = X−1(AT
γAγ)

−1
(

AT
γ Sγ′PγSγ′Aγ −AT

γ diag(Pγs
2
γ′)Aγ

)

X. (6.4)

The derivative bounds on Jacobi field rely on the smoothness of this auxiliary function.

Lemma 84. Given a geodesic γ(t) and an orthogonal frame {xi}ni=1. Under the normalization that
ATA = I, Sγ(0) = I, we have that

F (t) ≤0
12c2

1− 64ct

where F is defined in (6.4) and c = 512 ‖Aγ′(0)‖4.

Proof. We first bound the derivatives of s2γ′ . Using
∥

∥γ(k)(0)
∥

∥

2
≤ k!ck for all k ≥ 2 (Lemma 81), we

have that

γ′(t)− γ′(0) ≤0
d

dt

1

1− ct
=

c

(1− ct)2
.

Using ATA = I and Diag(Aγ′(t)) ≤0
c

(1−ct)2 (6.3), we have that

Diag(Aγ′(t))A(γ′(t)− γ′(0)) ≤0

(

c

(1− ct)2

)2

. (6.5)

Next, we note that

Diag(Aγ′(t))Aγ′(0) = Diag(Aγ′(0))A(γ′(t)− γ′(0)) + Diag(Aγ′(0))2.

and hence

Diag(Aγ′(t))Aγ′(0) ≤0
c2

(1− ct)2
+ c2. (6.6)
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Combining (6.5) and (6.6), we get

Diag(Aγ′(t))A(γ′(t)) ≤0

(

c

(1− ct)2

)2

+
c2

(1− ct)2
+ c2 ≤0

3c2

(1− ct)4

In the proof of Lemma 82, we showed that Sγ ≤0
1

1−ct and hence

s2γ′ = S−2
γ Diag(Aγ′(t))A(γ′(t)).

≤0

(

1

2− 1
1−ct

)2
3c2

(1− ct)4

=
3c2

(1− ct)2(2(1− ct)− 1)2
.

In the proof of Lemma 82, we showed that Aγ ≤0
1−ct
1−2ct and (AT

γAγ)
−1 ≤0

(1−2ct)2

2(1−2ct)2−(1−ct)2
. There-

fore, we have that

Pγ = Aγ(A
T
γAγ)

−1AT
γ ≤0

(1− ct)2

2(1 − 2ct)2 − (1− ct)2
.

Hence, we have

Pγs
2
γ′ ≤0

(1− ct)2

2(1− 2ct)2 − (1− ct)2
3c2

(1− ct)2(1− 2ct)2

=
3c2

(1− 2ct)2(2(1 − 2ct)2 − (1− ct)2)
.

Let Y = (AT
γAγ)

−1
(

AT
γ Sγ′PγSγ′Aγ −AT

γ diag(Pγs
2
γ′)Aγ

)

. By a similar proof, we have that

Y0 ≤0
(1− 2ct)2

2(1 − 2ct)2 − (1− ct)2

(

1− ct

1− 2ct

)2

(

(

c

(1− 2ct)(1 − ct)

)2 (1− ct)2

2(1− 2ct)2 − (1− ct)2
+

3c2

(1− 2ct)2(2(1 − 2ct)2 − (1− ct)2)

)

=
4c2

(2(1 − 2ct)2 − (1− ct)2)2

(

1− ct

1− 2ct

)2

Next, we let z(t) = X(t)v for some unit vector v. Since X(t) is a parallel transport of X(0),
z(t) is a parallel transport of X(0)v and hence Lemma 83 shows that

∥

∥z(k)(t)
∥

∥

2
≤ k! (16c)k for all

i. For any k, there is unit vector vk such that
∥

∥

d
dtk
X(0)

∥

∥

2
=
∥

∥

d
dtk
X(0)vk

∥

∥

2
. Hence, we have that

∥

∥

∥

∥

d

dtk
X(0)

∥

∥

∥

∥

2

≤ k! (16c)k .

Therefore, we have that X ≤0
1

1−16ct . Since X(0) = I, we have that X−1 ≤0
1

2− 1
1−16ct

= 1−16ct
1−32ct .

Thus, we have that

F (t) ≤0
4c2

(2(1 − 2ct)2 − (1− ct)2)2

(

1− ct

1− 2ct

)2 1

1− 32ct

≤0
12c2

1− 64ct
.
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Now, we prove Jacobi field has large radius of convergence.

