Network Coding

An Instant Primer

Kanat Tangwongsan ktangwon@cs.cmu.edu

Sources of Materials

Links from Course Web Page

- Network Coding: An Instant Primer
 - Fragouli, Boudec, and Widmer.
- Network Coding an Introduction
 - Koetter and Medard
- On Randomized Network Coding
 - Ho, Medard, Shi, Effros, and Karger
- An Algebraic Approach to Network Coding
 - Ralf Koetter and Medard

Basic Goal:

Throughput + Robustness

Source

Terminal

Today's Network: Data as rigid objects

Network Coding: Nodes can recombine packets

Example: A sends 'a' to B, B sends 'b' to A

Why is Network Coding interesting?

(1) Enormous Throughput Improvement

Thm [Ahlswede, Cai, Li, and Yeung, 2000]

There exist multicast problems such that the gap between routing and network coded strategies is arbitrarily large.

Why is Network Coding interesting?

(2) Robustness for free

Thm [Deb and Medard, 2004]

Rumor propagation on n nodes and O(n) messages take O(n) rounds.

Are we too optimistic?

<u>Thm</u> [Li and Li, 2004]

The throughput gain in undirected settings is at most 2.

Roadmap

- Motivations, High-level Picture, Goofing Around, ...
- Algebraic Foundations of Network Coding
- Decentralized/Randomized Construction
- Practical Considerations

Part II Algebraic Foundations of Network Coding

Problem Formulation

Setting: Directed Graph with edge capacity C(e)

Problem Formulation (cont.)

Input random processes:

$$\chi(v) = \{X(v,1), X(v,2), \dots, X(v,\mu(v))\}$$

- A connection from ν to ν' :
 - Replicate a subset of random processes of v.

$$c = (v, v', \chi(v, v'))$$

 A pair of graph and set of connections defines a network coding problem.

Basic Model: Linear Network Codes

- Links have the same capacity. I.e., C(e) = 1
- Sources have the same rate. I.e., H(X(v, i)) = 1
- The "data" X(v, i) are mutually independent (across v and i).
- All operations at network nodes are linear :)

Linear Network Codes

Linear Network: A Simple Example

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} \mathcal{E}_{e_4,1} & \mathcal{E}_{e_5,1} \\ \mathcal{E}_{e_4,2} & \mathcal{E}_{e_5,2} \end{pmatrix} \begin{pmatrix} \beta_{e_1,e_4} & 0 \\ \beta_{e_1,e_3}\beta_{e_3,e_5} & \beta_{e_2,e_5} \end{pmatrix} \begin{pmatrix} \alpha_{1,e_1} & \alpha_{1,e_2} \\ \alpha_{2,e_1} & \alpha_{2,e_2} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

The Transfer Matrix

Let F be an |E|x|E| matrix, where $f_{i,j} = \beta_{i,j}$.

Let $G = I + F + F^2 + ... = (I - F)^{-1}$, and define M = BGA

A Linear System

Transfer Matrix

Let F be an |E|x|E| matrix, where $f_{i,j} = \beta_{i,j}$. Let $G = I + F + F^2 + ... = (I - F)^{-1}$, and define M = BGA

Connections to Max-Flow Min-Cut

- Theorem (Max-Flow Min-Cut)
 - In a network where the only desired connection is *c*, the network problem is solvable if and only if the rate of the connection *R*(*c*) is less than or equal to the minimum value of all cuts between the source and the sink.

What about Multicast?

Theorem

- There exists a linear network coding solution for a network problem over a finite field of 2^m elements for some large enough *m* if and only if there exists a flow of sufficient capacity between the source and each sink individually.
- Together with Max-Flow Min-Cut theorem, gives a criterion for when a network problem is solvable.

So far...

- Networks have no cycles, and no delays.
 - Easy to add delays, cycles: $G = (I DF)^{-1}$
- We don't know how to construct the matrices A, B, and M yet.
 - That's the topic of our next section.
- How big is the field size (2^m)?
 - Typically not too bad.
 - Multicast: *O*(*T*)

Roadmap

- Motivations, High-level Picture, Goofing Around, ...
- Algebraic Foundations of Network Coding
- Decentralized/Randomized Construction
- Practical Considerations

How do we construct these magic matrices?

Many centralized methods:

- Direct algebraic solution [KM01]
- Subgraph/flow solutions [SET03, JCJ03]
- etc.

Part III Distributed Randomized Coding

Randomized Coding: Idea [Ho, Medard, Shi, Effros and Karger, 2003]

- Interior network nodes independently choose random linear mappings from inputs to outputs.
- Coefficients of aggregate effect communicated to receivers.
- = > Receivers can decode if they receive as many independent linear combinations as the number of source processes.

