
Coupling of Scale-Free and Classical
Random Graphs

Béla Bollobás and Oliver Riordan

April 18, 2007

Béla Bollobás and Oliver Riordan Coupling of Scale-Free and Classical Random Graphs



Introduction

Consider a graph where we delete some nodes and look at the
size of the largest component remaining.
Just how robust are scale free graphs

I to random failures

I to deliberate attacks
I should the adversary have infinite time?
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Introduction

If we take the adversary out of the picture we can phrase the
question as.

How many vertices do we need to remove so that the graph
breaks up into small pieces?
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The Model

Consider the Preferential Attachment Model.
Assume m is fixed, G[k ] ∼ G(k)

m . We create G[k + 1] by adding
a new vertex k + 1 with m edges (k + 1, t1), . . . , (k + 1, tm)
where

Pr[ti = j] =
dG[k ],i(j)

2mk + 2i − 1
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Main Result

Theorem 1
There exist c > 0,m0 s.t. for m ≥ m0, whp G(n)

m the following
holds

I (a) Every induced subgraph of size 10n log(m)
m contains a

component of size at least 2n log m
m

I (b) The graph contains an independent set of size cn log(m)
m
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Proof Technique

Proof by coupling
We create two graphs (G1, G2) s.t. G1 ∼ G(n)

m , G2 ∼ G(n, p).
But G1 and G2 are not independent but heavily correlated.
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What is coupling?

Let X ∼ DX , Y ∼ DY . A coupling is a joint distribution DX ,Y s.t.
the marginals are correct, i.e. DX ,· = DX and D·,Y = DY .

Suppose X , Y are uniform [0, 1] and we let Y = 1− X then
both marginals are still uniform but the joint distribution is far
from independent.
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Chernoff Bounds

Let X ∼ Bin(n, p) then

Pr[X > (δ + 1)np] <

(
eδ

(1 + δ)(1+δ)

)np

Pr[X < (1− δ)np] <

(
e−δ

(1− δ)(1−δ)

)np

Béla Bollobás and Oliver Riordan Coupling of Scale-Free and Classical Random Graphs



The Coupling

Theorem 2 Fix η < 1/2, there exist constants A, c > 0 s.t. for
fixed m we can construct G1 ∼ G(n)

m , G2 ∼ G(n, ηm/n) s.t. whp
e(G2 \G1) ≤ Ae−cmn
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The Coupling
Sidenote

We can create G(n, p) one node at a time
I G[1] contains a single node

I Given G[k ]

I generate Y ∼ Bin(k , p)
I let S be a random subset of [k ] of size Y
I create edges between k and S
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The Coupling
Proof

We grow G1, G2 one node at a time. Start with G1[k0] ∼ G(n)
m ,

G2[k0] ∼ G(k0, ηm/n), where k0 grows slowly with n.
Let t1, . . . , tm be the vertices picked when growing G1[k ]. For
j 6= k + 1 we have

Pr(ti = j) =
dG[k ],i(j)

2mk + 2i − 1
≥ m

2km + 2m
=

1
2k + 2
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The Coupling
Proof

. . .
1 2 3 k − 1 k k + 1

1
2k+2

Construct s1, . . . , sm ∈ [k ] ∪∅, s.t. si ’s are independent
Pr(si = j) = 1

2k+2 for j 6= ∅ and si = j implies ti = j .
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The Coupling
Proof

Let X = |{i |si 6= ∅}|, then X ∼ Bin(m, k
2k+2).

Let Y ∼ Bin(k , ηm/n), then

E [X ] =
mk

2k + 2
≥ (1 + ε)η

mk
n

= (1 + ε)E [Y ]

So Pr[X < Y ] ≤ Ae−c′m for some constants A, c′ > 0.
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The Coupling
Proof

All the si ’s are distinct w.p 1−O(m2

k ), given this and X the set
S1 = {si |si 6= ∅} is a random subset of [k ] of size X .

If Y ≤ X we pick a random subset S2 of size Y from S1.
Otherwise we pick S2 a random subset of size Y from [k ], this
happens w.p. Ae−c′m + o(1).
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The Coupling
Proof

Set Dk+1 = #of edges added to G2 and not G1.
Pr[Dk+1 > 0] = Ae−c′m + o(1), and Dk+1 ≤ Y so
E [Dk+1] ≤ Ame−c′m
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The Coupling
Proof

The number of edges in G2 \G2 is at most(
k0

2

)
+

n∑
k=k0+1

Dk

Assuming k0 = n1/4 we see that the sum has expected value at
most Ane−c′m and is concentrated around its mean.

