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Abstract

We propose a deterministic algorithm for approximately counting the number of list colorings of
a graph. Under the assumption that the graph is triangle free, the size of every list is at least α∆,
where α is an arbitrary constant bigger than α∗∗ = 2.8432 . . ., the solution of αe−

1
α = 2, and ∆ is

the maximum degree of the graph, we obtain the following results. For the case when the size of the
each list is a large constant, we show the existence of a deterministic FPTAS for computing the total
number of list colorings. The same deterministic algorithm has complexity 2O(log2 n), without any
assumptions on the sizes of the lists, where n is the size of the instance.

Our results are not based on the most powerful existing counting technique – rapidly mixing
Markov chain method. Rather we build upon concepts from statistical physics, in particular, the
decay of correlation phenomena and its implication for the uniqueness of Gibbs measures in infinite
graphs. This approach was proposed in two recent papers [BG06] and [Wei05]. The principle insight
of the present work is that the correlation decay property can be established with respect to cer-
tain computation tree, as opposed to the conventional correlation decay property which is typically
established with respect to graph theoretic neighborhoods of a given node. This allows truncation
of computation at a logarithmic depth in order to obtain polynomial accuracy in polynomial time.
While the analysis conducted in this paper is limited to the problem of counting list colorings, the pro-
posed algorithm can be extended to an arbitrary constraint satisfaction problem in a straightforward
way.

1 Introduction

This paper is devoted to the problem of computing the total number of list colorings of a graph. The
setting is as follows. Each node of a given graph is associated with a list of colors. An assignment of
nodes to colors is called list coloring if every node is assigned to some color from its list and no two nodes
sharing an edge are assigned to the same color. When all the lists are identical, the problem reduces
to the problem of coloring of a graph. The problem of determining whether a list coloring exists is
NP-hard, but provided that the size of each list is stictly larger than the degree for each node, a simple
greedy algorithm produces a coloring. We are concerned with the corresponding counting problem –
compute the total number of list colorings of a given graph/list pair. This problem is known to be #P
hard even for the restricted problem of counting the colorings, and the focus is on the approximation
algorithms. The existing approximation schemes have primarily been developed for the coloring problem
and are mostly based on the rapidly mixing Markov chain technique, also known as Glauber dynamics
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approach. It was established by Jerrum [Jer95] that the Glauber dynamics corresponding to graphs
where the ratio of the number of colors to degree satisfies q/∆ ≥ 2, mixes rapidly. This leads to
a randomized approximation algorithm for enumerating the number of colorings. The 2-barrier was
first broken by Vigoda [Vig00], who lowered the ratio requirement to 11/6. Many further significant
improvements were obtained subsequently. The state of the art is summarized in [FV06]. For a while
the improvement over 11/6 ratio came at a cost of lower bound Ω(log n) on the maximum degree, where
n is the number of nodes. Recently, this requirement was lifted by Dyer et al. [DFHV04].

In this paper we focus on a different approach to the counting list colorings problem. Our setting
is a list coloring problem. We require that the size of every list is at least α∆ + β, where α > α∗∗ -
the unique solution to αe−

1
α = 2, and β is a large constant. Our girth restriction is g ≥ 4, namely, the

graph is triangle-free. We obtain the following results. First, assuming that the size of each list is at
most a constant, we construct a deterministic Fully Polynomial Time Approximation Scheme (FPTAS)
for the problem of computing the total number of list colorings of a given graph/list pair. Second, for
arbitrary graph/list pair (no assumptions on the list sizes) we construct an approximation algorithm
with complexity 2O(log2 n). Namely, our algorithm is super-polynomial but still significantly quicker than
exponential time.

Although our regime α > 2.8432 . . . is weaker than q/∆ > 2, for which the Markov chain is known
to mix rapidly, our method has advantages over the Markov chains based method. The most notable is
the deterministic nature of the algorithm, which eliminates the sampling error. Also, to the best of our
knowledge, we propose the first algorithm for list colorings of a graph in a sufficiently general setting.

Our approach is based on establishing a certain correlation decay property which has been considered
in many settings [BW04], including the coloring problem [SS97], [GMP05], [BW02],[Jon02] and has
been recently a subject of interest. In particular, the correlation decay has been established in [GMP05]
for coloring triangle-free graphs under the assumption that α > α∗ = 1.763 . . ., the unique solution of
αe−

1
α = 1. (Some mild additional assumptions were adopted). The principal motivation for establishing

correlation decay property comes from statistical physics, in particular the connection between the
correlation decay and the uniqueness of the associated Gibbs measure (uniform measure in our setting)
on infinite versions of the graph, typically lattices. Recently, however, a new approach linking correlation
decay to counting algorithms was proposed in Bandyopadhyay and Gamarnik [BG06] and Weitz [Wei05].
The idea is to use correlation decay property instead of Markov sampling for computing marginals
of the Gibbs (uniform) distribution. This leads to a deterministic approach since the marginals are
computed using a dynamic programming like scheme (also known as Belief Propagation (BP) algorithm
[YFW00]). This approach typically needs a locally-tree like structure (large girth) [Sha05] in order
to be successful. The large girth assumption was explicitly assume in [BG06], where the problems of
computing the number of independent sets and colorings in some special structured (regular) graphs was
considered. Weitz [Wei05] cleverly by-passes the large girth assumption by using a certain self-avoiding
tree construction thus essentially reducing the problem to a problem on a tree with careful boundary
conditions implied by independent sets. This idea was used recently by Jung and Shah [JS06] to
introduce a version of a BP algorithm which works on a non-locally-tree like graphs, where appropriate
correlation decay can be established. This approach works for binary type problems (independent sets,
matchings, Ising model) but does not apparently extend to multi-valued problems.

