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Abstract. We study the problem of approximating the partition function of the ferromagnetic Ising model

in graphs and hypergraphs. Our �rst result is a deterministic approximation scheme (an FPTAS) for the partition

function in bounded degree graphs that is valid over the entire range of parameters β (the interaction) and

λ (the external �eld), except for the case |λ| = 1 (the “zero-�eld” case). A randomized algorithm (FPRAS)

for all graphs, and all β, λ, has long been known. Unlike most other deterministic approximation algorithms

for problems in statistical physics and counting, our algorithm does not rely on the “decay of correlations”

property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based

on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization

of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting

of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even

randomized) were known for a wide range of parameters. In order to achieve this extension, we establish

a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of

Suzuki and Fisher.
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1. Introduction

The Ising model, �rst studied a century ago as a model for magnetic phase transitions by Lenz and

Ising [21], has since become an important tool for the modeling of interacting systems. In the Ising model,

such a system is represented as a graph G = (V,E), so that the individual entities comprising the system

correspond to the vertices V and their pairwise interactions to the edges E. A con�guration of the system

is an assignment σ : V → {+,−} of one of two possible values (often called “spins”) to each vertex. The

model then induces a probability distribution (known as a Gibbs distribution) over these global con�gurations

in terms of local parameters that model the interactions of the vertices.

In our setting, it will be convenient to parameterize these interactions in terms of a vertex activity λ
(sometimes called an “external �eld”) that determines the propensity of a vertex to be in the + con�guration,

and an edge activity β ≥ 0 that models the tendency of vertices to agree with their neighbors. The model

assigns to each con�guration σ a weight

w(σ) := β|{{u,v}∈E | σ(u)6=σ(v)}|λ|{v | σ(v)=+}| = β|E(S,S)|λ|S|,

where S = S(σ) is the set of vertices assigned spin + in σ and E
(
S, S

)
is the set of edges in the cut

(
S, S

)
(i.e., the number of pairs of adjacent vertices assigned opposite spins). The probability of con�guration

σ under the Gibbs distribution is then µ(σ) := w(σ)/ZβG(λ), where the normalizing factor ZβG(λ) is the

partition function de�ned as

(1) ZβG(λ) :=
∑

σ:V→{+,−}

w(σ) =
∑
S⊆V

β|E(S,S)|λ|S|.

Notice that the partition function may be interpreted combinatorially as a cut generating polynomial in the

graph G.

In this paper we focus on the original ferromagnetic case in which β < 1, so that con�gurations in which

a larger number of neighboring spins agree (small cuts) have higher probability. The anti-ferromagnetic
regime β > 1 is qualitatively very di�erent, and prefers con�gurations with disagreements between

neighbors. We note also that all our results in this paper hold in the more general setting where there is a

di�erent interaction βe on each edge, provided that all the βe satisfy whatever constraints we are putting

on β. (So, e.g., in the ferromagnetic case βe < 1 for all e.) In addition, our results allow β to be negative

and λ to be complex; this will be discussed in more detail below.

As in almost all statistical physics and graphical models, the partition function captures the computational

complexity of the Ising model. Partition functions are #P-hard to compute in virtually any interesting case

(e.g., this is true for the Ising model except in the trivial cases λ = 0 or β ∈ {0, 1}), so attention is focused

on approximation. An early result in the �eld due to Jerrum and Sinclair [22] establishes a fully polynomial
randomized approximation scheme for the Ising partition function, valid for all graphs G and all values of

the parameters (β, λ) in the ferromagnetic regime. Like many of the �rst results on approximating partition

functions, this algorithm is based on random sampling and the Markov chain Monte Carlo method.

For several statistical physics models on bounded degree graphs (including the anti-ferromagnetic

Ising model [25, 41] and the “hard core”, or independent set model [45]), fully-polynomial deterministic
approximation schemes have since been developed, based on the decay of correlations property in those

models: roughly speaking, one can estimate the local contribution to the partition function at a given

vertex v by exhaustive enumeration in a neighborhood around v, using decay of correlations to truncate

the neighborhood at logarithmic diameter. The range of applicability of these algorithms is of course

limited to the regime in which decay of correlations holds, and indeed complementary results prove that

the partition function is NP-hard to approximate outside this regime [16,42]. Perhaps surprisingly, however,

no deterministic approximation algorithm is known for the classical ferromagnetic Ising partition function

that works over anything close to the full range of the randomized algorithm of [22]: to the best of our
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knowledge, the best deterministic algorithm, due to Zhang, Liang and Bai [47], is based on correlation

decay and is applicable to graphs of maximum degree ∆ only when β > (∆− 1)/(∆ + 1).

The restricted applicability of correlation decay based algorithms for the ferromagnetic Ising model arises

from two related reasons: the �rst is that this model does not exhibit correlation decay for β su�ciently close

to 0 (for any given value of the external �eld), so any straightforward approach based only on this property

cannot be expected to work for all β. Secondly, there is a regime of parameters for which, even though

decay of correlation holds, there is evidence to believe that it cannot be exploited to give an algorithm using

the usual techniques: see [41, Appendix 2] for a more detailed discussion of this point.

The �rst goal of this paper is to supply such a deterministic algorithm which covers almost the entire

range of parameters of the model except for the “zero-�eld” case |λ| = 1:

Theorem 1.1. Fix any ∆ > 0. There is a fully polynomial time approximation scheme (FPTAS) for the Ising
partition function ZβG(λ) in all graphs G of maximum degree ∆ for all edge activities −1 ≤ β ≤ 1 and all
(possibly complex) vertex activities λ with |λ| 6= 1.

Remark. Note that although λ, β are positive in the “physically relevant” range in most applications of

the Ising model, the above theorem also applies more generally to β ∈ [−1, 1] and complex valued λ not

on the unit circle. Moreover, we can allow edge-dependent activities βe provided all of them lie in [−1, 1].

The above theorem is actually a special case of a more general theorem for the hypergraph version of

the Ising model (Theorem 1.3 below). We now illustrate our approach to proving these theorems, which

will also allow us to introduce and motivate our further results in the paper.

In contrast to previous algorithms based on correlation decay, our algorithm is based on isolating the

complex zeros of the partition function Z := ZβG(λ) (viewed as a polynomial in λ for a �xed value of β).

This approach was introduced recently by Barvinok [6, 7] in the context of models di�erent from the Ising

model. We start with the observation that the 1 + ε multiplicative approximation of Z required for a

FPTAS corresponds to a O(ε) additive approximation of logZ . Barvinok’s approach considers a Taylor

expansion of logZ around a point λ0 such that Z(λ0) is easy to evaluate. (For the Ising model, λ0 = 0 is

such a choice.) It then seeks to evaluate the function at other points by carrying out an explicit analytic

continuation. More concretely, suppose it can be shown that there are no zeros of Z in the open disk

D(λ0, r) of radius r around λ0. From standard results in complex analysis, it then follows that the Taylor

expansion around λ0 of logZ is absolutely convergent in D(λ0, r) and further, that the �rst k terms of this

expansion evaluated at a point λ ∈ D(λ0, r) provide a O
(
|λ−λ0|k
rk

)
additive approximation of logZ(λ).

We note that Barvinok’s approach may be seen as an algorithmic counterpart of the traditional view of

phase transitions in statistical physics in terms of analyticity of logZ [46].

To apply this approach in the case of the ferromagnetic Ising model, we may appeal to the famous

Lee-Yang theorem of the 1950s [24], which establishes that the zeros of Z(λ) all lie on the unit circle in the

complex plane. This allows us to take λ0 = 0 and r = 1 in the previous paragraph, and thus approximate

Z(λ) at any point λ satisfying |λ| < 1. This extends to all λ with |λ| 6= 1 via the fact that Z(λ) = λnZ( 1
λ).

Remark. We note that the case |λ| = 1 is likely to require additional ideas because it is known that there

exist bounded degree graphs (namely ∆-ary trees) for which the partition function ZβG(λ) has complex

zeros within distance O(1/n) of λ = 1, where n is the size of the graph. In fact, the zeros are even known

to become dense on the whole unit circle as n increases to in�nity [4, 5]. This precludes the possibility of

e�ciently carrying out the analytic continuation procedure for logZ to arbitrary points on the unit circle,

and to the point λ = 1 in particular.

