Department of Mathematical Sciences

21-241 Matrix Algebra Professor A. Frieze and Professor S. Ta'asan

Fall 2002

Test No. 1

Name:______Section:_____

problem	points	scores
1	25	
2	25	
3	25	
4	25	
total	100	

1. (25 pts) Describe all the solutions to the linear system

$$\left[\begin{array}{cccc} 1 & 3 & -5 & 4 \\ 1 & 4 & -8 & 7 \\ -3 & -7 & 9 & -6 \end{array}\right]$$

4 pts

only 2 pts if RHS left out

$$\left[\begin{array}{cccc} 1 & 3 & -5 & 4 \\ 0 & 1 & -3 & 3 \\ 0 & 2 & -6 & 6 \end{array}\right]$$

4 pts

$$\left[\begin{array}{cccc}
1 & 0 & 4 & -5 \\
0 & 1 & -3 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]$$

4 pts

Solution

$$\begin{array}{rcl} x_1 & = & -5 & - & 4x_3 \\ x_2 & = & 3 & + & 3x_3 \end{array}$$

r

$$\left[\begin{array}{c} -5\\3\\0 \end{array}\right] + x_3 \left[\begin{array}{c} -4\\3\\1 \end{array}\right]$$

 $10 \mathrm{~pts}$

3 pt bonus for perfect solution.

2. (25 points) Determine by inspection if the given set is linearly dependent. Give reasons.

a.

$$\left[\begin{array}{c}1\\7\\6\end{array}\right], \left[\begin{array}{c}2\\0\\9\end{array}\right], \left[\begin{array}{c}3\\1\\5\end{array}\right], \left[\begin{array}{c}4\\1\\8\end{array}\right]$$

Linearly dependent. More than 3 vectors in \mathbb{R}^3 – 8 pts.

b.

$$\left[\begin{array}{c}2\\3\\5\end{array}\right], \left[\begin{array}{c}0\\0\\0\end{array}\right], \left[\begin{array}{c}1\\1\\8\end{array}\right],$$

Linearly dependent. The set contains a zero vector – 8 pts

c.

$$\begin{bmatrix} -2\\4\\6\\10 \end{bmatrix}, \begin{bmatrix} 3\\-6\\-9\\15 \end{bmatrix}$$

If dependent, one should be a multiple of the other. Linearly independent – 9 pts.

3. (25 points) Let T be a linear transformation from $\mathbb{R}^n \to \mathbb{R}^m$. Show that if $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly dependent then so are $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)$.

There exist x_1, x_2, \ldots, x_p not all zero such that $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$. 5 pts, (3 pts if there is an omission of "not all zero").

Thus
$$T(x_1\mathbf{v}_1+x_2\mathbf{v}_2+\cdots+x_p\mathbf{v}_p)=\mathbf{0}$$
 - 5 pts
Thus by linearity (5pts) $x_1T(\mathbf{v}_1)+x_2T(\mathbf{v}_2)+\cdots+x_pT(\mathbf{v}_p))=\mathbf{0}$ - 5 points and so (5 pts) $T(\mathbf{v}_1),T(\mathbf{v}_2),\ldots,T(\mathbf{v}_p)$ are linearly dependent..

- 4. (25 points)Mark each statement true or false. No justification is needed. 2.5 pts per correct answer.
 - (i) Two matrices are row equivalent if they the same number of rows. F
 - (ii) Two linear systems are equivalent if they have the same solution set. T
 - (iii) Whenever a system has a free variable then the solution set contains infinitely many solutions. ${\bf F}$
 - (iv) A linear transformation from \mathbb{R}^n to \mathbb{R}^n is completely determined by its effect on any n distinct vectors. \mathbf{F}
 - (v) A vector **b** is a linear combination of the columns of a matric A if and only if the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution. **T**
 - (vi) If the columns of a p time q matrix A span \mathbb{R}^p then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} n \mathbb{R}^p . \mathbf{T}
 - (vii) The equation $A\mathbf{x} = \mathbf{b}$ is homogeneous if the zero vector is a solution. \mathbf{T}
 - (viii) The columns of a matrix A are linearly independent if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. \mathbf{T}
 - (ix) Every linear transformation is a matric transformation. T
 - (x) The homogeneous equation is always consistent. T