In this paper we propose a general deterministic approximate counting algorithm which can be used
for arbitrary multi-valued counting problem, although we analyze the approach only for the case of
counting list colorings. We also by-pass the large girth assumption by considering a certain computation
tree corresponding to the Gibbs (uniform for the case of colorings) measure. Our principal insight is
establishing correlation decay for the certain associated computation tree as opposed to the conventional
correlation decay associated with the graph-theoretic structure of the graph. We provide a discussion
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explaining why it is crucial to establish the correlation decay in this way in order to obtain FPTAS.
Contrast this with [GMP05] where correlation decay is established for the coloring problem but in
the conventional graph-theoretic distance sense. The advantage of establishing correlation decay on a
computation tree as opposed to the original graph has been highlighted also in [TJ02] in the context of
BP algorithms and the Dobrushin’s Uniqueness condition.

The remainder of the paper has the following structure. The model description and the main
result are stated in Section 2. Some preliminary technical results are established in Section 3. The
description of the algorithm and its complexity are subject of Section 4. The principal technical result
is established in Section 5. The key result is Theorem 2, which establishes the correlation decay result
on a computation tree arising in computing the marginals of the uniform distribution on the set of all
list colorings. Section 6 provides a brief comparison between the correlation decay on a computation
tree and the correlation decay in a conventional sense. Some conclusions and open problems are in
Section 7.

2 Definitions and the main result

We consider a simple graph G with the node set V = {v1, v2, . . . , v|V |}. Our graph is assumed to be
triangle-free. Namely the girth (the size of the smallest cycle) is at least g ≥ 4. Let E,∆ denote
respectively the set of edges and the maximum degree of the graph. We also let ∆(v) denote the
degree of the node v. Each node v is associated with a list of colors L(v) ⊂ {1, 2, . . . , q} = ∪v∈V |L(v)|,
where {1, 2, . . . , q} is the total universe of colors. We let L = (L(v), 1 ≤ v ≤ n) denote the vector
of lists. We also let ‖L‖ = maxv |L(v)| the size of the largest list. The list-coloring problem on G is
formulated as follows: associate each node v with a color c(v) ∈ L(v) such that no two nodes sharing
an edge are associated with the same color. When all the lists are identical and contain q elements, the
corresponding problem is the problem of coloring G using q colors. We let |L(v)| denote the cardinality
of L(v). It is easy to see that if

|L(v)| ≥ ∆(v) + 1 (1)

for every node v, then a simple greedy procedure produces a list-coloring. We adopt here a stronger
assumption

|L(v)| ≥ α∆(v) + β, (2)

where α is an arbitrary constant strictly larger than α∗∗, the unique solution of α∗∗ = exp(− 1
α∗) ≈

2.8432 . . . and β is a large constant depending on α.
Let Z(G,L) denote the total number of possible list-colorings of a graph/list pair (G,L). The corre-

sponding counting problem is to compute (approximately) Z(G,L). In statistical physics terminology,
Z(G,L) is the partition function. We let Z(G,L, φ) denote the number of list colorings of (G,L) which
satisfy some condition φ. For example Z(G,L, c(v) = i, c(u) = j) is the number of list colorings such
that the color of v is i and the color of u is j.

On the space of all list colorings of G we consider a uniform probability distribution, where each list
coloring assumes weight 1/Z(G,L). For every node/color pair v ∈ V, i ∈ L(v), PG,L(c(v) = i) denotes
the probability that node v is colored i with respect to this probability measure. The size of the instance
corresponding to a graph/list pair(G,L) is defined to be n = max{|V |, |E|, q}.

Definition 1. An approximation algorithm A is defined to be a Fully Polynomial Time Approximation
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Scheme for a computing Z(G,L) if given arbitrary δ > 0 it produces a value Ẑ satisfying

1− δ ≤ Ẑ

Z(G,L)
≤ 1 + δ,

in time which is polynomial in n, 1
δ .

We now state our main result.

Theorem 1. There exist a deterministic algorithm which provides a FPTAS for computing Z(G,L) for
arbitrary graph list pair G,L satisfying (2), when the size of the largest list ‖L‖ is constant. The same
algorithm has complexity 2O(log2 n), without any restriction on ‖L‖, where n is the size of the instance.