Lemma 85. Given a geodesic γ(t) and an orthogonal frame {Xi}ni=1 along γ. Let V (t) be a Jacobi
field along γ(t) with V (0) = 0 and let U(t) be the Jacobi field under the Xi coordinates, namely,
V (t) = X(t)U(t). Assume that U(0) = 0. Under the normalization that ATA = I, Sγ(0) = I, we
have that

∥

∥

∥U (k)(0)
∥

∥

∥

2
≤ 4(k!) (256c)k−1

∥

∥U ′(0)
∥

∥

2

for all k ≥ 2 where c = 512 ‖Aγ′(0)‖4.

Proof. Note that d2U(t)
dt2

+F (t)U(t) = 0 where F (t) defined in (6.4). Let F (U, t) = α2F (αt) (U + αtU ′(0))
with α = 1

64c .
Since the differential equation is linear, we can rescale U and assume that ‖U ′(0)‖2 = 1

α = 64c.

Using α2F (αt) ≤0
12c2α2

1−64cαt (Lemma 84), U ≤U=0 t and αtU ′(0) ≤t=0 ‖αU ′(0)‖2 t = t, we have
that

F ≤(0,0)
24c2α2t

1− 64cαt

≤0
t

1− t
≤0

2t

1− t
− 1− t.

Lemma 78 shows that that
∥

∥

∥
U (k)(0)

∥

∥

∥

2
≤ ψ(k)(0)

αk

for all k ≥ 2 where ψ(t) is the solution of

ψ′(t) =
2

1− ψ(t)
with ψ(0) = 0.

Solving it, we get that
ψ(t) = 1−

√
1− 4t.

By Theorem 19, we have that for any 0 ≤ t ≤ 1
4 , we have that

∣

∣

∣
ψ(k)(0)

∣

∣

∣
≤ k!(4)k .

Hence, we have that
∥

∥

∥
U (k)(0)

∥

∥

∥

2
≤ k!4k

αk
≤ k! (256c)k

for all k ≥ 2.
Since we have rescaled the equation, we need to rescale it back and get the result.

6.2 Computing Geodesic Equation

To apply Theorem 65, we define

F (u, s) = A(ATS−2A)−1ATS−3u2 (6.7)

The following lemma bounds the Lipschitz constant of F .

Lemma 86. Assuming 1
2 ≤ si ≤ 2 for all i. Then, we have

‖DF (u, s)[du, ds]‖22 ≤ 104
(

‖ds‖2∞ ‖u‖44 + ‖du‖24 ‖u‖
2
4

)

.
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Proof. Let As = S−1A and Sd = S−1Diag(ds). Then, we have F (u, s) = A(AT
s As)

−1AT
s S

−2u2.
Hence, we have that

DF (u, s)[du, ds] = 2A(AT
s As)

−1AT
s SdAs(A

T
s As)

−1AT
s S

−2u2

−3A(AT
s As)

−1AT
s SdS

−2u2

+2A(AT
s As)

−1AT
s S

−2Udu

Let P = As

(

AT
s As

)−1
AT

s , then, we have that

‖DF (u, s)[du, ds]‖22 ≤ 12
(

u2
)T
S−2PSdPS

2PSdPS
−2u2

+27
(

u2
)T
S−2SdPS

2PSdS
−2u2

+12dTuS
−2UPS2PUS−2du.

Using that P � I, we have that

‖DF (u, s)[du, ds]‖22
≤ 12 ‖S‖2∞

(

u2
)T
S−2PS2

dPS
−2u2 + 27 ‖S‖2∞

(

u2
)T
S−2S2

dS
−2u2 + 12 ‖S‖2∞

∥

∥S−1
∥

∥

4

∞
∑

i

(du)
2
iu

2
i

≤ 39 ‖S‖2∞
∥

∥S−1
∥

∥

4

∞ ‖Sd‖2∞ ‖u‖44 + 12 ‖S‖2∞
∥

∥S−1
∥

∥

4

∞ ‖u‖24 ‖du‖
2
4

≤ 39 ‖S‖2∞
∥

∥S−1
∥

∥

6

∞ ‖ds‖2∞ ‖u‖44 + 12 ‖S‖2∞
∥

∥S−1
∥

∥

4

∞ ‖u‖24 ‖du‖
2
4 .