Converting the above approach into an algorithm requires computing the �rst k coe�cients in the Taylor

expansion of logZ around λ0. Barvinok showed that this computation can in turn be reduced to computing

O(k) leading coe�cients of the partition function itself. In the case of the Ising model, computing k
such coe�cients is roughly analogous to computing k-wise correlations between the vertex spins, and
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doing so naively on a graph of n vertices requires time Ω(nk). Until recently, no better ways to perform

this calculation were known and hence approximation algorithms using this approach typically required

quasi-polynomial time in order to achieve a (1 + 1/ poly(n))-factor multiplicative approximation of Z
(equivalently, a 1/ poly(n) additive approximation of logZ), since this requires the Taylor series for logZ
to be evaluated to k = Ω(log n) terms [7–9].

Recently, Patel and Regts [35] proposed a way to get around this barrier for several classes of partition

functions. Their method is based on writing the coe�cients in the Taylor series of logZ as linear combina-

tions of counts of connected induced subgraphs of size up to Θ(log n). This is already promising, since the

number of connected induced subgraphs of sizeO(log n) of a graphG of maximum degree ∆ is polynomial

in the size of G when ∆ is a �xed constant. Further, the count of induced copies of such a subgraph can also

be computed in time polynomial in the size of G [14]. Patel and Regts built on these tools to show a way to

compute the Θ(log n) Taylor coe�cients of logZ needed in Barvinok’s approach for several families of

partition functions, for some of which correlation decay based algorithms are still not known.

Unfortunately, for the case of the Ising model, it is not clear how to write the Taylor coe�cients in terms

of induced subgraph counts. Indeed, in their paper [35, Theorem 1.4], Patel and Regts apply their method

to the Ising model viewed as a polynomial in β rather than λ, which allows them to use subgraph counts.

However, this prevents them from using the Lee-Yang theorem, and they are consequently able to establish

only a small zero-free region. As a result, they can handle only the zero-�eld “high-temperature” regime

(where in fact the correlation decay property also holds), speci�cally the regime |β − 1| ≤ 0.34/∆ and

λ = 1.

In this paper, we instead propose a generalization of the framework of Patel and Regts to objects that we

call insects. An insect is a graph in which each vertex is decorated with an additional number of dangling

“half edges” attached to it: we refer to section 3.1 for precise de�nitions. Using the appropriate notions for

counting induced sub-insects, we are then able to write the coe�cients arising in the Taylor expansion

of logZ for the Ising model in terms of induced sub-insect counts, and derive from there algorithms for

computing Ω(log n) such coe�cients in polynomial time in graphs of bounded degree. This establishes

Theorem 1.1. We note that if one is only interested in deriving Theorem 1.1, then this can also be done

using the notion of fragments, developed by Patel and Regts [35] in the di�erent context of edge coloring

models, which turns out to be a special case of our notion of insects.

Our framework of insects, however, also allows us to extend the above approach to the more general

setting where G is a hypergraph (and further, when the edge activities are edge-dependent), as studied, for

example, in the work of Suzuki and Fisher [44]. We note that the Jerrum-Sinclair MCMC approach [22]

apparently does not extend to hypergraphs, and there is currently no known polynomial time approxi-

mation algorithm (even randomized) for a wide range of β in this setting. For a hypergraph H = (V,E),

con�gurations are again assignments of spins to the vertices V and the partition function ZβH(λ) is de�ned

exactly as in (1), where the cut E(S, S) consists of those hyperedges with at least one vertex in each of S
and S. The computation of coe�cients via insects carries through as before, but the missing ingredient

is a extension of the Lee-Yang theorem to hypergraphs. Suzuki and Fisher [44] prove a weak version of

the Lee-Yang theorem for hypergraphs (see Theorem 4.3 in section 4), which we are able to strengthen to

obtain the following optimal statement, which is of independent interest:

Theorem 1.2. Let H = (V,E) be a hypergraph with maximum hyperedge size k ≥ 3. Then all the zeros
of the Ising model partition function ZβH(λ) lie on the unit circle if and only if the edge activity β lies in the
range − 1

2k−1−1
≤ β ≤ 1

2k−1 cosk−1( π
k−1)+1

.

Remark. Once again, we can allow edge-dependent activities βe provided all of them lie in the range

stipulated above. This extension also applies to Theorem 1.3 below.

Note that the classical Lee-Yang theorem (for the graph case k = 2) establishes this property for 0 ≤ β ≤ 1
(the ferromagnetic regime). Our proof of Theorem 1.2 follows along the lines of Asano’s inductive proof of
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the Lee-Yang theorem [3], but we need to carefully analyze the base case (where H consists of a single

hyperedge) in order to obtain the above bounds on β. Since our analysis of the base case is tight, the range

of β in our theorem is optimal. For a detailed comparison with the Suzuki-Fisher theorem, see the Remark

following Corollary 4.5.

Combining Theorem 1.2 with our earlier algorithmic approach immediately yields the following general-

ization of Theorem 1.1 to hypergraphs.

Theorem 1.3. Fix any ∆ > 0 and k ≥ 3. There is an FPTAS for the Ising partition function ZβH(λ) in all
hypergraphs H of maximum degree ∆ and maximum edge size k, for all edge activities β in the range of
Theorem 1.2 and all vertex activities |λ| 6= 1.

Finally, we extend our results to general ferromagnetic two-spin systems on hypergraphs, again as

studied in [44]. A two-spin system on a hypergraph H = (V,E) is speci�ed by hyperedge activities

ϕe : {+,−}|e| → C for e ∈ E, and a vertex activity ψ : {+,−} → C. (Note that we treat each hyperedge e
as a set of vertices.) Without loss of generality, we assume ϕe(−, · · · ,−) = 1, and ψ(−) = 1, ψ(+) = λ.

Then the partition function is de�ned as:

ZϕH(λ) :=
∑

σ:V→{+,−}

∏
e∈E

ϕe
(
σ
∣∣
e

) ∏
v∈V

ψ(σ(v)) =
∑

σ:V→{+,−}

∏
e∈E

ϕe
(
σ
∣∣
e

)
λ|{v:σ(v)=+}|.(2)

We call a hypergraph two-spin system symmetric if ϕe(σ) = ϕe(−σ). Suzuki and Fisher [44] prove a

Lee-Yang theorem for symmetric hypergraph two-spin systems (which is weaker than our Theorem 1.2

above when specialized to the Ising model). Combining this with our general algorithmic approach yields

our �nal result:

Theorem 1.4. Fix any ∆ > 0 and k ≥ 2 and a family of symmetric edge activities ϕ = {ϕe} satisfying
|ϕe(+, · · · ,+)| ≥ 1

4

∑
σ∈{+,−}V |ϕe(σ)|. Then there exists an FPTAS for the partition function ZϕH(λ) of

the corresponding symmetric hypergraph two-spin system in all hypergraphs H of maximum degree ∆ and
maximum edge size k for all vertex activities λ ∈ C such that |λ| 6= 1.

The remainder of the paper is organized as follows. In section 2, we spell out Barvinok’s approach to

approximating partition functions using Taylor series. Section 3 introduces the notion of insects and shows

how to use them to e�ciently compute the leading coe�cients of the partition function in the general

context of hypergraphs; as discussed above, this machinery applied to graphs, in conjunction with the

Lee-Yang theorem, implies Theorem 1.1. Finally, in section 4 we prove our extension of the Lee-Yang

theorem to the hypergraph Ising model (Theorem 1.2), and then use it and the Suzuki-Fisher theorem to

prove our algorithmic results for hypergraphs, Theorems 1.3 and 1.4.

1.1. Related work. The problem of computing partition functions has been widely studied, not only in

statistical physics but also in combinatorics, because the partition function is often a generating function

for combinatorial objects (cuts, in the case of the Ising model). There has been much progress on dichotomy
theorems, which attempt to completely classify these problems as being either #P-hard or computable

(exactly) in FP (see, e.g., [15, 17]).

Since the problems are in fact #P-hard in most cases, algorithmic interest has focused largely on approxi-
mation, motivated also by the general observation that approximating the partition function is polynomial

time equivalent to sampling (approximately) from the underlying Gibbs distribution [23]. In fact, most early

approximation algorithms exploited this connection, and gave fully-polynomial randomized approximation
schemes (FPRAS) for the partition function using Markov chain Monte Carlo (MCMC) samplers for the Gibbs

distribution. In particular, for the ferromagnetic Ising model, the MCMC-based algorithm of Jerrum and

Sinclair [22] is valid for all positive real values of λ and for all graphs, irrespective of their vertex degrees.

(For the connection with random sampling in this case, see [36].) This was later extended to ferromagnetic
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two-spin systems by Goldberg, Jerrum and Paterson [18]. Similar techniques have been applied recently to

the related random-cluster model by Guo and Jerrum [19].

