Coupling of Scale-Free and Classical Random Graphs

Béla Bollobás and Oliver Riordan

April 18, 2007

Béla Bollobás and Oliver Riordan Coupling of Scale-Free and Classical Random Graphs

A (1) > A (2) > A

Consider a graph where we delete some nodes and look at the size of the largest component remaining. Just how robust are scale free graphs

to random failures

< 同 > < 三 > <

Consider a graph where we delete some nodes and look at the size of the largest component remaining. Just how robust are scale free graphs

- to random failures
- to deliberate attacks

Consider a graph where we delete some nodes and look at the size of the largest component remaining. Just how robust are scale free graphs

- to random failures
- to deliberate attacks
- should the adversary have infinite time?

< ∰ > < ≣ >

If we take the adversary out of the picture we can phrase the question as.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

If we take the adversary out of the picture we can phrase the question as.

How many vertices do we need to remove so that the graph breaks up into small pieces?

A (10) < A (10) < A (10) </p>

Consider the Preferential Attachment Model. Assume *m* is fixed, $G[k] \sim G_m^{(k)}$. We create G[k + 1] by adding a new vertex k + 1 with *m* edges $(k + 1, t_1), \ldots, (k + 1, t_m)$ where

$$\Pr[t_i = j] = \frac{d_{G[k],i}(j)}{2mk + 2i - 1}$$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● の Q @

Theorem 1

There exist $c > 0, m_0$ s.t. for $m \ge m_0$, whp $G_m^{(n)}$ the following holds

- ► (a) Every induced subgraph of size 10n^{log(m)}/_m contains a component of size at least 2n^{log m}/_m
- ▶ (b) The graph contains an independent set of size $cn \frac{\log(m)}{m}$

(本間) (本語) (本語) (語)

Proof by coupling We create two graphs (G_1, G_2) s.t. $G_1 \sim G_m^{(n)}$, $G_2 \sim G(n, p)$. But G_1 and G_2 are not independent but heavily correlated.

A (1) < A (1) < A (1) </p>

Let $X \sim D_X$, $Y \sim D_Y$. A coupling is a joint distribution $D_{X,Y}$ s.t. the marginals are correct, i.e. $D_{X,\cdot} = D_X$ and $D_{\cdot,Y} = D_Y$.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

Let $X \sim D_X$, $Y \sim D_Y$. A coupling is a joint distribution $D_{X,Y}$ s.t. the marginals are correct, i.e. $D_{X,\cdot} = D_X$ and $D_{\cdot,Y} = D_Y$. Suppose X, Y are uniform [0, 1] and we let Y = 1 - X then both marginals are still uniform but the joint distribution is far from independent.

・ロト ・四ト ・ヨト ・ヨト

Let $X \sim Bin(n, p)$ then

$$\Pr[X > (\delta + 1)np] < \left(\frac{e^{\delta}}{(1 + \delta)^{(1 + \delta)}}\right)^{np}$$
$$\Pr[X < (1 - \delta)np] < \left(\frac{e^{-\delta}}{(1 - \delta)^{(1 - \delta)}}\right)^{np}$$

Béla Bollobás and Oliver Riordan Coupling of Scale-Free and Classical Random Graphs

Theorem 2 Fix $\eta < 1/2$, there exist constants A, c > 0 s.t. for fixed *m* we can construct $G_1 \sim G_m^{(n)}$, $G_2 \sim G(n, \eta m/n)$ s.t. whp $e(G_2 \setminus G_1) \leq Ae^{-cm}n$

< 同 > < 回 > < 回 >

▶ G[1] contains a single node

・ロト ・四ト ・ヨト ・ヨト

- G[1] contains a single node
- Given G[k]

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

- G[1] contains a single node
- ▶ Given G[k]
 - generate $Y \sim Bin(k, p)$

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

- G[1] contains a single node
- Given G[k]
 - generate $Y \sim Bin(k, p)$
 - let S be a random subset of [k] of size Y

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- G[1] contains a single node
- Given G[k]
 - generate $Y \sim Bin(k, p)$
 - let S be a random subset of [k] of size Y
 - create edges between k and S

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

We grow G_1, G_2 one node at a time. Start with $G_1[k_0] \sim G_m^{(n)}$, $G_2[k_0] \sim G(k_0, \eta m/n)$, where k_0 grows slowly with *n*. Let t_1, \ldots, t_m be the vertices picked when growing $G_1[k]$. For $j \neq k + 1$ we have

$$\Pr(t_i = j) = \frac{d_{G[k],i}(j)}{2mk + 2i - 1} \ge \frac{m}{2km + 2m} = \frac{1}{2k + 2}$$

< 回 > < 回 > < 回 >

Let
$$X = |\{i|s_i \neq \emptyset\}|$$
, then $X \sim Bin(m, \frac{k}{2k+2})$.
Let $Y \sim Bin(k, \eta m/n)$, then

$$E[X] = \frac{mk}{2k+2} \ge (1+\epsilon)\eta \frac{mk}{n} = (1+\epsilon)E[Y]$$

So $Pr[X < Y] \le Ae^{-c'm}$ for some constants A, c' > 0.

