Department of Mathematical Sciences

21–241 Matrix Algebra Professor A. Frieze and Professor S. Ta'asan Fall 2002

Test No. 3

Name:	
Section:	

problem	points	scores
1	25	
2	25	
3	25	
4	25	
total	100	

- 1. (25 pts)
 - (a) Let λ be an eigenvalue of an invertible matrix A. Show that λ^{-1} is an eigenvalue of A^{-1} .

$$\begin{array}{rcl} A\mathbf{x} & = & \lambda\mathbf{x} & 4 \ pts \\ A^{-1}A\mathbf{x} & = & \lambda A^{-1}\mathbf{x} & 4 \ pts \\ A^{-1}\mathbf{x} & = & \lambda^{-1}\mathbf{x} & 4 \ pts \end{array}$$

(b) Show that if A^2 is the zero matrix then the only eigenvalue of A is zero.

$$A\mathbf{x} = \lambda \mathbf{x} \qquad 3 pts$$

$$A^{2}\mathbf{x} = \lambda A\mathbf{x} \qquad 3 pts$$

$$= \lambda^{2}\mathbf{x} \qquad 2 pts$$

So

$$0 = \lambda^2 \mathbf{x} \qquad 2 \ pts$$

and then $\lambda = 0$, since $\mathbf{x} \neq 0$ 3 pts.

2. (25 points) Let

$$A = \left[egin{array}{cc} 2 & 3 \ 4 & 1 \end{array}
ight]$$

Diagonalise A.

$$det A - \lambda I = (\lambda - 5)(\lambda + 2)$$
 5 pts

Eigenvalues are 5 and -2-4 pts.

Eigenvectors are: 5: $[1\ 1]$ (4 pts) and -2: $[3\ -4]$ (4 pts).

$$P = \left[\begin{array}{cc} 1 & 3 \\ 1 & -4 \end{array} \right] \qquad 4 \ pts$$

 $P^{-1}AP$ is diagonal. 4 pts.

- 3. (25 points) An $n \times n$ matrix is orthonormal if its columns are an orthonormal set.
 - (a) Show that the eigenvalues of an $n \times n$ orthonormal matrix A are ± 1 .

(Hint: consider the length of vector $A\mathbf{x}$ when \mathbf{x} is an eigenvector of A.)

$$\begin{array}{rcl} A\mathbf{x} & = & \lambda\mathbf{x} & 3 \ pts \\ \mathbf{x}^T A^T A \mathbf{x} & = & \lambda^2 ||\mathbf{x}||^2 & 3 \ pts \\ \mathbf{x}^T \mathbf{x} & = & \lambda^2 ||\mathbf{x}||^2 & 3 \ pts \end{array}$$

So $\lambda^2 = 1$ since $\mathbf{x} \neq 0$ 3 pts.

(b) Let U, V be $n \times n$ orthonormal matrices Show that UV is also orthonormal.

$$\begin{array}{rcl} (UV)^TUV & = & V^TU^TUV & 3 \ pts \\ & = & V^TV & 3 \ pts \\ & = & I & 3 \ pts \end{array}$$

This implies that UV is orthonormal 4pts.

4. (25 points)

Let
$$\mathbf{y} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$

Write \mathbf{y} as the sum of a vector in Span $\{\mathbf{u}\}$ and a vector orthogonal to \mathbf{u} .

$$\mathbf{y} = \left(\mathbf{y} - \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}\right) + \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$
$$= \begin{bmatrix} -4/5 \\ 28/5 \end{bmatrix} + \begin{bmatrix} 14/5 \\ 2/5 \end{bmatrix}.$$

 $10~\mathrm{pts}$ for correct method and rest for accuracy. Take only a few points off for numerical mistakes.