Now, we use that 1
2 ≤ si ≤ 2 and get

‖DF (u, s)[du, ds]‖22 ≤ 9984 ‖ds‖2∞ ‖u‖44 + 768 ‖u‖24 ‖du‖24 .

Now, we can apply the collocation method to obtain a good approximation of geodesics.

Lemma 87. Let γ be a random geodesic generated by the geodesic walk with step size h ≤ 1
1020

√
n
.

With probability at least 1−O( 1n) among γ, in time O(mnω−1 log2(n/ε)), we can find γ such that

max
0≤t≤ℓ

‖γ(t)− γ(t)‖∞ ≤ ε and max
0≤t≤ℓ

∥

∥γ′(t)− γ′
∥

∥

∞ ≤ ε.

Furthermore, γ is a O(log(1/ε)) degree polynomial.

Proof. Let s(t) = Aγ(t) − b. By rotating the space and rescaling the rows of A, we assume that
s(0)i = 1 for all i and ATA = I. We define F as (6.7). Then, we have that

s′′(t) = F (s′, s),

s′(0) = Aγ′(0),

s(0) = 1.

We let α = 4000ℓ and

K
def
= α

∥

∥F (Aγ′(0), 1)
∥

∥

4
+
∥

∥Aγ′(0)
∥

∥

4

= α
∥

∥

∥A(ATA)−1AT
(

Aγ′(0)
)2
∥

∥

∥

2
+
∥

∥Aγ′(0)
∥

∥

4

≤ α
∥

∥Aγ′(0)
∥

∥

2

4
+
∥

∥Aγ′(0)
∥

∥

4
.
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Using ‖Aγγ
′(0)‖4 ≤ 48n−1/4 with probability 1− 3

n (Lemma 53 and 54), we have that

K ≤ 4000ℓ
(

48n−1/4
)2

+ 48n−1/4 ≤ 100n−1/4,

αK ≤ 4000ℓ · 100n−1/4 ≤ 1

2
.

For any ‖u− s′(0)‖4 ≤ K ≤ 100n−1/4, ‖s− 1‖4 ≤ αK ≤ 1
2 , Lemma 86 shows that

‖DF (u, s)[du, ds]‖4 ≤ ‖DF (u, s)[du, ds]‖2
≤ 102

(

‖ds‖∞ ‖u‖24 + ‖du‖4 ‖u‖4
)

≤ 107
(

n−1/2 ‖ds‖∞ + n−1/4 ‖du‖4
)

.

Therefore, for any ‖u1 − s′(0)‖4 ≤ K, ‖s1 − 1‖4 ≤ αK, ‖u2 − s′(0)‖4 ≤ K, ‖s2 − 1‖4 ≤ αK, we
have that

‖F (u1, s1)− F (u2, s2)‖4 ≤ 107n−1/4 ‖u1 − u2‖4 + 107n−1/2 ‖s1 − s2‖4
≤ 1

α
‖u1 − u2‖4 +

1

α2
‖s1 − s2‖4 .

Since γ is analytic and
∥

∥γ(k)(0)
∥

∥

2
= O(k!n−k/4) (Lemma 83), γ(t) is ε close to the following

polynomial
Θ(log(1/ε))
∑

k=0

1

k!
γ(k)(0)tk

for 0 ≤ t ≤ cn1/4 for some small constant c. Hence, we can apply Theorem 69 and find γ such
that ‖γ − γ‖4 ≤ ε and ‖γ′ − γ′‖4 ≤ ε in O(n log3(nK/ε)) time plus O(log2(K/ε)) evaluations of
F . Note that each evaluation of F involves solving a linear system and hence it takes O(mnω−1).
Therefore, the total running time is O(mnω−1 log2(n/ε)).

6.3 Computing Parallel Transport

Lemma 88. Given γ be a random geodesic generated by the geodesic walk with step size h ≤
1

1020
√
n

and an unit vector v. Let v(t) be the parallel transport of a unit vector along γ(t). With

probability at least 1 − O( 1n) among γ, in time O(mnω−1 log2(n/ε)), we can find v such that
max0≤t≤ℓ ‖v(t)− v(t)‖∞ ≤ ε. Furthermore, v is a O(log(1/ε)) degree polynomial.