3 Preliminary technical results

3.1 Basic recursion

We begin by establishing a standard relationship between the partition function Z(G,L) and the
marginals PG,L(c(v) = i). The relation, also known as cavity method, is also the basis of the Glauber
dynamics approach for computing partition functions.

Proposition 1. Consider an arbitrary list coloring i1, . . . , i|V | of the graph G (which can be constructed
using a simple greedy procedure). For every k = 0, 1, . . . , |V |−1 consider a graph list pair Gk,Lk, where
(G0,L0) = (G,L), Gk = G \ {v1, . . . , vk}, k ≥ 1 and the list Lk is obtained by deleting from each list
L(vl), l > k a color ir, r ≤ k if (vl, vr) ∈ E. Then

Z(G,L) =
∏

0≤k≤|V |−1

P−1

Gk,Lk
(c(vk) = ik).

Proof. We have

PG,L(c(v1) = i1) =
Z(G,L, c(v1) = i1)

Z(G,L)
=

Z(G1,L1)
Z(G,L)

,

from which we obtain

Z(G,L) = PG,L(c(v1) = i1)−1Z(G1,L1).

Iterating further for k ≥ 2 we obtain the result.

Our algorithm is based on a recursive procedure which relates the number of list colorings of a given
graph/list pair in terms of the number of list colorings of some reduced graph/list pairs.

Given a pair (G,L) and a node v ∈ G, let v1, . . . , vm be the set of neighbors of v. For every pair
(k, i) ∈ {1, . . . ,m}×L(v) we define a new pair (Gv,Lk,i) as follows. The set of nodes of G is Vk = V \{v}
and Lk,i(vr) = L(vr) \ {i} for 1 ≤ r < k, Lk,j(u) = L(u) for all other u. Namely, we first delete node v
from the graph. Then we delete color i from the lists corresponding to the nodes vr, r < k, and leave
all the other lists intact.

Lemma 1. The graph/list pair (Gv,Lk,j) satisfies (2) for every 1 ≤ k ≤ m, j ∈ L(v), provided that
(G,L) does.
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Proof. When we create graph Gv from G the list size of every remaining node either stays the same or
is reduced by one. The second event can only happen for neighbors v1, . . . , vm of the deleted node v.
When the list is reduced by one the degree is reduced by one as well. Since α > 1, the assertion follows
by observing that |L(vk)| ≥ α∆(vk) + β implies |L(vk)| − 1 ≥ α(∆(vk)− 1) + β.

The basis of our algorithm is the following simple result.

Proposition 2. Given a graph/list pair (G,L) and a node v, suppose ∆(v) = m > 0. For every
i ∈ L(v)

PG,L(c(v) = i) =

∏
1≤k≤m(1− PGv ,Lk,i

(c(v) = i))∑
j∈L(v)

∏
1≤k≤m(1− PGv ,Lk,j

(c(v) = j))
. (3)

The recursion as well as the proof is similar to the one used by Weitz in [Wei05], except we bypass
the construction of a self-avoiding tree, considered in [Wei05].

Proof. Consider a graph/list (Gv,L) obtained simply by removing node v from G, and leaving L intact
for the remaining nodes. We have

PG,L(c(v) = i) =
PG,L(c(v) = i)∑

j∈L(v) PG,L(c(v) = j)

=
Z(G,L, c(v) = i)Z−1(G,L)∑

j∈L(v) Z(G,L, c(v) = j)Z−1(G,L)

=
Z(Gv,L, c(vk) 6= i, 1 ≤ k ≤ m)∑

j∈L(v) Z(Gv,L, c(vk) 6= j, 1 ≤ k ≤ m)

=
PGv ,L(c(vk) 6= i, 1 ≤ k ≤ m)∑

j∈L(v) PGv ,L(c(vk) 6= j, 1 ≤ k ≤ m)

Now, for every j ∈ L(v)

PGv ,L(c(vk) 6= j, 1 ≤ k ≤ m) = PGv ,L(c(v1) 6= j)
∏

2≤k≤m

PGv ,L(c(vk) 6= j|c(vr) 6= j, 1 ≤ r < k)

We observe that L1,j = L for every j (no colors are removed due to the vacuous condition r < 1), and
PGv ,L(c(vk) 6= j|c(vr) 6= j, 1 ≤ r < k) = PGv ,Lk,j

(c(vk) 6= j). Namely

PGv ,L(c(vk) 6= j, 1 ≤ k ≤ m) =
∏

1≤k≤m

PGv ,Lk,j
(c(vk) 6= j) =

∏
1≤k≤m

(1− PGv ,Lk,j
(c(vk) = j)).

Substituting this expression we complete the proof.

3.2 Upper and lower bounds

The condition (2) allows us to obtain the following simple bounds.

Lemma 2. For every G,L, node v and a color i ∈ L(v)

PG,L(c(v) = i) ≤ 1
β

.
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Proof. Observe that given an arbitrary coloring of the neighbors v1, . . . , vm of v, there are at least
|L(v)| −∆(v) ≥ β colors remaining. Then the upper bound holds.