Much detailed work has been done on MCMC for Ising spin con�gurations for several important classes

of graphs, including two-dimensional lattices (e.g., [28, 31, 32]), random graphs and graphs of bounded

degree (e.g., [34]), the complete graph (e.g., [26]) and trees (e.g., [10, 33]); we do not attempt to give a

comprehensive summary of this line of work here.

In the antiferromagnetic regime (β > 1), deterministic approximation algorithms based on correlation

decay have been remarkably successful for graphs of bounded degree. Speci�cally, for any �xed integer

∆ ≥ 3, techniques of Weitz [45] give a (deterministic) FPTAS for the antiferromagnetic Ising partition

function on graphs of maximum degree ∆ throughout a region R∆ in the (β, λ) plane (corresponding the

regime of “uniqueness of the Gibbs measure on the ∆-regular tree”) [25, 41]. A complementary result of

Sly and Sun [42] (see also [16]) shows that the problem is NP-hard outside R∆. In contrast, no MCMC

based algorithms are known to provide an FPRAS for the anti-ferromagnetic Ising partition function

throughout R∆. More recently, correlation decay techniques have been extended to obtain deterministic

approximation algorithms for the anti-ferromagnetic Ising partition function on hypergraphs over a range

of parameters [27], as well as to several other problems not related to the Ising model. In the ferromagnetic

setting, however, for reasons mentioned earlier, correlation decay techniques have had more limited success:

Zhang, Liang and Bai [47] handle only the “high-temperature” regime of the Ising model, while the recent

results for ferromagnetic two-spin systems of Guo and Lu [20] do not apply to the case of the Ising model.

In a parallel line of work, Barvinok initiated the study of Taylor approximation of the logarithm of the

partition function, which led to quasipolynomial time approximation algorithms [6–9]. More recently,

Patel and Regts [35] showed that for many models that can be written as induced subgraph sums, one can

actually obtain an FPTAS from this approach. In particular, for problems such as counting independent sets

with negative (or, more generally, complex valued) activities on bounded degree graphs, they were able

to match the range of applicability of existing algorithms based on correlation decay, and were also able

to extend the approach to Tutte polynomials and edge-coloring models (also known as Holant problems)

where little is known about correlation decay.

The Lee-Yang program was initiated by Lee and Yang [46] in connection with the analysis of phase

transitions. By proving the famous Lee-Yang circle theorem for the ferromagnetic Ising model [24], they

were able to conclude that there can be at most one phase transition for the model. Asano [3] extended the

Lee-Yang theorem to the Heisenberg model, and provided a simpler proof. Asano’s work was generalized

further by Suzuki and Fisher [44]. A complete characterization of Lee-Yang polynomials that are independent

of the “temperature” of the model was recently obtained by Ruelle [37]. The study of Lee-Yang type theorems

for other statistical physics models has also generated beautiful connections with other areas of mathematics.

For example, Shearer [39] and Scott and Sokal [38] established the close connection between the location of

the zeros of the independence polynomial and the Lovász Local Lemma, while the study of the zeros of

generalizations of the matching polynomial was used in the recent celebrated work of Marcus, Spielman

and Srivastava on the existence of Ramanujan graphs [29]. Such Lee-Yang theorems are exemplars of

the more general stability theory of polynomials [11, 12], a �eld of study that has had numerous recent

applications to theoretical computer science and combinatorics (see, e.g., [1, 2, 13, 29, 30, 40]).

2 .Approximation of the log-partition function by Taylor series

In this section we present an approach due to Barvinok [7] for approximating the partition function of a

physical system by truncating the Taylor series of its logarithm, as discussed in the introduction. We will

work in our most general setting of symmetric two-spin systems on hypergraphs, which of course includes

the Ising model (on graphs or hypergraphs) as a special case. As in (2), such a system has partition function

ZϕH(λ) =
∑

σ:V→{+,−}

∏
e∈E

ϕe
(
σ
∣∣
e

)
λ|{v:σ(v)=+}|.
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Our goal is a FPTAS for ZϕH(λ), i.e., a deterministic algorithm that, given as input H , {ϕe}, λ with |λ| 6= 1
and ε ∈ (0, 1], runs in time polynomial in n = |H| and ε−1

and outputs a 1+εmultiplicative approximation

of ZϕH(λ), i.e., a number Ẑ satisfying

(3) |Ẑ − ZϕH(λ)| ≤ ε|ZϕH(λ)|.

(Note that in our setting Ẑ and ZϕH(λ) may be complex numbers.)

For �xed H and (hyper)edge activities ϕ, we will write Z(λ) = ZϕH(λ) for short. By the symmetry

ϕe(σ) = ϕe(−σ), we have Z(λ) = λnZ( 1
λ). Thus without loss of generality we may assume |λ| < 1.

Letting f(λ) = logZ(λ), using the Taylor expansion around λ = 0 we get

f(λ) =
∞∑
j=0

f (j)(0) · λ
j

j!
,

where f(0) = logZ(0) = 0. Note that Z = exp(f), and thus an additive error in f translates to a

multiplicative error in Z . More precisely, given ε ≤ 1/4, and f, f̃ ∈ C such that

∣∣∣f − f̃ ∣∣∣ ≤ ε, we have∣∣∣exp
(
f̃
)
− exp(f)

∣∣∣ =
∣∣∣exp

(
f̃ − f

)
− 1
∣∣∣ |exp(f)| ≤ 4ε |exp(f)| ,

where the last inequality, valid for ε ≤ 1/4, follows by elementary complex analysis. In other words, to

achieve a multiplicative approximation of Z within a factor 1 + ε, as required by a FPTAS, it su�ces to

obtain an additive approximation of f within ε/4.

To get an additive approximation of f , we use the �rst m terms in the Taylor expansion. Speci�cally, we

compute fm(λ) =
∑m

j=0 f
(j)(0) · λjj! .

To compute f (j)(0), note that f ′(λ) = 1
Z(λ)

dZ(λ)
dλ , or

dZ(λ)
dλ = f ′(λ)Z(λ). Thus for any m ≥ 1,

dm

dλm
Z(λ) =

m−1∑
j=0

(
m− 1

j

)
dj

dλj
Z(λ) · dm−j

dλm−j
f(λ).(4)

Given
dj

dλj
Z(λ)

∣∣∣
λ=0

for j = 0, · · · ,m, eq. (4) is a non-degenerate (recall that Z(0) = 1) triangular

system of linear equations in

{
f (j)(0)

}m
j=1

, which can be solved in O(m2) time.

We can now specify the algorithm: �rst compute

{
dj

dλj
Z(λ)

∣∣∣
λ=0

}m
j=0

; next, use the system in eq. (4) to

solve for

{
f (j)(0)

}m
j=1

; and �nally, compute and ouput the approximation fm(λ).

To quantify the approximation error in this algorithm, we need to study the locations of the complex

roots r1, · · · , rn of Z . Throughout this paper, we will be using (some variant of) the Lee-Yang theorem to

argue that, for the range of interactions ϕ we are interested in, the roots ri all lie on the unit circle in the

complex plane, i.e., |ri| = 1 for all i. Then we can write Z(λ) =
∏
i(1−

λ
ri

), and the log partition function

becomes

f(λ) = logZ =

n∑
i=1

log

(
1− λ

ri

)
=

n∑
i=1

∞∑
j=1

1

j

(
λ

ri

)j
.

Denoting the �rst m terms by fm(λ) =
∑n

i=1

∑m
j=1

1
j

(
λ
ri

)j
, the error due to truncation is bounded by

|f(λ)− fm(λ)| ≤ n
∞∑

j=m+1

|λ|j

j
≤ n |λ|m+1

(m+ 1)(1− |λ|)
,
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recalling that by symmetry we are assuming |λ| < 1. Thus to get within ε/4 additive error, it su�ces to

take m ≥ |λ|
1−|λ|

(
log(4n/ε) + log 1

1−|λ|

)
. The following result summarizes our discussion so far.

Lemma2.1. Given 0 < ε < 1/4,m ≥ |λ|
1−|λ|

(
log(4n/ε) + log 1

1−|λ|

)
, and the values of

{
dj

dλj
Z(λ)

∣∣∣
λ=0

}m
j=0

,

fm(λ) can be computed in time poly(n/ε). Moreover, if the Lee-Yang theorem holds for the partition function
Z(λ), then |fm(λ)− f(λ)| < ε/4, and thus exp(fm(λ)) approximates Z(λ) within a multiplicative factor
1 + ε.