Similarly, given a basis {vi}ni=1, with probability at least 1−O( 1n), in time O(mnω−1 log2(n/ε)),
we can find an approximate parallel transport vi(t) of {vi}ni=1 along γ(t) such that max0≤t≤ℓ ‖vi(t)− vi(t)‖∞ ≤
ε for all i.

Proof. Recall that the equation for parallel transport (4.2) is given by

d

dt
v(t) =

(

AT
γ(t)Aγ(t)

)−1
AT

γ(t)Sγ′(t)Aγ(t)v.

By rotating the space and rescaling the rows of A, we assume that s(γ(0))i = 1 for all i and
ATA = I. In the proof of Lemma 87, we know that 1

2 ≤ s(γ(t))i ≤ 2 for all 0 ≤ t ≤ ℓ. For any unit
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vector u, we have
∥

∥

∥

(

AT
γAγ

)−1
AT

γ Sγ′Aγu
∥

∥

∥

2
≤ 2

∥

∥

∥

(

AT
γAγ

)−1/2
AT

γ Sγ′Aγu
∥

∥

∥

2

≤ 2
∥

∥Sγ′

∥

∥

∞ ‖Aγu‖2

≤ 4
∥

∥Sγ′

∥

∥

∞ ≤ 192

(
√

log n

n
+

√
h

)

where we used Lemma 54 in the last line. Using h ≤ 1
1020

√
n
, we have that

∥

∥

∥

(

AT
γAγ

)−1
AT

γ Sγ′Aγ

∥

∥

∥

2
≤ 1

2000ℓ
.

Since v is analytic and
∥

∥v(k)(0)
∥

∥

2
= O(k!n−k/4) (Lemma 83), v(t) is ε close to a polynomial with

degree O(log(1/ε)) for 0 ≤ t ≤ cn1/4 for some small constant c. Hence, we can apply Theorem 65
and find v such that ‖v − v‖2 ≤ ε in O(n log3(n/ε)) time plus O(log2(1/ε)) evaluations of F . Note
that each evaluation of F involves solving a linear system and hence it takes O(mnω−1). Therefore,
the total running time is O(mnω−1 log2(n/ε)).

For the last result, we note that each evaluation of F becomes computing matrix inverse and
performing matrix multiplication and they can be done in again O(mnω−1) time.

6.4 Computing Jacobi field

Lemma 89. Given γ be a random geodesic generated by the geodesic walk with step size h ≤ 1
1020

√
n
.

Let {Xi}ni=1 be an orthogonal frame along γ. Let v(t) be a Jacobi field along γ(t) with v(0) = 0
and ‖v′(0)‖ ≤ · · · . Let u(t) be the Jacobi field under the Xi coordinates, namely, v(t) = X(t)u(t).
With probability at least 1 − O( 1n) among γ, In time O(mnω−1 log2(n/ε)), we can find u such that
max0≤t≤ℓ ‖u(t)− u(t)‖∞ ≤ ε. Furthermore, u is a O(log(1/ε)) degree polynomial.

Proof. Recall that the equation for Jacobi field 49 is given by

d2u

dt2
+X−1(AT

γAγ)
−1
(

AT
γ Sγ′PγSγ′Aγ −AT

γDiag(Pγs
2
γ′)Aγ

)

Xu = 0.

By rotating the space and rescaling the rows of A, we assume that s(γ(0))i = 1 for all i and
ATA = I. In the proof of Lemma 87, we know that 1

2 ≤ s(γ(t))i ≤ 2 for all 0 ≤ t ≤ ℓ. Since X is
an orthogonal frame, we have XXT = XXT = I. Hence, for any unit vector v, we have

∥

∥X−1(AT
γAγ)

−1
(

AT
γ Sγ′PγSγ′Aγ −AT

γDiag(Pγs
2
γ′)Aγ

)

Xv
∥

∥

2

≤2
∥

∥

∥(AT
γAγ)

−1/2
(

AT
γ Sγ′PγSγ′Aγ −AT

γDiag(Pγs
2
γ′)Aγ

)

Xv
∥

∥

∥

2

≤2
∥

∥Sγ′PγSγ′AγXv
∥

∥

2
+ 2

∥

∥Diag(Pγs
2
γ′)AγXv

∥

∥

2
.