From this simple bound we now establish a different upper bound and also a lower bound using the
triangle free assumption.

Lemma 3. There exist ε0 = ε0(α) ∈ (0, 1) and β > 0 such that for every G,L, node v and a color
i ∈ L(v)

q−1(1− β−1)∆ ≤ PG,L(c(v) = i) ≤ 1
2∆(v)(1 + ε0)

.

We note that the upper bounds of this lemma and Lemma 2 are not comparable, since values of
∆(v) could be smaller and larger than β.

Proof. We let v1, . . . , vm denote the neighbors of v, m = ∆(v) and let vkr denote the set of neighbors
of vk, other than v for k = 1, . . . ,m. We will establish that for any coloring of nodes (vkr), which we
generically denote by c, we have

q−1(1− β−1)∆ ≤ PG,L(c(v) = i|c) ≤ 1
2m(1 + ε0)

.

The corresponding inequality for the unconditional probability then follows immediately. Now observe
that, since the girth is at least 4, then there are no edges between vk. Then PG,L(c(v) = i|c) is the
probability PT(c(v) = i) that v is colored i in a depth-1 tree T , {v, v1, . . . , vm}, where the lists L̂(vk)
of vk are obtained from L(vk) by deleting the colors used by the neighbors vkr by coloring c. From
the assumption (2) we have that the remaining lists L̂(vk) have size at least |L(vk)| −∆(vk) ≥ β each.
Let ti = PT(c(v) = i). For each color j ∈ L(v) let tj,k = 1/|L̂(vk)| if j ∈ L̂(vk) and = 0 otherwise.
Proposition 2 then simplifies to

ti =

∏
1≤k≤m(1− ti,k)∑

j∈L(v)

∏
1≤k≤m(1− tj,k)

≤ 1∑
j∈L(v)

∏
1≤k≤m(1− tj,k)

, (4)

for every i ∈ L(v), where
∏

1≤k≤m is defined to be equal to unity when m = 0. From the equality part,
applying tj,k ≤ 1/β, we get

ti ≥ |L(v)|−1(1− β−1)m ≥ q−1(1− β−1)∆,

and the lower bound is established.
We now focus on the upper bound and use the inequality part of (4). Thus it suffices to show that∑

j∈L(v)

∏
k

(1− tj,k) ≥ 2(1 + ε0)m (5)

for some constant ε0 > 0. Using the first order Taylor expansion for log z around z = 1,∏
1≤k≤m

(1− tj,k) =
∏

1≤k≤m

elog(1−tj,k)

=
∏

1≤k≤m

e
−tj,k− 1

2(1−θj,k)2
t2j,k

,
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for some 0 ≤ θj,k ≤ tj,k, since −1/z2 is the second derivative of log z. Again using the bound tj,k ≤ 1/β,
we have (1−θj,k)2 ≥ (1−1/β)2. We assume that β is a sufficiently large constant ensuring (1−1/β)2 >
1/2. Thus we obtain the following lower bound

∏
1≤k≤m

(1− tj,k) ≥
∏

1≤k≤m

e
−tj,k−

t2j,k

2(1−1/β)2 ≥ e
−(1+ 1

β
)

P
k tj,k , e

−(1+ 1
β

)Tj ,

where Tj stands for
∑

k tj,k. Then∑
j∈L(v)

∏
1≤k≤m

(1− tj,k) ≥
∑

j∈L(v)

e
−(1+ 1

β
)Tj ≥ |L(v)|e−

1
|L(v)| (1+

1
β

)
P

j Tj ,

where we have used an inequality between the average arithmetic and average geometric. Finally we
observe ∑

j∈L(v)

Tj =
∑
j,k

tj,k =
∑

1≤k≤m

∑
j∈L̂(vk)

1
|L̂(vk)|

= m.

Thus ∑
j∈L(v)

∏
1≤k≤m

(1− tj,k) ≥ |L(v)|e−
m

|L(v)| (1+
1
β

) ≥ (αm + β)e−
1
α

(1+ 1
β

)
> αme

− 1
α

(1+ 1
β

)

The condition α > α∗∗ implies that there exists a sufficiently large β such that αe
− 1

α
(1+ 1

β
)
> 2. We find

0 < ε0 < .1 such that αe
− 1

α
(1+ 1

β
) = 2(1 + ε0). We obtain a required lower bound (5).

4 Algorithm and complexity

4.1 Description of an algorithm

Our algorithm is based on the idea of trying to approximate the value of PG,L(c(v) = i), by performing
a certain recursive computation using (3) a fixed number of times d and then using a correlation decay
principle to guarantee the accuracy of the approximation. Specifically, introduce a function Φ which
takes as an input a vector (G,L, v, i, d) and takes some values Φ(G,L, v, i, d) ∈ [0, 1]. The input
(G,L, v, i, d) to Φ is any vector, such that such that v is a node in G, i is an arbitrary color, and d is
an arbitrary non-negative integer. Function Φ is defined recursively in d. The quantity Φ ”attempts”
to approximate PG,L(c(v) = i). The quality of the approximation is controlled by d. We define Φ as
follows. For every input (G,L, v, i, d) such that i /∈ L(v) we set Φ(G,L, v, i, d) = 0. Otherwise we set
the values as follows.