The missing ingredient in turning Lemma 2.1 into an FPTAS is the computation of the derivatives{
dj

dλj
Z(λ)

∣∣∣
λ=0

}m
j=0

, which themselves are just multiples of the leading coe�cients of Z . Computing

these values naively using the de�nition of Z(λ) requires nΩ(m)
time. Since m is required to be of order

Ω(log(n/ε)), this results in only a quasi-polynomial time algorithm. In the next section, we show how

to compute these values in polynomial time when H is a hypergraph of bounded degree and bounded

hyperedge size, which when combined with Lemma 2.1 gives an FPTAS.

3 .Computing coefficients via insects

As discussed in the introduction, Patel and Regts [35] recently introduced a technique for e�ciently

computing the leading coe�cients of a partition function using induced subgraph counts. In this section

we introduce the notion of sub-insect counts, and show how it allows the Patel-Regts framework to be

adapted to any hypergraph two-spin system with vertex activities (including the Ising model with vertex

activities as a special case). We will align our notation with [35] as much as possible. From now on, unless

otherwise stated, we will use G to denote a hypergraph. Recall from the introduction the partition function

of a two-spin system on a hypergraph G = (V,E):

ZϕG(λ) =
∑

σ:V→{+,−}

∏
e∈E

ϕe
(
σ
∣∣
e

)
λ|{v:σ(v)=+}|.(5)

Due to the normalization ϕe(−, · · · ,−) = 1, each term in the summation depends only on the set

S = {v : σ(v) = +} and the labelled induced sub-hypergraph

(
S ∪ ∂S,E[S] ∪ E(S, S̄)

)
, where ∂S is the

boundary of S de�ned as ∂S :=
⋃
v∈S NG(v) \ S and NG(v) is the set of vertices adjacent to the vertex v

in G. This fact motivates the induced sub-structures we will consider.

Let σS be the con�guration where the set of vertices assigned +-spins is S, that is, σS(v) = + for

v ∈ S and σS(v) = − otherwise. We will also write ϕe(S) := ϕe(σ
S
∣∣
e
) for simplicity. Thus the partition

function can be written

ZϕG(λ) =
∑
S⊆V

∏
e:e∩S 6=∅

ϕe(S)λ|S|.

We start with the standard factorization of the partition function in terms of its complex zeros r1, . . . , rn,

where n = |V |. Since we are assuming ϕe(−, · · · ,−) = 1, the product of the zeros is 1. The partition

function can then be written as

ZϕG(λ) =
∏
i

(1− λ/ri) =

n∑
i=0

(−1)iei(G)λi,

where ei(G) is the elementary symmetric polynomial evaluated at ( 1
r1
, · · · , 1

rn
).

On the other hand, we can also express the coe�cients ei(G) combinatorially using the de�nition of the

partition function:

ei(G) = (−1)i
∑
S⊆V
|S|=i

∏
e:e∩S 6=∅

ϕe(S).(6)
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Once we have computed the �rst m coe�cients of Z (i.e., the values ei(G) for i = 1, · · · ,m), where

m = Ω
(
|λ|

1−|λ| log(n/ε)
)

, we can use Lemma 2.1 to obtain an FPTAS as claimed in Theorems 1.1, 1.3 and 1.4.

The main result in this section will be an algorithm for computing these coe�cients ei(G):

Theorem 3.1. Let C > 0,∆ ∈ N. Given an n-vertex hypergraph G of maximum degree ∆, maximum
hyperedge size k, then for any ε > 0 there exists a deterministic poly(n/ε)-time algorithm to compute ei(G)
for i = 1, · · · ,m, wherem = dC log(n/ε)e.

3.1. Insects in a hypergraph. To take advantage of the fact that each term in eq. (5) only depends on the

set S and the induced sub-hypergraph

(
S ∪ ∂S,E[S] ∪ E(S, S̄)

)
, we de�ne the following structure.

De�nition 3.2. For disjoint sets S and B, an insect H = (S,E,B) is a labelled hypergraph (S ∪B,E)
such that each vertex in B is incident on exactly one hyperedge in E. The set S is called the label set of the

insect H and the set B the boundary set.

Given an insect H , we use the notation V (H) for its label set. The size |H| of the insect H is de�ned to

be |V (H)|. H is said to be connected if the induced sub-hypergraph on the label set V (H) is connected.

Remark. Note that a hypergraph G = (V,E) can itself be viewed as the insect (V,E, ∅).

In order to exploit the structure of the terms in eq. (5) alluded to above, we now de�ne the notion of

an induced sub-insect of an insect. Given an insect H = (S,E,B) and a subset S′ of S, we de�ne ∂+S′

as follows: starting with ∂S′, for each vertex v ∈ ∂S′, if v is incident on d hyperedges in E(S′, S̄′), we

replace v with d copies of itself labelled v(1), · · · , v(d)
, one for each of the hyperedges in lexicographic

order, so that each v(i)
is incident on only one hyperedge. Denote the set of these new hyperedges by E′.

The induced sub-insect H+ [S′] is then de�ned as (S′, E[S′]∪E′, ∂+S′). Note that if S′ = ∅, then H+ [S′]
is the empty graph.

3.1.1. Weighted sub-insect counts. Just as graph invariants may be expressed as sums over induced sub-

graph counts, we will consider weighted sub-insect counts of the form f(G) =
∑

S⊆V (G) aG+[S] and the

functions f expressible in this way.

Let G∆,k
t be the set of insects up to size t, with maximum degree ∆ and maximum hyperedge size k.

Note that since insects are labelled, this is an in�nite set. We will �x ∆ and k throughout, and write

G :=
⋃
t≥1 G

∆,k
t . Let w(H,G) be the indicator that H is an induced sub-insect of G, that is,

w(H,G) = 1 if and only if there is a set S ⊆ V (G) such that G+ [S] = H.

A weighted sub-insect count f(G) of the form considered above can then also be written as f(G) =∑
H∈G aHw(H,G). Note that even though G is in�nite, the above sum has only �nitely many non-zero

terms for any �nite insect G. It is also worth noting that, as insects are labelled, f(G) may also depend on

the labelling of G, unlike a graph invariant where isomorphic copies of a graph are the same.

3.2. Properties of weighted sub-insect counts. A weighted sub-insect count f is said to be additive if,

given any two disjoint insects G1 and G2, f(G1 ]G2) = f(G1) + f(G2). Analogously to the case of graph

invariants, we then have the following:

Lemma 3.3. Let f be a weighted sub-insect count, so that f may be written as

f(G) :=
∑
S⊆V

aG+[S] =
∑
H∈G

aH · w(H,G).

Then f is additive if and only if aH = 0 for all insects H that are disconnected.
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Proof. When H is connected, we have w(H,G1 ]G2) = w(H,G1) +w(H,G2); thus f given in the above

form is additive if aH′ = 0 for all H ′ that are not connected.

Conversely, suppose f is additive. By the last paragraph, we can assume without loss of generality that

the sequence aH is supported on disconnected insects (by subtracting the component of f supported on

connected H). We now show that for such an f , aH must be 0 for all disconnected H as well.

For if not, then given an f with aH′ = 0 for all connected insectsH ′, letH be an insect with the smallest

size for which aH 6= 0. If H has only one vertex, then it is vacuously connected and hence aH = 0, so we

already have a contradiction. Otherwise, we know that aJ = 0 for all insects J which have strictly fewer

vertices than H . Since w(H,J) = 0 when the number of vertices in J is strictly smaller than in H , this

also implies that f(J) = 0 for any graph J that is strictly smaller in size than H .

SinceH is disconnected, there exist non-empty insectsH1 andH2 such thatH = H1]H2. By additivity,

we then have f(H) = f(H1) + f(H2) = 0, where the last equality follows since both H1 and H2 are

strictly smaller than H . On the other hand, since H is an insect with the smallest possible number of

vertices such that aH 6= 0, we also have f(H) = aHw(H,H) = aH . This implies aH = 0, which is a

contradiction. �

Our next lemma implies that products of weighted sub-insect counts can also be expressed as a weighted

sub-insect count of slightly larger insects:

Lemma 3.4. Let H1 = (S1, E1, B1), H2 = (S2, E2, B2) be arbitrary insects. Either for every G we have

w(H1, G)w(H2, G) = 0,

or there exist a set S′ ⊇ S1 ∪ S2, a set B′ disjoint from S′, and an insect H = (S′, E′, B′) such that
H+ [S1] = H1, H+ [S2] = H2, and for every G we have

w(H1, G)w(H2, G) = w(H,G).(7)

Before proving this lemma, we de�ne a notion of compatibility for insects.