Using
∥

∥Sγ′

∥

∥

2
≤ 48

(

√

logn
n +

√
h

)

and
∥

∥

∥Diag(Pγs
2
γ′)
∥

∥

∥

2
≤
∥

∥

∥Pγs
2
γ′

∥

∥

∥

2
≤
∥

∥sγ′

∥

∥

2

4
≤ 104n−1/2 (Lemma

54), we have that
∥

∥X−1(AT
γAγ)

−1
(

AT
γ Sγ′PγSγ′Aγ −AT

γDiag(Pγs
2
γ′)Aγ

)

Xv
∥

∥

2

≤2

(

48

(
√

log n

n
+

√
h

))2

‖AγXv‖2 + 4 · 104n−1/2 ‖AγXv‖2

≤ 1

(4000ℓ)2
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where we used h ≤ 1
1020

√
n

in the last line.

Since u is analytic and
∥

∥u(k)(0)
∥

∥

2
= O(k!n−k/4) (Lemma 85), u(t) is ε close to a polynomial

with degree O(log(1/ε)) for 0 ≤ t ≤ cn1/4 for some small constant c. Hence, we can apply Theorem
65 and find u such that ‖u− u‖2 ≤ ε in O(n log3(n/ε)) time plus O(log2(1/ε)) evaluations of F .
Note that each evaluation of F involves computing matrix inversions and matrix multiplications
and hence it takes O(mnω−1). Therefore, the total running time is O(mnω−1 log2(n/ε)).

6.5 Computing Geodesic Walk

Proof of Theorem 46. To implement the geodesic walk, we use Lemma 87 to compute the geodesic,
Lemma 88 to compute an orthogonal frame along the geodesic and Lemma 89 to compute the Jacobi
field along. Using the Jacobi field, we can use (3.2) and Lemma 34 to compute the probability from
x to y and the probability from y to x. Using these probabilities, we can implement the rejection
sampling. It suffices to compute the geodesic and the probability up to 1/nO(1) accuracy and hence
these operations can be done in time O(mnω−1 log2(n)).

Note that we only use randomness to prove that V (γ) is small (Lemma 53) and they can be
checked. When we condition our walk to that, we only change the distribution by very small amount.
Hence, this result is stated without mentioning the success probability.
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A Additional proofs

Proof of Lemma 13. Let T (y) = expx(y). Then, we have

F (T (y)) = y.

Therefore,
DF (T (y))[DT (y)[h]] = h

and
D2F (T (y))[DT (y)[h],DT (y)[h]] +DF (T (y))[D2T (y)[h, h]] = 0.

By the geodesic equation, we have

d2xk
dt2

+
∑

i,j

Γk
ij

dxi
dt

dxj
dt

= 0.

Therefore,

T (y) = x+ y − 1

2

∑

i,j

Γk
ijyiyj +O(‖y‖3). (A.1)

Putting y = 0, we have DT (0)[h] = h and hence DF (x)[h] = h. Now, we note that

D2F (x)[DT (0)[h],DT (0)[h]] +DF (x)[D2T (0)[h, h]] = 0.

Hence,
D2F (x)[h, h] = −D2T (0)[h, h].

Using (A.1), we have D2Tk(0)[h, h] = −hTΓkh and hence D2Fk(x)[h, h] = hTΓkh.

Lemma 90. For p ≥ 1, we have

Px∼N(0,I)



‖Ax‖pp ≤





(

2p/2Γ(p+1
2 )√

π

∑

i

‖ai‖p2

)1/p

+ ‖A‖2→p t





p

 ≤ 1− exp

(

− t
2

2

)

.

In particular, we have

Px∼N(0,I)



‖Ax‖44 ≤





(

3
∑

i

‖ai‖42

)1/4

+ ‖A‖2→4 t





4

 ≤ 1− exp

(

− t
2

2

)

.

Proof. Let F (x) = ‖Ax‖p. Since |F (x)− F (y)| ≤ ‖A‖2→p ‖x− y‖2, Gaussian concentration shows
that

Px∼N(0,I)

(

F (x) ≤ EF (x) + ‖A‖2→p t
)

≤ 1− exp

(

− t
2

2

)

.