• When d = 0, we set Φ(G,L, v, i, d) = 1/|L(v)| for every input (G,L, v, i). (It turns out that for
our application the initialization values are not important, due to the decay of correlations).

• For every d ≥ 1, if ∆(v) = 0, then Φ(G,L, v, i, d) = 1/|L(v)| for all i ∈ L(v). Suppose ∆(v) =
m > 0 and v1, . . . , vm are the neighbors of v. Then for every i ∈ L(v) we define

Φ(G,L, v, i, d) = min
[ 1
2(1 + ε0)m

,
1
β

,

∏
1≤k≤m(1− Φ(Gv,Lk,i, vk, i, d− 1))∑

j∈L(v)

∏
1≤k≤m(1− Φ(Gv,Lk,j , vk, j, d− 1))

]
. (6)
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The last part of the expression inside min[·] corresponds directly to the expression (3) of Propo-
sition 2. Specifically, if it was true that Φ(Gv,Lk,j , vk, j, d − 1) = PGv ,Lk,j

(c(vk) = j), then, by
Lemmas 2,3, the minimum in (6) would be achieved by the third expression, and then the value
of Φ(G,L, v, i, d) would be exactly PG,L(c(v) = i).

We will use the correlation decay property to establish that the difference between the two values,
modulo rescaling, is diminishing as d →∞. Note that the computation of Φ can be done recursively in d
and it involves a dynamic programming type recursion. The underlying computation is done essentially
on a tree of graph list pairs Gs,Ls generated during the recursion. We refer to this tree as computation
tree with depth d.

We now describe our algorithm for approximately computing Z(G,L). The algorithm is parametrized
by the ”quality” parameter d.

Algorithm CountCOLOR

INPUT: A graph/list pair (G,L) and a positive integer d.
BEGIN
Set Ẑ = 1, Ĝ = G, L̂ = L.
While Ĝ 6= ∅, find an arbitrary node v ∈ Ĝ and a color i ∈ L̂(v). Compute

p̂(v, i) , Φ(Ĝ, L̂, v, i, d). (7)

Set Ẑ = p̂−1(v, i)Ẑ, Ĝ = Ĝ \ {v}, L̂(u) = L̂(u) \ {i} for all neighbors u of v in Ĝ, and L̂(u)
remains the same for all other nodes.

END
OUTPUT: Ẑ.

4.2 Some properties

We now establish some properties of Φ.

Lemma 4. The following holds for every G,L, v, i ∈ L(v), d ≥ 0.

Φ(G,L, v, i, d) ≤ min
[ 1
β

,
1

2(1 + ε0)∆(v)
]
, (8)∑

i∈L(v)

Φ(G,L, v, i, d) ≤ 1, (9)

Φ(G,L, v, i, d) ≥ q−1(1− 1/β)∆. (10)

Proof. (9) follows directly from the definition of Φ. To show (8) we consider cases. For d ≥ 1 this follow
directly from the recursion (6). For d = 0, this follows since Φ(G,L, v, i, 0) = 1/|L(v)| ≤ 1/(α∆(v) + β)
and 2(1+ε0) < 2.2 < α. We now establish (10). For the case d = 0 this follows since 1/|L(v)| ≥ 1/q. For
the case d ≥ 1 this follows from the recursion (6) since 1/β, 1/(2(1+ ε0)∆(v)) > 1/q and the third term
inside the minimum operator is at least q−1(1 − 1/β)∆, using upper bound Φ(G,L, v, i, d − 1) ≤ 1/β
which we have from (8).

8



4.3 Complexity

We begin by analyzing the complexity of computing function Φ. Recall that n = max(|V |, |E|, q) is the
size of the instance.

Proposition 3. For any given node v, the function Φ can be computed in time 2O(d log ‖L‖∆). In
particular when d = O(log n), the overall computation is 2O(log2 n). If in addition the size of the largest
list ‖L‖ is constant then the computation time is polynomial in n.

Proof. Let φ(d) denote the complexity of computing function Φ(·, d). Clearly, φ(0) = O(‖L‖). We now
express φ(d) in terms of φ(d− 1). Given a node v, in order to compute Φ(G,L, v, i, d) we first identify
the neighbors v1, . . . , vm of v. Then we create graph/list pairs Gv,Lj,k, 1 ≤ k ≤ m, j ∈ L(v), compute
Φ(·, d − 1) for each of this graphs, and use this to compute Φ(G,L, v, i, d). The overall computation
effort is then

φ(d) = O(‖L‖∆φ(d− 1)).

Iterating over d we obtain φ(d) = O(‖L‖d+1∆d) = O(2(d+1) log ‖L‖∆) = 2O(d log ‖L‖∆). When d =
O(log n), we obtain a bound 2O(log2 n). If in addition ‖L‖ = O(1), then the assumption (2) implies
∆ = O(1), and then φ(d) = nO(1).