All the s_i 's are distinct w.p $1 - O(\frac{m^2}{k})$, given this and X the set $S_1 = \{s_i | s_i \neq \emptyset\}$ is a random subset of [k] of size X.

▲御▶ ▲ 理▶ ▲ 理▶

All the s_i 's are distinct w.p $1 - O(\frac{m^2}{k})$, given this and X the set $S_1 = \{s_i | s_i \neq \emptyset\}$ is a random subset of [k] of size X. If Y < X we pick a random subset S_2 of size Y from S_1 .

▲□→ ▲ □→ ▲ □→

All the s_i 's are distinct w.p $1 - O(\frac{m^2}{k})$, given this and X the set $S_1 = \{s_i | s_i \neq \emptyset\}$ is a random subset of [k] of size X. If $Y \le X$ we pick a random subset S_2 of size Y from S_1 . Otherwise we pick S_2 a random subset of size Y from [k], this happens w.p. $Ae^{-c'm} + o(1)$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Set
$$D_{k+1} = \#$$
of edges added to G_2 and not G_1 .
 $Pr[D_{k+1} > 0] = Ae^{-c'm} + o(1)$, and $D_{k+1} \le Y$ so
 $E[D_{k+1}] \le Ame^{-c'm}$

Béla Bollobás and Oliver Riordan Coupling of Scale-Free and Classical Random Graphs

æ

The number of edges in $G_2 \setminus G_2$ is at most

$$\binom{k_0}{2} + \sum_{k=k_0+1}^n D_k$$

Assuming $k_0 = n^{1/4}$ we see that the sum has expected value at most $Ane^{-c'm}$ and is concentrated around its mean.

(本部) (本語) (本語) (語)

The number of edges in $G_2 \setminus G_2$ is at most

$$\binom{k_0}{2} + \sum_{k=k_0+1}^n D_k$$

Assuming $k_0 = n^{1/4}$ we see that the sum has expected value at most $Ane^{-c'm}$ and is concentrated around its mean. QED

(本部) (本語) (本語) (語)

Let G_1 , G_2 be as described in Theorem 2. Suppose G_1 has an induced subgraph on a set V, with $|V| = 10n \frac{\log(m)}{m}$ where every component has size less than $2n \frac{\log(m)}{m}$. Then we can partition V into two set V_1 , V_2 s.t. $|V_1|$, $|V_2| \ge 4n \frac{\log(m)}{m}$ and G_1 has no V_1 - V_2 edges.

Let $x = Ae^{-c'm}n$, if the coupling works then G_2 has at most x, $V_1 \cdot V_2$ edges. The number of $V_1 \cdot V_2$ edges in G_2 is a binomial with mean

$$\mu = |V_1||V_2|\eta m/n \geq 24\eta(\log(m))^2n/m$$

Pick *m* large enough s.t. $x < \mu/100$

<回><モン<

 $\Pr[G_2 \text{ has at most } x \quad V_1 - V_2 \text{ edges}] \leq \binom{n}{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m}$

 $\Pr[G_2 \text{ has at most } x \quad V_1 - V_2 \text{ edges}] \leq \binom{n}{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m}$

$$\leq \left(rac{en}{|V|}
ight)^{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

 $\Pr[G_2 \text{ has at most } x \quad V_1 - V_2 \text{ edges}] \le \binom{n}{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m}$ $\le \left(\frac{en}{|V|}\right)^{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m}$ $\le \left(\frac{2em}{10 \log(m)}\right)^{|V|} e^{-22\eta (\log(m))^2 n/m}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□◆

 $\begin{aligned} \Pr[G_2 \text{ has at most } x \quad V_1 - V_2 \text{ edges}] &\leq \binom{n}{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m} \\ &\leq \left(\frac{en}{|V|}\right)^{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m} \\ &\leq \left(\frac{2em}{10 \log(m)}\right)^{|V|} e^{-22\eta (\log(m))^2 n/m} \\ &\leq e^{(10-22\eta) (\log(m))^2 n/m} \end{aligned}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

 $\begin{aligned} \Pr[G_2 \text{ has at most } x \quad V_1 - V_2 \text{ edges}] &\leq \binom{n}{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m} \\ &\leq \left(\frac{en}{|V|}\right)^{|V|} 2^{|V|} e^{-22\eta (\log(m))^2 n/m} \\ &\leq \left(\frac{2em}{10 \log(m)}\right)^{|V|} e^{-22\eta (\log(m))^2 n/m} \\ &\leq e^{(10-22\eta) (\log(m))^2 n/m} \end{aligned}$

QED

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

• We create G_1, G_2 simultaneously s.t.

