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Sources of Materials

Links from Course Web Page

= Network Coding: An Instant Primer

= Fragouli, Boudec, and Widmer.
= Network Coding — an Introduction
= Koetter and Medard
= On Randomized Network Coding
= Ho, Medard, Shi, Effros, and Karger
= An Algebraic Approach to Network Coding
= Ralf Koetter and Medard



Basic Goal:
Throughput + Robustness




Today’s Network:
Data as rigid objects




Network Coding:
Nodes can recombine packets

Example: Asends ‘a’ to B, B sends ‘b’ to A




Why is Network Coding
interesting?

(1) Enormous Throughput Improvement

Thm [Ahlswede, Cai, Li, and Yeung, 2000]

There exist multicast problems such that the gap
between routing and network coded strategies is
arbitrarily large.




Why is Network Coding
interesting?

(2) Robustness for free

Thm [Deb and Medard, 2004]

Rumor propagation on n nodes and O(n) messages take
©(n) rounds.

®(n log n) rounds in typical decentralized s



Are we too optimistic?

Thm [Li and Li, 2004]

The throughput gain in undirected settings
1s at most 2.




Roadmap

= Motivations, High-level Picture, Goofing
Around, ...

= Algebraic Foundations of Network Coding
m Decentralized/Randomized Construction

m Practical Considerations



Part |l
Algebraic Foundations of
Network Coding




Problem Formulation

Setting: Directed Graph with edge capacity C(e)




Problem Formulation (cont.)

= [nput random processes:
2(v) =X (1), X (v,2),..., X (v, ()]

® A connection from v to v’:

= Replicate a subset of random processes of v.

Cc = (v, V', ;((v, v'))

= A pair of graph and set of connections defines
a network coding problem.



Basic Model: Linear Network Codes

= Links have the same capacity. l.e., C(e) =1

= Sources have the same rate. l.e., H(X(v, i)) =1

= The “data” X(v, i) are mutually independent
(across v and ).

= All operations at network nodes are linear :)



Linear Network Codes

s

—>

B C=> aX(vi)+p,A+p,B




Linear Network: A Simple Example




The Transfer Matrix

Let F be an |E|x|E| matrix, where f,; = 3;;

letG=I1+F+F+..=(—-F)7 and define M = BGA



A I-i nea r SYSte m Transfer Matrix

Let F be an | E[x|E| matrix, where f;; = f,; ﬁ
letG=/+F+F+..=(I-F)71 and deﬁnelM = BGA'

Linear
Network

7z = Mx Sink(z)

Source (x)



Connections to Max-Flow Min-Cut

= Theorem (Max-Flow Min-Cut)

= |n a network where the only desired connection is
¢, the network problem is solvable if and only if
the rate of the connection R(c) is less than or equal
to the minimum value of all cuts between the

source and the sink.



What about Multicast?

= Theorem

= There exists a linear network coding solution for a
network problem over a finite field of 2™ elements
for some large enough m if and only if there exists
a flow of sufficient capacity between the source
and each sink individually.

= Together with Max-Flow Min-Cut theorem, gives a
criterion for when a network problem is solvable.



So far...

= Networks have no cycles, and no delays.
= Easy to add delays, cycles: G = (/ — DF)
= \We don’t know how to construct the matrices
A, B, and M yet.

= That’s the topic of our next section.

= How big is the field size (2M)?

= Typically not too bad.
= Multicast: O(T)



Roadmap

= Motivations, High-level Picture, Goofing
Around, ...

= Algebraic Foundations of Network Coding
m Decentralized/Randomized Construction

m Practical Considerations



How do we construct these
magic matrices?

Many centralized methods:
* Direct algebraic solution [KMO01]
* Subgraph/flow solutions [SETO03, JCJO3]
. etc.



Part Ili
Distributed Randomized Coding




Randomized Coding: Idea
[Ho, Medard, Shi, Effros and Karger, 2003]

= |Interior network nodes independently choose
random linear mappings from inputs to outputs.

» Coefficients of aggregate effect communicated to
receivers.

= => Receivers can decode if they receive as many
independent linear combinations as the number of
source processes.



Randomized Coding: Main Theorem
[Ho, Medard, Shi, Effros and Karger, 2003]

= For a feasible (multicast) connection problem on a
(possibly cyclic) network, a network code
constructed by the previously mentioned scheme
has a success probability at least 1 — (1 — d/q)" for g
> d, where d is the number of receivers and n is the
number of links carrying random source processes.

= Proof Idea: Pretty much follows from the two
lemmas we are about to see.



Lemma 1: Network as Edmonds matrix

= For an arbitrary (possibly cyclic) network, the transfer matrix
A(l — F)1B is non-singular if and only if the corresponding
Edmonds matrix E is non-singular, where

4 0
[-F B

E =




Proof of Lemma 1

= Note that

{é —A([]— F)I[ le g} _ L ?F — A1 ; F)IB}

N\

By a simple expansion, we know that

detL AF g} = cdet(A( = F)_lB)det([ ~F)

The matrix has

determinant 1. TS det (/- F) is non-zero, the lemma follows.




Lemma 2

= Let P be apolynomialin F[Y,, Y,,...] of degree at most dn, in
which the largest exponent of any variable is at most d. If
values for Y’s are chosen independently and uniformly at
random from F, C F, then the probability that P equals to
zeroisatmost 1 —(1-d/q)" for d < g.

= Proof Idea: Recursive applications of Schwartz-Zippel.

Thm [Schwartz-Zippel]

Let P be a polynomial of degree d over a field F. Let S be a finite
subset of F. The probability that P is 0 when evaluated at randomly
selected points from Sis <=d/|S]|.




Proof Sketch of Lemma 2

= By Schwartz-Zippel, we know that

Pr[P=0|<Pr[P 0]i +Pr[P = 0]
q

where d, is the largest exponent of Y, in P,
and P, is such that |P=Y"P+R,
= |nductively, we find that

dk'+1
q

dk'+1
q

Pr|P. =0]< (1 -

]Pr[a.ﬂ 0]+




Proof Sketch of Lemma 2 (cont.)

= Combining the results:

[P O]<Zzl i Z¢J

q

ot “H” l

2

where |o<dn-3" d

= Seek d.'s that maximize the probability.

= |dea: Relax an integer optimization program (straightforward but
tedious)

= Result: we know |d," € {0,d}{ and|>" d" = dn
= Q.E.D.




Part IV
Practical Considerations




Okay, | want to implement network
coding today...

= What do you say?

= Good luck (with an evil smile)

= |tis actually pretty simple...




Linear Coding Summary

= Original Packets: [M", Mm%, . m"
= Each round, randomly pick |g;.£,.--g,| and send out

(@-X)={(g1n2). 3, 20"

= |Intermediate nodes dream up |#.h,....4,| used for
combining packets.

X' =>"h X’
=1 J




Linear Coding Summary (cont.)

= Decoding

= Assume you receive {(gi,Xi)}Zl

= Basically solve the linear system

n

X/ = _ gl]M(l)

= Experiments show that Gaussian elimination seem to
suffice.



Real-World Use of Network Coding

4 N

P2P Content Distribution

- D

Many-to-Many Broadcast

. /

Data Gathering in
Ad-hoc Sensor Networks




Avalanche: A P2P Distribution

s Microsoft Research
s Goal: Efficient content distribution network

» Get large files (e.g., Windows update) to everyone
= Network Coding:

= Minimizes download times (optimal packet
scheduling is almost impossible; complex network)

= Qutperforms traditional forwarding

= More robust when servers leave early
(DoS/bombarding)

= Works okay when incentive mechanisms are
implemented.