The following is then immediate.

Corollary 1. Suppose d = O(log n). Then the complexity of the algorithm CountCOLOR is 2O(log2 n).
If in addition the size of the largest list ‖L‖ is constant, then CountCOLOR is a polynomial time
algorithm.

5 Correlation decay

The following is the key correlation decay result.

Theorem 2. Consider a triangle-free graph/list pair (G,L) satisfying (2). There exist constants 0 <
ε < 1, β > 0, c > 0 which depend only on α, such that for all nodes v, colors i ∈ L(v) and d ≥ 0

max
i∈L(v)

∣∣∣ log PG,L(c(v) = i)− log Φ(G,L, v, i, d)
∣∣∣ ≤ cn(1− ε)d. (11)

This theorem is our key tool for using the values of Φ for computing the marginals PG,L(c(v) = i).
We first establish that this correlation decay result implies our main result, Theorem 1.

Proof of Theorem 1. We consider an arbitrary instance (G,L) with size n and arbitrary δ > 0. We
may assume without the loss of generality that n is at least a large constant bigger than C/δ, for any
universal constant C, since we can simply extend the size of the instance by adding isolated nodes. The
proof uses a standard idea of approximating marginals PG,L(c(v) = i) and then using Proposition 1
for computing Z(G,L). From Proposition 1, if the algorithm CountCOLOR produces in every stage
k = 1, 2, . . . , |V | − 1 a value p̂(v, i) which approximates PGv ,Lk

(c(vk) = i) with accuracy

1− δ

n
≤ p̂(v, i)

PGv ,Lk
(c(vk) = i)

≤ 1 +
δ

n
(12)

9



then the output Ẑ of the algorithm satisfies(
1− δ

n

)n
≤

(
1− δ

n

)|V |
≤ Z(G,L)

Ẑ
≤

(
1 +

δ

n

)|V |
≤

(
1 +

δ

n

)n

Since |V | ≤ n and n is at least a large constant, we obtain an arbitrary accuracy of the approximation.
Thus it suffices to arrange for (12). We run the algorithm CountCOLOR with d = d 3 log n

log 1
1−ε

e, where ε is

the constant from Theorem 2. This choice of d gives (1− ε)d ≤ 1/n3. Theorem 2 with the given value
of d then implies ∣∣∣ log

P
Ĝ,

ˆL
(c(v) = i)

p̂(v, i)

∣∣∣ =
∣∣∣ log

P
Ĝ,

ˆL
(c(v) = i)

Φ(Ĝ, L̂, v, i, d)

∣∣∣ ≤ O(n)
1
n3

= O(
1
n2

).

Thus

1−O(
1
n2

) ≤ exp
(
−O(

1
n2

)
)
≤ p̂(v, i)

PG,L(c(v) = i)
≤ exp

(
O(

1
n2

)
)

= 1 + O(
1
n2

)

This gives us (12) for all n > C/δ where C is the universal constant appearing in O(·). This completes
the analysis of the accuracy. The complexity part of the theorem follows directly from Corollary 1.

The rest of the section is devoted to establishing this Theorem 2. The basis of the proof is the
recursion (3). As before, let v1, . . . , vm be the neighbors of v in G, m = ∆(v). Observe that (11) holds
trivially when m = 0, since both expression inside the absolute value become 1/|L(v)| and the left-hand
side becomes equal to zero. Thus we assume that m ≥ 1. Denote by mk the degree of vk in the graph
Gv. In order to ease the notations, we introduce

xi = PG,L(c(v) = i), i ∈ L(v),

xi,k = PGv ,Lk,i
(c(vk) = i), i ∈ L(v), 1 ≤ k ≤ m

x∗i = Φ(G,L, v, i, d), i ∈ L(v),
x∗i,k = Φ(Gv,Lk,i, vk, i, d− 1), i ∈ L(v) ∩ Li,k(vk), 1 ≤ k ≤ m

Proposition 4. There exists a constant ε > 0 which depends on α only such that

1
m

max
i∈L(v)

∣∣ log(xi)− log(x∗i )
∣∣ ≤ (1− ε) max

j∈L(v),k:mk>0

1
mk

∣∣ log(xj,k)− log(x∗j,k)
∣∣ (13)

First we show how this result implies Theorem 2:

Proof of Theorem 2. Applying this proposition d times and using the fact that we are summing over
k : mk > 0, we obtain

1
m

max
i∈L(v)

[
log(xi)− log(x∗i )

]
≤ M(1− ε)d,

where

M = max
l,s

∣∣∣ log PGs,Ls
(c(v) = l)− log Φ(Gs,Ls, v, l, 0)

∣∣∣
10



and the maximum is over all graph/list pairs Gs,Ls appearing during the computation of Φ and over
all colors l. Recall that if l does not belong to the list associated with node v and list vector Ls, then
PGs,Ls

(c(v) = l) = Φ(Gs,Ls, v, l, 0) = 0 (the first is equal to zero by definition, the second by the way
we set the values of Φ). Otherwise we have from Lemma 2 and part (10) of Lemma 4 that absolute
value of the difference is at most

log q + ∆ log(β/(β − 1)).

