EXAMPLE 3 Let $A = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$. The transformation T: $\mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(\mathbf{x}) = A\mathbf{x}$ is called a **shear** transformation. It can be shown that if T acts on each point in the 2×2 square shown in Fig. 4, then the set of images forms the shaded parallelogram. The key idea is to show that T maps line segments onto line segments (as shown in Exercise 27) and then to check that the corners of the square map onto the vertices of the parallelogram. For instance, the image of the point \mathbf{u} = is $T(\mathbf{u}) = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$, and the image of $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ is $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$. *T* deforms the square as if the top of the square were pushed to the right while the base is held fixed. Shear transformations appear in physics, geology, and crystallography.