De�nition 3.5. An insect H1 = (S1, E1, B1) is compatible with another insect H2 = (S2, E2, B2) if

H+
1 [S1 ∩ S2] = H+

2 [S1 ∩ S2].

Observation 3.6. When H1 and H2 are compatible, there exists a unique insect H (which we denote by
H1 ∪ H2 by a slight abuse of notation) with label set V (H1) ∪ V (H2) such that H+ [V (H1)] = H1 and
H+ [V (H2)] = H2.

We now proceed with the proof of Lemma 3.4.

Proof of Lemma 3.4. If H1 is not compatible with H2, then for every G, either H1 is an induced sub-insect

of G, or H2 is, but not both. Thus w(H1, G)w(H2, G) = 0.

If H1 and H2 are compatible, then let H = H1 ∪H2 be the insect promised by Observation 3.6. We have

w(H1, G)w(H2, G) =
∑
T1⊆V

∑
T2⊆V

[
G+[T1] = H1

]
·
[
G+[T2] = H2

]
=
∑
T⊆V

∑
T1⊆V

∑
T2⊆V

[
G+[T1] = H1

]
·
[
G+[T2] = H2

]
· [T = T1 ∪ T2]

=
∑
T⊆V

[
G+[T ] = H1 ∪H2

]
, using the de�nition of compatibility

= w(H,G). �
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3.3. Enumerating connected sub-insects. Our goal is to show that ei(G) de�ned in eq. (6) can be

written as a weighted sub-insect count. Recall that we denote by G∆,k
t the set of distinct induced sub-insects

of G up to t vertices with maximum degree ∆ and maximum hyperedge size k. We then have

ei(G) = (−1)i
∑
S⊆V
|S|=i

∏
e:e∩S 6=∅

ϕe(S) =
∑

H∈G∆,k
i

H=(VH ,EH ,SH)

λH,i · w(H,G),(8)

where λH,i = (−1)i
∏
e:e∩SH 6=∅ ϕe(SH) if |H| = i, and 0 otherwise. Note that λH,i is easily computable in

time poly(|H| ); however, as discussed in the introduction, the number ofH ∈ G∆,k
i such thatw(H,G) 6= 0

will be Ω(ni), and a naive computation of ei(G) using eq. (8) would be ine�cient. To prove Theorem 3.1,

we consider the set of connected insects, denoted by C∆,k
i , instead of G∆,k

i . We will show in this subsection

that C∆,k
i can be e�ciently enumerated, and then in the following subsection reduce the above summation

over G∆,k
i to enumerations of C∆,k

i .

Following Patel and Regts [35], we use the following result based on Borgs, Chayes, Kahn and Lovász [14,

Lemma 2.1 (c)].

Lemma 3.7. Let G be a multigraph with maximum degree ∆ (counting edge multiplicity) and let v ∈ V (G).
Then the number of subtrees of G with t vertices containing the vertex v is at most (e∆)t−1

2 .

Proof. Consider the in�nite rooted ∆-ary tree T∆. The number of subtrees with t vertices starting from the

root is
1
t

(
t∆
t−1

)
< (e∆)t−1

2 . (See also [43, Theorem 5.3.10].)

Next note that every subtree of the multigraph G containing the vertex v, induces injectively a subtree of

T∆ containing the root. Thus the number of subtrees of G containing vertex v is also at most
(e∆)t−1

2 . �

Corollary 3.8. Let G be a hypergraph with maximum degree ∆ and maximum hyperedge size k, and let
v ∈ V (G). Then the number of connected induced sub-insects of G with t vertices containing the vertex v is at
most (e∆k)t−1

2 .

Proof. Consider the multigraph H obtained by replacing every hyperedge of size r in G by an r-clique. For

any two distinct connected induced sub-insects A and B, let SA and SB be their sets of spanning trees.

Then since the label sets of A and B are di�erent, SA ∩ SB = ∅. Thus the number of connected subtrees is

an upperbound on the number of connected induced sub-insects.

In this multigraph the maximum degree is ∆k, so by Lemma 3.7 the number of subtrees is at most

(e∆k)t−1

2 . Thus the number of connected induced sub-insects of G with t vertices containing the vertex v is

also at most
(e∆k)t−1

2 . �

As a consequence we can e�ciently enumerate all connected induced sub-insects of logarithmic size in a

bounded degree graph. This follows from a similar reduction to a multigraph, and then applying [35, Lemma

3.4]. However, for the sake of completeness we also include a direct proof.

Lemma 3.9. For a hypergraph of maximum degree ∆ and maximum hyperedge size k, there exists an e�cient
enumerator for connected induced sub-insects of size t, that runs in time Õ(nt3(e∆k)t+2). Here Õ hides factors
of the form polylog(n) , polylog(∆k) and polylog(t).

Proof. Let Tt be the set of S ⊆ V (G) such that |S| ≤ t and G[S] is connected. Note that given S ∈ Tt,
G+[S] will be a sub-insect of size t, and this clearly enumerates all of them. Also by Corollary 3.8,

|Tt| ≤ O(n(e∆k)t). Thus it remains to give an algorithm to construct Tt in about the same amount of time.

We construct Tt inductively. For t = 1, T1 := V (G). Then given Tt−1, let

T ∗t := Tt−1 ∪ {S ∪ {v} : S ∈ Tt−1 and v ∈ NG(S) \ S} .
10



Since |NG(S)| < t∆k, thus one can compute the set NG(S) \ S in time O(t∆k), and construct T ∗t in time

O(|Tt−1| t∆k) = O(nt(e∆k)t+1). Finally we remove duplicates in T ∗t to get Tt (e.g., by sorting the sets

S ∈ T ∗t , where each can be represented by a string of length Õ(t)), in time Õ(nt3(e∆k)t+1).

Starting from T1, inductively we perform t iterations to construct Tt. Thus the overall running time is∑t
i=1 Õ(ni3(e∆k)i+1) = Õ(nt3(e∆k)t+2). �

3.4. Proof of Theorem 3.1. The previous subsection allows us to e�ciently enumerate connected sub-

insects. To prove Theorem 3.1, it remains to reduce the sum over all (possibly disconnected) H in eq. (8) to

a sum over connected H . Consider the t-th power sum:

pt =

n∑
i=1

1

rti
.

Now by Newton’s identities (which relate power sums to elementary symmetric polynomials), we have

pt =
t−1∑
i=1

(−1)i−1pt−iei + (−1)t−1tet.(9)

Recall from eq. (8) that ei is a weighted sub-insect count, and also from Lemma 3.4 that the product of

weighted sub-insect counts is also a weighted sub-insect count. Therefore, pk is also a weighted sub-insect

count:

pt(G) =
∑

H∈G∆,k
t

aH,tw(H,G),(10)

for some aH,t to be determined.

Next note that ZG1]G2(λ) = ZG1(λ) · ZG2(λ) is multiplicative, and hence the t-th power sum pt is

additive. Hence by Lemma 3.3, its coe�cients are supported on connected insects:

pt(G) =
∑

H∈C∆,k
t

aH,tw(H,G),(11)

where C∆,k
t is the set of distinct connected sub-insects with up to t vertices and maximum degree ∆,

maximum hyperedge size k. Notice that by Corollary 3.8, there are at most n(e∆k)t non-zero terms (where

w(H,G) 6= 0).

Now we show how to compute the coe�cients aH,t e�ciently, following the same approach as in [35,

Lemma 3.6].

Lemma 3.10. There is a poly(n/ε)-time algorithm to compute all the coe�cients aH,t in eq. (11), for
t ≤ O(log(n/ε)).

Proof. By Lemma 3.9, we compute Tt, consisting of all S ⊆ V (G) such that |S| ≤ t and G[S] is connected.

As we have removed duplicates, this is exactly C∆,k
t .

By eq. (9), for t = 1 we have p1 = e1, so by eq. (8) we can read o� the coe�cients aH,1 from e1(G). Next

suppose we have computed aH′,t′ for |H ′| ≤ t′ < t, and we want to compute aH,t for �xed H . Again by

Newton’s identities, it su�ces to compute the coe�cients of w(H,G) in pt−iei. By eqs. (7), (8) and (11),

the coe�cient of w(H,G) in pt−iei is given by:∑
H1∈Gi,H2∈C(t−i)

H1 compatible with H2
H1∪H2=H

aH2,(t−i)λH1,i =
∑

(S1,S2)
S1∪S2=V (H)

aH[S2],(t−i)λH[S1],i.(12)

Since t ≤ O(log(n/ε)), the second sum involves at most 4t = poly(n/ε) terms. Moreover, due to Corol-

lary 3.8, there are at most tn(e∆k)t = poly(n/ε) previously computed aH′,t′ , where H ′ is a connected
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sub-insect of G and |H ′| ≤ t′ < t. And to look up aH[T ],(t−i), one can do a linear scan, which also takes

time poly(n/ε) for t ≤ O(log(n/ε)).