Since m ≤ ∆ ≤ n, β is a constant which only depends on α, and q ≤ n, then we obtain M = O(n).

Thus we focus on establishing Proposition 4.

Proof of Proposition 4. Observe that for every i ∈ L(v) \ Lk,j(vk) we have xi,k = x∗i,k = 0. This is
because the probability of node vk obtaining color i is zero when this color is not in its list. Similarly,
the corresponding value of Φ is zero, since we set it to zero for all colors not in the list. For every
i ∈ L(v) introduce

Ai ,
∏

1≤k≤m

(1− xi,k) (14)

and

A ,
∑

j∈L(v)

Aj (15)

Introduce A∗
i , A

∗ similarly. Applying Proposition 2 we obtain

xi =
Ai

A
, (16)

x∗i = min
[ 1
2(1 + ε0)m

,
1
β

,
A∗

i

A∗

]
. (17)

Let

x̃∗i =
A∗

i

A∗ .

We claim that in order to establish (13) it suffices to establish the bound

1
m
| log xi − log x̃∗i | ≤ (1− ε) max

j∈L(v),k:mk>0

1
mk

∣∣ log(xj,k)− log(x∗j,k)
∣∣

Indeed, if x̃∗i 6= x∗i , then x∗i = min[ 1
2(1+ε0)m , 1

β ]. On the other hand, by Lemmas 2,3 we have xi ≤
min[ 1

2(1+ε0)m , 1
β ], implying xi ≤ x∗i ≤ x̃∗i , and the bound for x̃∗i implies the bound (13).

We have

max
i∈L(v)

∣∣ log(xi)− log(x∗i )
∣∣ = max

i∈L(v)

∣∣∣ log Ai − log A∗
i − log A + log A∗

∣∣∣. (18)

We introduce auxiliary variables yi = log(xi), yi,k = log(xi,k). Similarly, let y∗i = log(x̃∗i ), y
∗
i,k = log(x∗i,k).

Define y = (yi,k),y∗ = (y∗i,k). Observe that if mk = 0 then for every color i xi,k = x∗i,k. This follows

11



since both values are 1/|Li,k| when i ∈ Li,k and zero otherwise. This implies yi,k = y∗i,k. Then we rewrite
(18) as

max
i∈L(v)

∣∣yi − y∗i
∣∣ = max

i∈L(v)

∣∣∣ ∑
k:mk>0

log(1− exp(yi,k))−
∑

k:mk>0

log(1− exp(y∗i,k))

− log
( ∑

j∈L(v)

∏
1≤k≤m

(1− exp(yj,k))
)

+ log
( ∑

j∈L(v)

∏
1≤k≤m

(1− exp(y∗j,k))
)∣∣∣, (19)

where the sums
∑

1≤k≤m were replaced by
∑

k:mk>0 due to our observation yi,k = y∗i,k when mk = 0.
For every i denote the expression inside the absolute value in the right-hand side of equation (19)

by Gi(y). That is we treat y∗ as constant and y as a variable. It suffices to prove that for each i

Gi(y) ≤ (1− ε) max
j∈L(v),k:mk>0

1
mk

∣∣ log(xj,k)− log(x∗j,k)
∣∣ (20)

Observe that Gi(y∗) = 0. Let gi(t) = Gi(y∗ + t(y − y∗)), t ∈ [0, 1]. Then gi is a differentiable function
interpolating between 0 and Gi(y). In particular, gi(1) = Gi(y). Applying the Mean Value Theorem we
obtain

|gi(1)− gi(0)| = |gi(1)| ≤ sup
0≤t≤1

|ġi(t)|

= sup
0≤t≤1

∣∣∣∇Gi(y∗ + t(y − y∗))T (y − y∗)
∣∣∣

where the supremum is over values of t. We use a short-hand notation

Πj =
∏

1≤k≤m

(1− exp(yj,k + t(yj,k − y∗j,k)))

For each t we have

∇Gi(y∗ + t(y − y∗))(y − y∗) =
∑

k:mk>0

− exp(yi,k + t(yi,k − y∗i,k))
1− exp(yi,k + t(yi,k − y∗i,k))

(yi,k − y∗i,k)

+

∑
j∈L(v)

∑
1≤k≤m

exp(yj,k+t(yj,k−y∗j,k))

1−exp(yj,k+t(yj,k−y∗j,k))(yj,k − y∗j,k))Πj∑
j∈L(v) Πj

.

