EXAMPLE 6' Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} -1 \\ -2 \\ 7 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -3 \\ 4 \\ 2 \end{bmatrix}$.

(Same \mathbf{a}_1 , \mathbf{a}_2 as in Example 5'.) Determine whether **b** is in the plane spanned by \mathbf{a}_1 and \mathbf{a}_2 .

Solution Does $x_1\mathbf{a}_1 + x_2\mathbf{x}_2 = \mathbf{b}$ have a solution? Row reduce $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{b} \end{bmatrix}$:

Γ	1	-1	-3		1	-1	-3		1	-1	-37
	0	-2	4	\sim	0	-2	4	\sim	0	-2	4
	-3	7	2		0	4	_7_		0	0	$\begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$

The vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}$ has no solution. So **b** is *not* in Span{ $\mathbf{a}_1, \mathbf{a}_2$ }.