Randomized Coding: Main Theorem [Ho, Medard, Shi, Effros and Karger, 2003]

- For a feasible (multicast) connection problem on a (possibly cyclic) network, a network code constructed by the previously mentioned scheme has a success probability at least 1 – (1 – d/q)ⁿ for q > d, where d is the number of receivers and n is the number of links carrying random source processes.
- Proof Idea: Pretty much follows from the two lemmas we are about to see.

Lemma 1: Network as Edmonds matrix

■ For an arbitrary (possibly cyclic) network, the transfer matrix $A(I - F)^{-1}B$ is non-singular if and only if the corresponding Edmonds matrix E is non-singular, where

$$E = \begin{bmatrix} A & 0 \\ I - F & B \end{bmatrix}$$

Proof of Lemma 1

Note that

$$\begin{bmatrix} I & -A(I-F)^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} A & 0 \\ I-F & B \end{bmatrix} = \begin{bmatrix} 0 & -A(I-F)^{-1}B \\ I-F & B \end{bmatrix}$$

The matrix has determinant 1.

By a simple expansion, we know that

$$\det\begin{bmatrix} A & 0 \\ I - F & B \end{bmatrix} = c \det(A(I - F)^{-1}B)\det(I - F)$$

Since det (I - F) is non-zero, the lemma follows.

Lemma 2

- Let P be a polynomial in F [Y_1 , Y_2 ,...] of degree at most dn, in which the largest exponent of any variable is at most d. If values for Y's are chosen independently and uniformly at random from $F_q \subseteq F$, then the probability that P equals to zero is at most $1 (1 d/q)^n$ for d < q.
- **Proof Idea**: Recursive applications of Schwartz-Zippel.

Thm [Schwartz-Zippel]

Let P be a polynomial of degree d over a field F. Let S be a finite subset of F. The probability that P is 0 when evaluated at randomly selected points from S is <=d/|S|.

Proof Sketch of Lemma 2

By Schwartz-Zippel, we know that

$$\Pr[P=0] \le \Pr[P_1 \ne 0] \frac{d_1}{q} + \Pr[P_1 = 0]$$

where d_1 is the largest exponent of Y_1 in P_1 , and P_2 is such that $P = Y_1^{d_1} P_1 + R_1$

Inductively, we find that

$$\Pr[P_{k'} = 0] \le \left(1 - \frac{d_{k'+1}}{q}\right) \Pr[P_{k'+1} \ne 0] + \frac{d_{k'+1}}{q}$$

Proof Sketch of Lemma 2 (cont.)

Combining the results:

$$\Pr[P=0] \leq \frac{\sum_{i=1}^{k} d_i}{q} - \frac{\sum_{i \neq j} d_i d_j}{q^2} + \dots + (-1)^{k-1} \frac{\prod_{i=1}^{k} d_i}{q^k}$$

where
$$0 \le dn - \sum_{i=1}^k d_i$$

- Seek d_i's that maximize the probability.
 - Idea: Relax an integer optimization program (straightforward but tedious)
 - Result: we know $d_i^* \in \{0, d\}$ and $\sum_{i=1}^{dn} d_i^* = dn$
- Q.E.D.

Part IV Practical Considerations

Okay, I want to implement network coding today...

- What do you say?
 - Good luck (with an evil smile)
 - It is actually pretty simple...

Linear Coding Summary

- Original Packets: $M^{(1)}, M^{(2)}, ..., M^{(n)}$
- Each round, randomly pick $g_1, g_2, ..., g_n$ and send out

$$(\vec{g}, X) = \langle \langle g_1, ..., g_n \rangle, \sum_{i=1}^n g_i M^{(i)} \rangle$$

■ Intermediate nodes dream up $h_1, h_2, ..., h_m$ used for combining packets.

$$X' = \sum_{i=1}^{m} h_j X^j$$

Linear Coding Summary (cont.)

- Decoding
 - Assume you receive $[(g^i, X^i)]_{i=1}^m$
 - Basically solve the linear system

$$X^{j} = \sum_{i=1}^{n} g_{i}^{j} M^{(i)}$$

 Experiments show that Gaussian elimination seem to suffice.

Real-World Use of Network Coding

P2P Content Distribution

Many-to-Many Broadcast

Data Gathering in Ad-hoc Sensor Networks

Avalanche: A P2P Distribution

- Microsoft Research
- Goal: Efficient content distribution network
 - Get large files (e.g., Windows update) to everyone
- Network Coding:
 - Minimizes download times (optimal packet scheduling is almost impossible; complex network)
 - Outperforms traditional forwarding
 - More robust when servers leave early (DoS/bombarding)
 - Works okay when incentive mechanisms are implemented.

