EXAMPLE 4 Given a scalar *r*, define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = r\mathbf{x}$. *T* is called a **contraction** when $0 \le r \le 1$ and a **dilation** when r > 1. Let r = 3 and show that *T* is a linear transformation.

Solution Let \mathbf{u} , \mathbf{v} be in \mathbb{R}^2 and let c, d be scalars. Then

$$T(c\mathbf{u} + d\mathbf{v}) = 3(c\mathbf{u} + d\mathbf{v})$$

Definition of T
$$= 3c\mathbf{u} + 3d\mathbf{v}$$

$$= c(3\mathbf{u}) + d(3\mathbf{v})$$

$$= cT(\mathbf{u}) + dT(\mathbf{v})$$

Definition of T
Vector arithmetic

Thus *T* is a linear transformation because it satisfies (4). See Fig. 5.