Since xp is convex, we have that

E ‖Ax‖p ≤
(

E ‖Ax‖pp
)1/p

=

(

∑

i

E
∣

∣aTi x
∣

∣

p

)1/p

=

(

Et∼N(0,1)|t|p
∑

i

‖ai‖p2

)1/p

=

(

2p/2Γ(p+1
2 )√

π

∑

i

‖ai‖p2

)1/p

.
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Lemma 91. Let ψ(x) =

√
1−y2 cos(d cos−1 x)

d(x−y) where y = cos(2k−1
2d π) for some integer k ∈ [d]. Then,

we have that
∣

∣

∣

∣

∫ t

−1
ψ(x)dx

∣

∣

∣

∣

≤ 2000

d
.

for any −1 ≤ t ≤ 1.

Proof. For d = 1, we have that y = 0 and ψ(x) = 1. Hence, we have the result.
From now on, we assume d ≥ 2. Let zj = cos (jπ/d). Given j ∈ [d] with j 6= k. Let

j =

{

j if |zj − y| ≤ |zj−1 − y|
j − 1 otherwises

.

Then, we have that
∣

∣

∣

∣

∣

∫ zj

zj−1

ψ(x)dx

∣

∣

∣

∣

∣

≤
√

1− y2

d

∣

∣

∣

∣

∣

∫ zj

zj−1

cos
(

d cos−1 x
)

zj − y
dx

∣

∣

∣

∣

∣

+

√

1− y2

d

∫ zj

zj−1

∣

∣

∣

∣

∣

cos
(

d cos−1 x
)

(zj − x)

(zj − y)(x− y)

∣

∣

∣

∣

∣

dx

≤
√

1− y2

d

∣

∣

∣

∣

∣

∫ zj

zj−1

cos
(

d cos−1 x
)

zj − y
dx

∣

∣

∣

∣

∣

+

√

1− y2

d

(zj − zj−1)
2

(zj − y)2

=

√

1− y2

d(d2 − 1)

∣

∣

∣

∣

∣

zj − zj−1

zj − zk− 1
2

∣

∣

∣

∣

∣

+

√

1− y2

d

(zj − zj−1)
2

(zj − zk− 1
2
)2
. (A.2)

Now, we upper bound the term (zj − zj−1)/(zj − zk− 1
2
). By trigonometric formulas, we have

∣

∣

∣

∣

∣

zj − zj−1

zj − zk− 1
2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

cos (jπ/d) − cos ((j − 1)π/d)

cos
(

jπ/d
)

− cos
(

(k − 1
2)π/d

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

sin
(

π
2d

)

sin
(

(j − 1
2)

π
d

)

sin
(

(
j−k+ 1

2
2 )πd

)

sin
(

(
j+k− 1

2
2 )πd

)

∣

∣

∣

∣

∣

∣

∣

.

Note that
∣

∣(j − k + 1
2)π/(2d)

∣

∣ ≤ π
2 and hence

∣

∣

∣

∣

∣

sin

(

j − k + 1
2

2

π

d

)∣

∣

∣

∣

∣

≥ 2

π

∣

∣

∣

∣

∣

j − k + 1
2

2

π

d

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

j − k + 1
2

d

∣

∣

∣

∣

∣

.

By symmetric, we can assume k − 1
2 ≤ d

2 and hence
∣

∣(j − k + 1
2)π/(2d)

∣

∣ ≤ 3π
4 and

∣

∣

∣

∣

∣

sin

(

j + k − 1
2

2

π

d

)∣

∣

∣

∣

∣

≥ 4

3
√
2π

∣

∣

∣

∣

∣

j + k − 1
2

2

π

d

∣

∣

∣

∣

∣

=

√
2

3

∣

∣

∣

∣

∣

j + k − 1
2

d

∣

∣

∣

∣

∣

.

Therefore, we have that
∣

∣

∣

∣

∣

zj − zj−1

zj − zk− 1
2

∣

∣

∣

∣

∣

≤
π
2d

∣

∣(j − 1
2)

π
d

∣

∣

∣

∣

∣

j−k+ 1
2

d

∣

∣

∣

√
2
3

∣

∣

∣

j+k− 1
2

d

∣

∣

∣

=
3π2

2
√
2

∣

∣j − 1
2

∣

∣

∣

∣j − k + 1
2

∣

∣

∣

∣j + k − 1
2

∣

∣

.