• (10) • (10)

- We create G_1, G_2 simultaneously s.t.
- ▶ a bad event in G₁ implies w.h.p another bad event in G₂

• (1) • (1) • (1)

- We create G_1, G_2 simultaneously s.t.
- ▶ a bad event in G₁ implies w.h.p another bad event in G₂
- which is easy to show is rare in G_2 .

• (10) • (10)

- We create G_1, G_2 simultaneously s.t.
- ▶ a bad event in G₁ implies w.h.p another bad event in G₂
- which is easy to show is rare in G_2 .
- But we are working in the joint probability space so this implies that the bad event is rare in G₁.

A (10) < A (10) < A (10) </p>

Theorem 3

Let $\epsilon > 0$ be given, there is a constant *C* s.t. for fixed *m* we can couple G_1, G_2 s.t. $G_1 \sim G_m^{(n)}, G_2 \sim G(n, Cm/n)$ s.t. whp G_2 contains $G_1 \setminus V$ for a set of vertices *V* s.t. $|\{i \in V | i \ge \epsilon n\}| \le \epsilon n/m$.

過す イヨト イヨト

We start with $G_1[k_0] \sim G_m^{(k_0)}$ and $G_2[k_0] \sim G(k_0, Cm/n)$ independent, and here $k_0 = \epsilon n$. A vertex is *bad at time k* if it has degree at leas *Am* in $G_1[k]$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

We need the following result from Bollobás et al.: Vertex *i* has degree d + m in $G_m^{(n)}$ with probability

$$o(n^{-1}) + (1 + o(1)) {d + m - 1 \choose m - 1} (\frac{i}{n})^{m/2} (1 - \frac{i}{n})^d$$

i.e. for $i \ge \epsilon n$ it is exponentially small in *d* for large *d* If we choose *A* large enough the expected number of bad vertices is at most $e^{-Bm}n$ so **whp** there are at most $\epsilon n/m$ bad vertices.

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0

Let t_1, \ldots, t_m be defined as in the previous proof. Let V_k be the set of vertices j, s.t. $k_0 \le j \le k$ that are good. Now for $j \in V_k$

$$\Pr[t_i = j] \le (Am + m)/(2mk) \le A/k \le A\epsilon^{-1}/n$$

and

$$\Pr[t_i \notin V_k] \ge k_0 m / (2mn) = \epsilon / 2$$

so
$$\Pr[t_i = j_r | t_i \notin \{j_1, \dots, j_{r-1}\}] \le 2A\epsilon^{-2} / n = p$$

< 同 > < 回 > < 回 > -

Let T_i be a random subset of V_k s.t. every vertex is picked independently with probability p. Then we can couple T_i and t_i s.t. $t_i \in T_i$ if t_i is good.

(日) (圖) (E) (E) (E)

Let S_1 be the set of good vertices adjacent to k + 1 in G_1 . Let $S_2 = T_1 \cup T_2 \cup \ldots T_m$. Then S_2 is a random subset of V_k where every vertex is picked w.p. $1 - (1 - p)^m \le mp \le Cm/n$ for some large *C*. This completes the proof since we've constructed S_1 s.t.

 $S_1 \subseteq S_2$.

(日) (圖) (E) (E) (E)

For a constant a > 1 we know that $G_{n,\frac{a}{2}}$ has an independent set of size $\approx \frac{\log(a)}{2}n$ when $a \to \infty$. Now couple G_1 and G_2 as in Theorem 3, with $\epsilon = \frac{1}{2}$ and assume C > 2. Look at the subgraph of G_2 of vertices that come in after $\frac{n}{2}$. It has distribution $G_{\frac{n}{2},\frac{Cm}{n}} \sim G_{\frac{n}{2},\frac{Cm/2}{n/2}}$ so it has an independent set of size $\approx n \frac{\log(m)}{Cm}$. Removing the bad vertices from this set we see that this set is also independent in G_1 . So G_1 has an independent set of size $n\frac{\log(m)}{Cm} - \frac{n}{2m}$. By picking *m* large enough we get the result.

・ロト ・四ト ・ヨト ・ヨト

Thank You

Béla Bollobás and Oliver Riordan Coupling of Scale-Free and Classical Random Graphs

크

Thank You

Questions?

Béla Bollobás and Oliver Riordan Coupling of Scale-Free and Classical Random Graphs

< □ > < □ > < □ > < □ > < □ >

크