QED
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Proof of Theorem 1(a)

Let G1, G2 be as described in Theorem 2. Suppose G1 has an
induced subgraph on a set V , with |V | = 10n log(m)

m where every
component has size less than 2n log(m)

m . Then we can partition
V into two set V1, V2 s.t. |V1|, |V2| ≥ 4n log(m)

m and G1 has no
V1-V2 edges.
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Proof of Theorem 1(a)

Let x = Ae−c′mn, if the coupling works then G2 has at most x ,
V1-V2 edges.
The number of V1-V2 edges in G2 is a binomial with mean

µ = |V1||V2|ηm/n ≥ 24η(log(m))2n/m

Pick m large enough s.t. x < µ/100
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Proof of Theorem 1(a)

By Chernoff bounds the probability that we have fewer than x
edges crossing V1, V2 is at most e−11µ/12. Now

Pr[G2 has at most x V1 − V2 edges] ≤
(

n
|V |

)
2|V |e−22η(log(m))2n/m

≤
(

en
|V |

)|V |
2|V |e−22η(log(m))2n/m

≤
(

2em
10 log(m)

)|V |
e−22η(log(m))2n/m

≤ e(10−22η)(log(m))2n/m

QED
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Overview of the proof

The idea of the proof was this

I We create G1, G2 simultaneously s.t.
I a bad event in G1 implies w.h.p another bad event in G2

I which is easy to show is rare in G2.
I But we are working in the joint probability space so this

implies that the bad event is rare in G1.
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Another Coupling

Theorem 3
Let ε > 0 be given, there is a constant C s.t. for fixed m we can
couple G1, G2 s.t. G1 ∼ G(n)

m , G2 ∼ G(n, Cm/n) s.t. whp G2
contains G1 \ V for a set of vertices V s.t.
|{i ∈ V |i ≥ εn}| ≤ εn/m.

Béla Bollobás and Oliver Riordan Coupling of Scale-Free and Classical Random Graphs



Another Coupling
Proof of Theorem 3

We start with G1[k0] ∼ G(k0)
m and G2[k0] ∼ G(k0, Cm/n)

independent, and here k0 = εn.
A vertex is bad at time k if it has degree at leas Am in G1[k ].
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Another Coupling
Proof of Theorem 3

We need the following result from Bollobás et al.: Vertex i has
degree d + m in G(n)

m with probability

o(n−1) + (1 + o(1))

(
d + m − 1

m − 1

)
(

i
n

)m/2(1− i
n

)d

i.e. for i ≥ εn it is exponentially small in d for large d
If we choose A large enough the expected number of bad
vertices is at most e−Bmn so whp there are at most εn/m bad
vertices.
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Another Coupling
Proof of Theorem 3

Let t1, . . . , tm be defined as in the previous proof. Let Vk be the
set of vertices j , s.t. k0 ≤ j ≤ k that are good. Now for j ∈ Vk

Pr[ti = j] ≤ (Am + m)/(2mk) ≤ A/k ≤ Aε−1/n

and
Pr[ti /∈ Vk ] ≥ k0m/(2mn) = ε/2

so Pr[ti = jr |ti /∈ {j1, . . . , jr−1}] ≤ 2Aε−2/n = p
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Another Coupling
Proof of Theorem 3

Let Ti be a random subset of Vk s.t. every vertex is picked
independently with probability p. Then we can couple Ti and ti
s.t. ti ∈ Ti if ti is good.

p

j1 j2 j3
. . .

jr

Pr[ti = jr|ti /∈ {j1, . . . , jr−1}]
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Another Coupling
Proof of Theorem 3

Let S1 be the set of good vertices adjacent to k + 1 in G1. Let
S2 = T1 ∪ T2 ∪ . . . Tm. Then S2 is a random subset of Vk where
every vertex is picked w.p. 1− (1− p)m ≤ mp ≤ Cm/n for
some large C.
This completes the proof since we’ve constructed S1 s.t.
S1 ⊆ S2.
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Proof of Theorem 1(b)
We’re almost there

For a constant a > 1 we know that Gn, a
n

has an independent set

of size ≈ log(a)
a n when a →∞.

Now couple G1 and G2 as in Theorem 3, with ε = 1
2 and

assume C > 2. Look at the subgraph of G2 of vertices that
come in after n

2 .
It has distribution G n

2 , Cm
n
∼ G n

2 ,
Cm/2
n/2

so it has an independent set

of size ≈ n log(m)
Cm .

Removing the bad vertices from this set we see that this set is
also independent in G1. So G1 has an independent set of size
n log(m)

Cm − n
2m . By picking m large enough we get the result.
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The End

Thank You

Questions?
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