Note that
∣

∣j + k − 1
2

∣

∣ ≥ j − 1
2 ≥ 0 and hence

∣

∣

∣

∣

∣

zj − zj−1

zj − zk− 1
2

∣

∣

∣

∣

∣

≤ 3π2

2
√
2

1
∣

∣j − k + 1
2

∣

∣

.
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Putting it into (A.2), we get

∣

∣

∣

∣

∣

∫ zj

zj−1

ψ(x)dx

∣

∣

∣

∣

∣

≤ 1

d(d2 − 1)

3π2

2
√
2

1
∣

∣j − k + 1
2

∣

∣

+
1

d

(

3π2

2
√
2

1
∣

∣j − k + 1
2

∣

∣

)2

≤ 21

d(d2 − 1)
+

110

d

1
∣

∣j − k + 1
2

∣

∣

2 .

Using d ≥ 2, we have

∣

∣

∣

∣

∫ t

−1
ψ(x)dx

∣

∣

∣

∣

≤
∑

k 6=j

∣

∣

∣

∣

∣

∫ zj

zj−1

ψ(x)dx

∣

∣

∣

∣

∣

+

∫ zk

zk−1

|ψ(x)| dx

≤ 21

d2 − 1
+

220

d

(

1

0.52
+

1

1.52
+

1

2.52
+ · · ·

)

+

∫ zk

zk−1

|ψ(x)| dx

≤ 1200

d
+

∫ zk

zk−1

|ψ(x)| dx. (A.3)

To bound ψ over [zk, zk−1], we write x = cos(2k−1−θ
2d π) with −1 ≤ θ ≤ 1. We have that

ψ(x) =

√

1− cos(2k−1
2d π)2 cos

(

d cos−1 cos(2k−1−θ
2d π)

)

d(cos(2k−1−θ
2d π)− cos(2k−1

2d π))

=
− sin(2k−1

2d π) sin
(

θ
2π
)

2d(sin( θ
2dπ) sin(

2k−1−θ/2
2d π))

.

Since −1 ≤ θ ≤ 1 and d ≥ 2, we have

|ψ(x)| ≤ sin(2k−1
2d π)

∣

∣

θ
2π
∣

∣

2d
√
2|θ|
d sin(2k−1−θ/2

2d π)
=

π

4
√
2

sin(2k−1
2d π)

sin(2k−1−θ/2
2d π)

≤ π

4
√
2

sin( 1
2dπ)

sin( 1
4dπ)

≤ 2.

Putting it into (A.3), we get

∣

∣

∣

∣

∫ t

−1
ψ(x)dx

∣

∣

∣

∣

≤ 1200

d
+ 2 |zk − zk−1| ≤

2000

d
.

Exercise 92. Prove Fact 3 for Hessian manifolds using Lemma 10 as a definition.

Proof. We ignore the proof for (1) and (7) since we use Lemma 10 as the definition here. (3) and
(4) are immediate from the definition.
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(5) By the definition of Dt, we have that Dt = ∇c′ . Using the definition of ∇vu, we have

〈Dtu,w〉c(t) + 〈u,Dtw〉c(t)

=

〈

∑

ik

c′i
∂uk
∂xi

ek +
∑

ijk

c′iujΓ
k
ijek, w

〉

c(t)

+

〈

u,
∑

ik

c′i
∂wk

∂xi
ek +

∑

ijk

c′iwjΓ
k
ijek

〉

c(t)

=

〈

du(c(t))

dt
, w(c(t))

〉

c(t)

+

〈

u(c(t)),
dw(c(t))

dt

〉

c(t)

+
1

2

〈

∑

ijkl

γ′iujg
klφijlek, w

〉

c(t)

+
1

2

〈

u,
∑

ijkl

γ′iwjg
klφijlek

〉

c(t)

♦
=

〈

du(c(t))

dt
, w(c(t))

〉

c(t)

+

〈

u(c(t)),
dw(c(t))

dt

〉

c(t)

+
1

2

∑

ijklp

γ′iujg
klφijlgkpwp +

1

2

∑

ijklp

γ′iwjg
klφijlgkpup

♣
=

〈

du(c(t))

dt
, w(c(t))

〉

c(t)

+

〈

u(c(t)),
dw(c(t))

dt

〉

c(t)

+
1

2

∑

ijklp

γ′iujφijpwp +
1

2

∑

ijklp

γ′iwjφijpup

=

〈

du(c(t))

dt
, w(c(t))

〉

c(t)