To conclude, because t ≤ O(log(n/ε)), eq. (11) only contains poly(n/ε) terms. And for each term, aH,t
can be computed using the above dynamic programming scheme in poly(n/ε) time. �

Finally, now that we can compute aH,t e�ciently, by eq. (11) we can compute pk using the sub-insect

enumerator in Lemma 3.9, and we can then compute ek using Newton’s identities as in eq. (9), which

completes the proof of Theorem 3.1.

3.5. Proofs of main theorems. Our �rst main result in the introduction, the FPTAS for the Ising model

on graphs throughout the ferromagnetic regime with non-zero �eld stated in Theorem 1.1, now follows by

combining Theorem 3.1 with Lemma 2.1 and the Lee-Yang theorem [24] (also stated as Theorem 4.2 in the

next section). Recall from the introduction that the Lee-Yang theorem ensures that the partition function

has no zeros inside the unit disk.

Similarly, Theorem 1.4, the FPTAS for two-spin systems on hypergraphs, follows by combining Theo-

rem 3.1 with Lemma 2.1 and the Suzuki-Fisher theorem [44] (also stated as Theorem 4.3 in the next section).

Again, the Suzuki-Fisher theorem ensures that there are no zeros inside the unit disk, under the condition

on the hyperedge activities stated in Theorem 1.4.

To establish our �nal main algorithmic result, Theorem 1.3, we �rst need to prove a new Lee-Yang

theorem for the hypergraph Ising model as stated in Theorem 1.2 in the introduction. This will be the

content of the next and �nal section of our paper. Once we have that, Theorem 1.3 follows immediately by

the same route as above.

4 .A Lee-Yang Theorem for Hypergraphs

In this section we prove a tight Lee-Yang theorem for the hypergraph Ising model (Theorem 1.2 in the

introduction). We start by extending the de�nition of the hypergraph Ising model to the multivariate

setting, where each vertex and each hyperedge is allowed to have a di�erent activity. As before, we have

an underlying hypergraph G = (V,E) with |V | = n vertices. Given vertex activities λ1, λ2, . . . , λn and

hyperedge activities β = (βe), we de�ne

ZβG(λ1, · · · , λn) =
∑
S⊆V

∏
e∈E(S,S)

βe
∏
i∈S

λi ,

where for a subset S ⊆ V , E(S, S) is the set of hyperedges with at least one vertex in each of S and S.

Note that

ZβG(λ1, · · · , λn) =
n∏
i=1

λi · ZβG

(
1

λ1
, · · · , 1

λn

)
.(13)

We recall the de�nition of the Lee-Yang property (see, e.g., [37]).

De�nition 4.1 (Lee-Yang property). Let P (z1, z2, . . . , zn) be a multilinear polynomial with real coe�-

cients. P is said to have the Lee-Yang property (sometimes written as “P is LY”) if for any complex numbers

λ1, · · · , λn such that |λ1| ≥ 1, · · · , |λn| ≥ 1, and |λi| > 1 for some i, it holds that P (λ1, · · · , λn) 6= 0.

Then the seminal Lee-Yang theorem [24] can be stated as follows:

Theorem 4.2. Let G be a connected undirected graph, and suppose 0 < β < 1. Then the Ising partition
function ZβG(λ1, · · · , λn) has the Lee-Yang property.

The following extension of the Lee-Yang theorem to general two-spin systems on hypergraphs is due

to Suzuki and Fisher [44]. Again the theorem is stated in the multivariate setting, where in the two-spin

partition function in eq. (5) each vertex i has a distinct activity λi.
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Theorem 4.3. Consider any symmetric hypergraph two-spin system, with a connected hypergraphG and edge
interactions {ϕe}. Then the partition functionZϕG(λ1, · · · , λn) has the Lee-Yang property if |ϕe(+, · · · ,+)| ≥
1
4

∑
σ∈{+,−}V |ϕe(σ)| for every hyperedge e.

Theorem 4.3 is not tight for the important special case of the Ising model on hypergraphs. Our goal in

this section is to prove a tight analog of the original Lee-Yang theorem for this case. Speci�cally, we will

prove the following:

Theorem 4.4. Let G = (V,E) be a connected hypergraph, and β = (βe)e∈E be the vector of real valued
hyperedge activities so that the activity of edge e ∈ E is βe. Then Z

β
G has the Lee-Yang property if and only if

the following condition holds for every hyperedge e: let k > 1 be the size of e,
• if k = 2, then −1 < βe < 1;
• if k ≥ 3, then − 1

2k−1−1
< βe <

1
2k−1 cosk−1( π

k−1)+1
.

Note that the case k = 2 is just the original Lee-Yang theorem (Theorem 4.2).

The following corollary for the univariate polynomial ZβG(λ) follows immediately via eq. (13) and the

fact that, by Hurwitz’s theorem, the zeros of ZβG(λ) are continuous functions of β and thus remain on the

unit circle after taking the limit in the range of each βe.

Corollary 4.5. Let G = (V,E) be a connected hypergraph, and β = (βe)e∈E be the vector of real valued
hyperedge activities so that the activity of edge e ∈ E is βe. Then, all complex zeros of the univariate partition
function ZβG(λ) lie on the unit circle if and only if the following condition holds for every hyperedge e: let
k > 1 be the size of e,

• if k = 2, then −1 ≤ βe ≤ 1;
• if k ≥ 3, then − 1

2k−1−1
≤ βe ≤ 1

2k−1 cosk−1( π
k−1)+1

.

This establishes Theorem 1.2 in the introduction, and hence also Theorem 1.3 as explained at the end of

the previous section.

Remark. As a comparison, the Suzuki and Fisher result, which we restated in Theorem 4.3, implies that a

su�cient condition for the Lee-Yang property of ZβG(λ) is

− 1

2k−1 − 1
≤ βe ≤

1

2k−1 − 1
.

Note that while the lower bound on βe is the same as ours, our (tight) upper bound is always better, and

signi�cantly so for the more interesting case of small k. E.g., for k = 3, our result gives the optimal range

−1
3 ≤ βe ≤ 1, while the Suzuki-Fisher theorem gives −1

3 ≤ βe ≤ 1
3 . Similarly, for k = 4, the respective

ranges are [−1/7, 1/2] (for ours) and [−1/7, 1/7] (for Suzuki-Fisher).

We turn now to the proof of Theorem 4.4. We will make use of the following criterion for the Lee-Yang

property.

Lemma 4.6. Given a multilinear polynomial P (z1, z2, . . . , zn) with real coe�cients de�ne, for each 1 ≤ j ≤
n, multilinear polynomials Aj and Bj in the variables z1, . . . , zj−1, zj+1, . . . , zn such that

P = Ajzj +Bj

If P has the Lee-Yang property then, for every j such that the variable zj has positive degree in P , it holds that
Aj(z1, . . . , zj−1, zj+1, . . . , zn) 6= 0 when |zi| ≥ 1 for all i 6= j. In particular, Aj itself is LY.

Proof. Without loss of generality, we assume that j = 1. Note that since z1 has positive degree in P , A1

is a non-zero polynomial. Suppose that, in contradiction of the claim of the lemma, there exist complex

numbers λ2, . . . , λn satisfying |λi| ≥ 1 such that A1(λ2, . . . , λn) = 0. Since P is LY, it follows that
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B1(λ2, . . . , λn) 6= 0 (for otherwise, we get a contradiction to the Lee-Yang property by choosing z1 to be

an arbitrary value outside the closed unit disk).

By continuity, this implies that |B1| is positive in any small enough neighborhood of (λ2, . . . , λn) in

Cn−1
. In particular, let Sε be the open set

Sε := {(y2, . . . , yn) | |yi − λi| < ε and |yi| > 1 for 2 ≤ i ≤ n } .
Then there exist positive δ0 and ε0 such that |B1| is at least δ0 in the open set Sε when ε < ε0.