Again using the fact yj,k = y∗j,k when mk = 0, we can replace the sum
∑

1≤k≤m by
∑

k:mk>0 in the
expression above. For each j we have from convexity of exp

exp(yj,k + t(yj,k − y∗j,k)) ≤ (1− t) exp(y∗j,k) + t exp(yj,k)

= (1− t)xj,k + tx∗j,k

≤ 1
2(1 + ε0)mk

.

where the last inequality follows from Lemma 3 and part (8) of Lemma 4. This bound is useful for
terms with mk > 0 (for this reason we only kept these terms in the sum

∑
k:mk>0). Similarly using

12



Lemma 2 and again part (8) of Lemma 4 we obtain

1
1− exp(yj,k + t(yj,k − y∗j,k))

≤ 1
1− (1− t) exp(y∗j,k)− t exp(yj,k)

=
1

1− (1− t)xj,k − tx∗j,k

≤ 1
1− 1

β

.

We obtain

sup
0≤t≤1

∣∣∣∇Gi(y∗ + t(y − y∗))(y − y∗)
∣∣∣ ≤ ∑

k:mk>0

1
(1− 1

β )2(1 + ε0)mk

|yi,k − y∗i,k|

+

∑
j∈L(v)

∑
k:mk>0(1−

1
β )−12−1(1 + ε0)−1m−1

k |yj,k − y∗j,k|Πj∑
j∈L(v) Πj

≤ m

(1− 1
β )2(1 + ε0)

max
j∈L(v),k:mk>0

|yj,k − y∗j,k|
mk

+
m

(1− 1
β )2(1 + ε0)

max
j∈L(v),k:mk>0

|yj,k − y∗j,k|
mk

=
m

(1− 1
β )(1 + ε0)

max
j∈L(v),k:mk>0

|yj,k − y∗j,k|
mk

.

Combining with (19) we conclude

max
i∈L(v)

|yi − y∗i |
m

≤ 1
(1− 1

β )(1 + ε0)
max

j∈L(v),k:mk>0

|yj,k − y∗j,k|
mk

.

We now select a sufficiently large constant β = β(ε0) such that

1− ε ,
1

(1− 1
β )(1 + ε0)

< 1.

This completes the proof of Proposition 4.

6 Comparison of the correlation decay on a computation tree and
the conventional spatial correlation decay

As we have mentioned the (spatial) correlation decay is known to hold for coloring problem in a stronger
regime α > α∗ ≈ 1.763 . . ., then the regime α > α∗∗ considered in this paper [GMP05]. This decay of
correlation is established in a conventional sense: for every node v the marginal probability P(c(v) = i) is
asymptotically independent from changing a color on a boundary of the depth-d neighborhood B(v, d)
of v in the underlying graph. In fact it is established that the decay of correlation is exponential
in d. It is natural to try to use this result directly as a method for computing approximately the
marginals P(c(v) = i), for example by computing the marginal PB(v,d)(c(v) = i) corresponding to the
neighborhood B(v, d), say using brute force computation. Unfortunately, this conventional correlation
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decay result is not useful because of the computation growth. In order to obtain ε-approximation of the
partition function, we need order O(ε/n) approximation of the marginals, which means the depth d of the
neighborhood B(v, d) needs to be at least O(log n). Here n is the number of nodes. But the resulting
cardinality of B(v, d) is then O(∆log n) = nO(1) - polynomial in n and the brute-force computation
effort would be exponential in n. Notice that even if the underlying graph has a polynomial expansion
|B(v, d)| ≤ dr, for some power r ≥ 1, the brute-force computation would still be O(exp(logr n)) which
is super-polynomial. This is where having correlation decay on computation tree as opposed to the
conventional graph theoretic sense helps.

7 Conclusions

We have established existence of a deterministic algorithm for counting the number of list colorings of
a graph. While the analysis in this paper was restricted to the problem of list colorings, the algorithm
generalizes to arbitrary constraint satisfaction (integer programming) type problems. Along with [BG06]
and [Wei05] this work is an important step in the direction of developing a new powerful method for
solving counting problems using insights from statistical physics. This method provides an alternative
to the existing MCMC sampling based method.

The principle insight from this work is the advantage of establishing the correlation decay property
on the computation tree as opposed to the original graph theoretic structure, as has been done primarily
prior to this work. While we have established such correlation decay only in the regime α > 2.8432...,
we conjecture that it holds for much lower values of α. In fact, just as it is conjectured that the
Markov chain is rapidly mixing in the regime q ≥ ∆ + 2, we conjecture that the correlation decay on
the computation tree holds in this regime as well. We expect that a similar correlation decay property
holds for computation trees corresponding to other counting problems. Natural place to start is counting
matchings, permanent of a matrix, or volume of a polytope. We note that while the volume of a convex
body cannot be approximated using deterministic algorithms, [Ele86],[BF87], the presence of a linear
programming structure might help, perhaps in some interesting sub-class of polytopes. It is also of
interest to see the computational feasibility of the proposed algorithm. Finally, it would be of interest
to see whether correlation decay on the computation tree has any implications for the mixing rate of the
underlying Markov chain. It is known that the conventional decay of correlation implies rapid mixing
on graphs with sub-exponential growth. It would be interesting to see whether any extra milage can be
gained from looking at the correlation decay property of the computation tree.
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