+

〈

u(c(t)),
dw(c(t))

dt

〉

c(t)

+ u(t)T
d

dt
g(γ(t))w(t)

=
d

dt
〈u,w〉c(t)

where we used 〈a, b〉c(t) =
∑

aigijbj on ♦ and gkl is the inverse of gkp on ♣.
(6) For any map c(t, s) on M , we have that

Ds
∂c

∂t
=

∂

∂s

∂c

∂t
+
∑

ijk

∂ci
∂s

∂cj
∂t

Γk
ijek

=
∂

∂t

∂c

∂s
+
∑

ijk

∂ci
∂s

∂cj
∂t

Γk
ijek

= Dt
∂c

∂s
.

(2) Recall a curve is geodesic if
∥

∥

d
dtγ(t)

∥

∥

γ(t)
is constant and d

ds

∣

∣

s=0

∫ b
a

∥

∥

d
dtγ(t, s)

∥

∥

γ(t,s)
dt = 0 for

any variation of γ(t). We first prove that if Dtγ
′ = 0 then it is a geodesic. For the first criteria, we

use (5) and get
d

dt

∥

∥γ′(t)
∥

∥

2

γ(t)
=
〈

Dtγ
′, γ′
〉

γ(t)
+
〈

γ′,Dtγ
′〉
γ(t)

= 0.
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Hence,
∥

∥

d
dtγ(t)

∥

∥

γ(t)
is a constant. For the second criteria, we again use (5) and then (6) to get

d

ds

∫ b

a

∥

∥

∥

∥

d

dt
γ(t, s)

∥

∥

∥

∥

γ(t,s)

dt

♦
=

∫ b

a

1
∥

∥

d
dtγ(t, s)

∥

∥

γ(t,s)

〈

Ds
d

dt
γ(t, s),

d

dt
γ(t, s)

〉

γ(t,s)

dt

♣
=

∫ b

a

1
∥

∥

d
dtγ(t, s)

∥

∥

γ(t,s)

〈

Dt
d

ds
γ(t, s),

d

dt
γ(t, s)

〉

γ(t,s)

dt

♠
=

1
∥

∥

d
dtγ(t, s)

∥

∥

γ(t,s)

∫ b

a

d

dt

〈

d

ds
γ(t, s),

d

dt
γ(t, s)

〉

γ(t,s)

−
〈

d

ds
γ(t, s),Dt

d

dt
γ(t, s)

〉

γ(t,s)

dt

=
1

∥

∥

d
dtγ(t, s)

∥

∥

γ(t,s)

(

〈

d

ds
γ(b, s),

d

dt
γ(b, s)

〉

γ(b,s)

−
〈

d

ds
γ(a, s),

d

dt
γ(a, s)

〉

γ(b,s)

)

(A.4)

where we used (5) on ♦, (6) on ♣ and used (5) and
∥

∥

d
dtγ(t, s)

∥

∥

γ(t,s)
is a constant with respect to

t on ♠. In the last line, we use the fact that Dt
d
dtγ(t, s) = 0. Since d

dsγ(a, s) =
d
dsγ(b, s) = 0, we

have that d
ds

∫ b
a

∥

∥

d
dtγ(t, s)

∥

∥

γ(t,s)
dt = 0.

To prove that any geodesic satisfies Dtγ
′ = 0, by the calculation in (A.4), we have that

0 =

∫ b

a

〈

d

ds
γ(t, s),Dt

d

dt
γ(t, s)

〉

γ(t,s)

dt

for any variation γ(t, s) of γ(t). Since d
dsγ(t, s) is chosen by us, we can put d

dsγ(t, s) = Dt
d
dtγ(t, s)

and this gives that
∫ b
a

∥

∥Dt
d
dtγ(t, s)

∥

∥

2

2
dt = 0. Hence, we have the result.

Exercise 93. Prove the first part of Theorem 6.

Proof. Note that

DtDtu = ∇c′∇c′
∂c

∂s
= ∇c′∇ ∂c

∂s

∂c

∂t

= ∇ ∂c
∂s
∇c′

∂c

∂t
−R(

∂c

∂s
,
dc

dt
)
dc

dt

= −R(∂c
∂s
,
dc

dt
)
dc

dt

where we used Fact 3 in the first equality, Fact 4 in the second equality and ∇c′
∂c
∂t = 0 in the last

equality.
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