Now, since A1 is a non-zero multilinear polynomial, it cannot vanish identically on any open set. In par-

ticular, it cannot vanish identically in Sε for any ε > 0. On the other hand, sinceA1 vanishes at (λ2, . . . , λn)
it follows from continuity that for ε < ε0 small enough, |A1| ≤ δ0/2 in Sε. Since A1 does not vanish identi-

cally on Sε, there must exist a point (y2, . . . , yn) in Sε such that 0 < |A1(y1, y2, . . . , yn)| < δ0/2. Since

|B1(y2, . . . , yn)| ≥ δ0 by the choice of ε0, it follows that if we de�ne y1 = −B1(y2, . . . , yn)/A1(y2, . . . , yn)
then 2 < |y1| <∞. However, we then have P (y1, y2, . . . , yn) = 0 even though |y1| > 1 and |yi| ≥ 1 for

all i. This contradicts the Lee-Yang property of P . �

By iterating the above lemma, we get the following corollary.

Corollary 4.7. Let P (z1, z2, . . . , zn) be a multilinear polynomial with non-zero coe�cients, i.e.,

P (z1, . . . , zn) =
∑
S⊆[n]

pS
∏
i∈S

zi,

where pS 6= 0 for all ⊆ [n]. Then, for every subset S of [n], the polynomial AS de�ned by the equation

P (z1, . . . , zn) = AS((zi)i 6∈S)
∏
i∈S

zi +
∑
T)S

pT
∏
i∈T

zi

has the property that AS((zi)i 6∈S) 6= 0 when |zi| ≥ 1 for all i 6∈ S. In particular, A is LY.

We next show that Lemma 4.6 has a partial converse for symmetric multilinear functions.

Lemma 4.8. Let P (z1, z2, . . . , zn) be a symmetric multilinear polynomial with non-zero real coe�cients, i.e.,

P (z1, . . . , zn) =
∑
S⊆[n]

pS
∏
i∈S

zi,

where pS 6= 0 for all ⊆ [n] and pS = pS . Assume further that the polynomials Aj as de�ned in Lemma 4.6 all
have the property that they are non-zero when all their arguments zi satisfy |zi| ≥ 1. Then P is LY.

Proof. We �rst show that, under our assumptions, if all but one of the zj lie on the unit circle, then P can

only vanish if the remaining zj is also on the unit circle. Without loss of generality we set j = 1, that is, we

will show that if |zi| = 1 for i ≥ 2, then any root z1 = ζ1 in the equation A1z1 +B1 = 0 satis�es |ζ1| = 1.

(Here A1 and B1 are in the notation of Lemma 4.6.)

Since A1 =
∑

S⊆[2,n] pS∪{1}
∏
i∈S zi does not vanish with this setting of the zi, we have

|ζ1| =
∣∣∣∣B1

A1

∣∣∣∣ =

∣∣∣∣∣
∑

S⊆[2,n] pS
∏
i∈S zi∑

S⊆[2,n] pS∪[1]

∏
i∈S zi

∣∣∣∣∣ =

∣∣∣∣∣∣
 ∏
i∈[2,n]

zi


∑

S⊆[2,n] pS
∏
i 6∈S
i 6=1

(1/zi)∑
S⊆[2,n] pS∪[1]

∏
i∈S zi

∣∣∣∣∣∣
(?)
=

∣∣∣∣∣∣
∑

S⊆[2,n] pS
∏
i 6∈S
i 6=1

zi∑
S⊆[2,n] pS∪[1]

∏
i∈S zi

∣∣∣∣∣∣ (†)
=

∣∣∣∣∣
∑

S⊆[2,n] pS∪[1]

∏
i∈S zi∑

S⊆[2,n] pS∪[1]

∏
i∈S zi

∣∣∣∣∣ = 1.(14)

Here (?) uses the fact that |zi| = 1 for i ≥ 2 and (†) uses the symmetry of P . We have thus shown that if

(z1, z2, . . . , zn) is a zero of P such that |zi| ≥ 1 for all i then it is impossible for only one zi to lie outside

the closed unit disk.
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We now show that if there are k ≥ 2 values of i for which zi lies outside the closed unit disk, then we can

�nd another zero (ζ1, ζ2, ζ3, . . . , ζn) of P such that |ζi| ≥ 1 for all i, and exactly k − 1 of the ζi lie outside

the closed open disk. We can then iterate this process to reduce k to 1, in which case the observation in the

previous paragraph leads to a contradiction.

By re-numbering the indices if needed, we can assume that |z1| , |z2| > 1 and |zi| ≥ 1 for i ≥ 3. We can

then write

P (z1, . . . , zn) = α12z1z2 + α1z1 + α2z2 + α∅,

where α12, α1, α2 and α∅ are non-zero polynomials in z3, . . . , zn. Further, the hypotheses of the lemma

imply that A1 = α12z2 + α1 and A2 = α12z1 + α2 both have the Lee-Yang property. Thus, by Lemma 4.6,

α12(z3, . . . , zn) 6= 0, whence |zi| ≥ 1 for i ≥ 3. Now, A2 6= 0 when |z1| and |z3| , . . . , |zn| are at least 1,

while z1 = α2(z3,...,zn)
α12(z3,...,zn) gives A2 = 0. Thus, we must have that

(15)

|α2(z3, . . . , zn)|
|α12(z3, . . . , zn)|

< 1 when |zi| ≥ 1 for i ≥ 3.

We now set ζi = zi for i ≥ 3, and consider z1 as a function of z2. The equality P (z1, z2, ζ3, . . . , ζn) = 0 is

now equivalent to

(16) z1 = − α2z2 + α∅
α12z2 + α1

.

Further, the hypotheses of the lemma imply that the denominator (which is A1(z2, ζ3, . . . , ζn)) is non-zero

when |z2| ≥ 1. We thus see that

(17) lim
z2→∞

|z1| =
|α2|
|α12|

< 1.

Initially, both z1 and z2 lie outside the closed unit disk. Thus, by eq. (17) and continuity, we can take z2

large enough in absolute value such that z1 as de�ned in eq. (16) lies on the unit circle. We now choose

ζ1 and ζ2 to be these values of z1 and z2 respectively, so that we have P (ζ1, . . . , ζn) = 0 and the number

of the ζi lying on the unit circle is exactly one less than the number of the zi lying on the unit circle, as

required. �

The �rst step in our proof of Theorem 4.4 is to derive conditions under which the Ising partition function

of a hypergraph consisting of a single hyperedge has the Lee-Yang property; it will turn out that this is

actually the determining case for the full theorem. We will require the following technical lemma.

Lemma 4.9. Letm be any integer, and k a positive integer such that 2 |m| ≤ k. Consider the maximization
problem

max
k∏
i=1

cos θi

subject to − π

2
≤ θi ≤

π

2
,

k∑
i=1

θi = mπ.

The maximum is cosk
(
mπ
k

)
, and is attained when θi = π

k for all i.

Proof. We can assume without loss of generality that θi ∈ (−π/2, π/2) at any maximum (for otherwise

the objective value is 0). Now, consider the function f(x) = log cosx de�ned on the interval (−π/2, π/2).
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Since f ′(x) = − tanx is a decreasing function, f(x) is concave for x ∈ (−π
2 ,

π
2 ). Thus by Jensen’s

inequality,

log
k∏
i=1

cos θi =
k∑
i=1

f(θi) ≤ kf

(∑k
i=1 θi
k

)
≤ k log cos

(mπ
k

)
,

and equality holds when θi = mπ
k for all i. Note that these θi are in (−π/2, π/2) since 2 |m| ≤ k. �

We are now ready to tackle the case of a single hyperedge.

Lemma 4.10. Fix an integer k ≥ 2 and a hyperedge activity β ∈ R. Let G = (V = {v1, v2, . . . , vk} , E =
{{v1, v2, . . . , vk}}) be a hypergraph consisting of a single hyperedge of size k and activity β. If k = 2 and
β ∈ (−1, 1), or k ≥ 3 and β satis�es

− 1

2k−1 − 1
< β <

1

2k−1 cosk−1
(

π
k−1

)
+ 1

,

then the partition function ZβG has the Lee-Yang property.

Remark. Note that the condition on β imposed above is monotone in k: i.e., if β is such that the partition

function of a hyperedge of size k ≥ 2 is LY, then for the same β the partition function of a hyperedge of

size k′ < k is also LY.

Proof. For k = 2, the lemma is a special case of the Lee-Yang theorem [24] (although it also follows by

specializing the argument below). We therefore assume k ≥ 3.

Since the Ising partition function is symmetric and all terms in the polynomial appear with positive

coe�cients, Lemma 4.8 applies and it su�ces to verify that the coe�cients Aj do not vanish when |zi| ≥ 1
for i 6= j. Without loss of generality we �x j = 1. We then have,

A1 = β
k∏
i=1
i 6=j

(1 + zi) + (1− β)
k∏
i=1
i 6=j

zi.

Thus A1 = 0 for |zi| ≥ 1 is equivalent to

(18)

1

β
= 1−

k∏
i=1
i 6=j

(
1 +

1

zi

)
.

To establish the lemma, we therefore only need to show that for the claimed values of β, eq. (18) has no

solutions when |zi| ≥ 1 for all i ≥ 2. We now proceed to establish this by analyzing the product on the

right hand side of eq. (18).

The map z 7→ 1 + 1/z is a bijection from the complement of the open unit disk to the closed disk D of

radius 1 centered at 1. Any y ∈ D can be written as y = r exp(ιθ) for θ ∈ [−π/2, π/2] and 0 ≤ r ≤ 2 cos θ.

Consider now the set R ∩
{∏k−1

i=1 yi | yi ∈ D for all i
}

for k ≥ 3. We show that this set is exactly the

interval [−τ0, τ1] where τ0 = 2k−1 cosk−1(π/(k− 1)) and τ1 = 2k−1
. The claim of the lemma then follows

since for the given values of β, 1− 1/β lies outside [−τ0, τ1] and hence eq. (18) cannot hold.

Recalling that each y ∈ D can be written in the form r exp(ιθ) where θ ∈ [−π/2, π/2] and 0 ≤ r ≤
2 cos θ, we �nd that the values τ0 and τ1 are de�ned by the following optimization problems (note that

since k ≥ 3, both programs are feasible):
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τ0 = 2k−1 max

k−1∏
i=1

cos θi

subject to − π

2
≤ θi ≤

π

2
,

k−1∑
i=1

θi = π + 2nπ,

for some n ∈ Z
such that |2n+ 1| ≤ (k − 1)/2.

τ1 = 2k−1 max

k−1∏
i=1

cos θi

subject to − π

2
≤ θi ≤

π

2
,

k−1∑
i=1

θi = 2nπ.

for some n ∈ Z
such that |n| ≤ (k − 1)/4.

Using Lemma 4.9, we then see that τ0 = 2k−1 cosk−1(π/(k − 1)) and τ1 = 2k−1
, as required. �

We now proceed to an inductive proof of Theorem 4.4, using Lemma 4.10 as the base case.

Proof of Theorem 4.4. The case k = 2 is a special case of the Lee-Yang theorem [24] (though, as with the

proof of Lemma 4.10, the argument below can again be specialized to directly establish this). We assume

therefore that k ≥ 3.

The proof uses the inductive method of Asano [3]. When the hypergraph consists of a single hyperedge

of size k′ ≤ k, it follows from Lemma 4.10 and the remark following it that the partition function is LY for

the claimed values of edge activity β. For the induction, we use the fact that the Lee-Yang property of the

partition function is preserved under the following two operations:

(1) Adding a hyperedge: In this operation, a new hyperedge of size k′ ≤ k and activity β as claimed

in the statement of the theorem, is added to a connected hypergraph in such a way that exactly one

of its k′ vertices already exists in the starting hypergraph, while the other k′ − 1 vertices are new.

Note that this operation keeps the hypergraph connected. We assume that the partition functions

of both the original hypergraph as well as the newly added edge separately have the Lee-Yang

property: this follows from the induction hypothesis (for the hypergraph) and Lemma 4.10 (for the

new hyperedge).

(2) Asano contraction: In this operation, two vertices u′, u′′ in a connected hypergraph that are not

both included in any one hyperedge are merged so that the new merged vertex u is incident on

all the hyperedges incident on u′ or u′′ in the original graph. Note that this operation keeps the

hypergraph connected and does not change the size of any of the hyperedges.

Any connected non-empty hypergraph G can be constructed by starting with any arbitrary hyperedge

present in G and performing a �nite sequence of the above two operations: to add a new hyperedge e with

activity βe as present in G, one �rst uses operation 1 to add a hyperedge which has the same activity βe
and has new copies of all but one of the incident vertices of e, and then uses operation 2 to merge these new

copies with their counterparts, if any, in the starting hypergraph. Note that in this process, a hyperedge e
can be added only when at least one of its vertices is already included in the current hypergraph. However,

since G is assumed to be connected, its hyperedges can be ordered so that all of them are added by the

above process. Thus, assuming that the above two operations preserve the Lee-Yang property, it follows

by induction on the number of hyperedges that the partition functions of all connected hypergraphs of

hyperedge size at most k, and edge activities βe as claimed in the theorem, have the Lee-Yang property.

The proof of the fact, �rst proved by Asano [3], that these two operations preserve the Lee-Yang property

are by now standard, and can be found, e.g., in [44, Propositions 1, 2]. We include a proof here for

completeness.

Consider �rst operation 1. Let G be the original hypergraph and H the new hyperedge (with k′ ≤ k
vertices) being added, and assume, by renumbering vertices if required, that the vertices being merged

are v1 in G and u1 in H respectively. Let P (z1, z2, . . . , zn) = A(z2, . . . , zn)z1 + B(z2, . . . , zn) and
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Q(y1, y2, . . . , yk′) = C(y2, . . . , yk′)y1 + D(y2, . . . , yk′) be the Ising partition functions of G and H , re-

spectively, where z1 and y1 are the variables corresponding to v1 and u1 respectively. Both P and Q are LY

by the hypothesis of the operation. The partition function R of the new graph can be written as

R(z, z2, . . . , zn, y2, . . . , yk′) = A(z2, . . . , zn)C(y2, . . . , yk′)z +B(z2, . . . , zn)D(y2, . . . , yk′),

where z is a new variable corresponding to the new vertex created by the merger of u and v. Let

λ2, . . . , λn, µ2, . . . , µk′ be complex numbers lying outside the open unit disk. In order to prove that R is LY,

we need to show that (i) R(z, λ2, . . . , λn, µ2, . . . , µk′) = 0 implies that |z| ≤ 1; and (ii) when at least one

of these complex numbers lies strictly outside the closed unit disk then R(z, λ2, . . . , λn, µ2, . . . , µk′) = 0
implies that |z| < 1. Now, since P and Q are assumed to be LY, Lemma 4.6 implies that A = A(λ2, . . . , λn)
and C = C(µ2, . . . , µk′) are both non-zero. Thus, R = 0 implies that

(19) |z| = |B/A| · |D/C| ,

where B = B(λ2, . . . λn) and D = D(µ2, . . . , µk′). Since all the λi and µi lie outside the open unit disk

and P and Q are LY, |B/A| , |D/C| ≤ 1, so that from eq. (19) |z| ≤ 1. Further, when at least one of the λi
lies strictly outside the closed unit disk, then again, since P is LY, |B/A| < 1. Similarly,|D/C| < 1 when

one of the µi lies outside the closed unit disk. Thus, when at least one of the λi and the µi lies outside the

closed unit disk, it follows from eq. (19) that |z| < 1. Thus, the conditions (i) and (ii) needed to establish

that R is LY are both satis�ed.

We now consider operation 2. By renumbering vertices if necessary, let v1 and v2 be the vertices to be

merged. The partition function P of the original graph (where v1 and v2 are not merged) can be written as

P (z1, z2, z3, . . . , zn) = A(z3, . . . , zn)z1z2 +B(z3, . . . , zn)z1 + C(z3, . . . , zn)z2 +D,

and is LY by the hypothesis of the operation. The partition function R after the merger is then given by

R(z, z3, . . . , zn) = A(z3, . . . , zn)z +D,

where z is a new variable corresponding to the new vertex created by the merger of v1 and v2. Now,

let λ3, . . . , λn be complex numbers lying outside the open unit disk. Corollary 4.7 then implies that

A = A(λ3, . . . , λn) 6= 0. Thus, R(z, λ3, . . . , λn) = 0 implies that

(20) |z| = |D/A| = |D(λ3, . . . , λn)/A(λ3, . . . , λn)| .

Now, since P is LY, both zeros of the quadratic equation P (x, x, λ3, . . . , λn) = 0 satisfy |x| ≤ 1, and

indeed, |x| < 1 when at least of the λi lies strictly outside the closed unit disk. Thus, the product D/A of

its zeros also satis�es |D/A| ≤ 1, and further satis�es the stronger inequality |D/A| < 1 in case at least

one of the λi lies strictly outside the closed unit disk. Eq. (20) then implies that |z| ≤ 1 in the �rst case and

|z| < 1 in the second case, which establishes that R is LY.

This concludes the proof of Theorem 4.4. �
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