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Goal: Clustering a Data Set
Criteria:

e large intra-cluster cuts

e small inter-cluster cuts
Approach:

e Add artificial sink to graph

e Utilize Minimum Cut Trees

Introduction



Terminology

G, Given G = (V, E), construct G, by introducing a
new node t and connecting it to all v € V with edges
of capacity a.




Terminology

Community Let s,r € V. The Community of s in G with respect
to r is the minimal S such that s € S and (S,V — S)
is a minimum s — r cut.



Terminology

Community Let s,r € V. The Community of s in G with respect
to r is the minimal S such that s € S and (S,V — S)
is a minimum s — r cut.

Web Community A Web community S is a collection of nodes
that has the property that all nodes of the Web
community predominantly link to other Web
community nodes. That is:

Z w(u,v) > Z w(u,v), Yues

veS VEE



Terminology

Minimum Cut Tree

Let G(V, E) be a graph. A minimum cut tree of G is a weighted
tree, T, on vertex set V such that for any pair r,s € V, the
capacity of the minimum (r,s)—cut in G is equal to the weight of
the minimum weight edge, c(e*), in T on the unique path joining
the two nodes. Moreover, the bipartition of V' obtained by
removing e* from T is a minimum (r,s)— cut.



Terminology

Minimum Cut Tree Example

Figure: A Graph and Two Minimum Cut Trees



Terminology

Expansion

Let (S,S) be a cut in G. We define the expansion of a cut as:

ZUES, veS W(”’ V)

V) = S




Terminology

Expansion

Let (S,S) be a cut in G. We define the expansion of a cut as:

ZUES, veS W(”’ V)

V) = S

The expansion of a subgraph is the minimum expansion over all
cuts.

The expansion of a clustering is the minimum expansion over all
clusters.



Main Theorem

Theorem

Let G = (V, E) be an undirected graph, s € V' a source, and
connect an artificial sink t with edges of capacity o to all nodes.
Let S be the community of s with respect to t. For any non-empty
P and Q, such that PUQ =S and PN Q = 0, the following
bounds always hold:

c(S5,V-25)
|V =3

c(P, Q)
SR (N Te])

Proof.

Follows from following four Lemmas. U



Lemma
Let s,r € V be two nodes of G and let S be the community of s

with respect to r. Then, there exists a min-cut tree T¢ of G, and
an edge (a, b) € Tg, such that the removal of (a, b) yields S and
vV -8S.



Lemma

Let s,r € V be two nodes of G and let S be the community of s

with respect to r. Then, there exists a min-cut tree T¢ of G, and
an edge (a, b) € Tg, such that the removal of (a, b) yields S and
V-5

Proof.

Follows from Gomory-Hu Algorithm.

Start the algorithm by finding a minimum cut separating s and r.
Choose the cut (S,V —S). O



Lemma

Let TG be a min-cut tree of a graph G = (V, E), and let (u, w) be
an edge of Tg. Edge (u,w) yields the cut (U, W) in G, with

ue U, we W. Now, take any cut (U, Us) of U, so that U; and
U, are non-empty, u € Uy, Uy U Uy = U, and Uy N Uy = 0. Then:

c(W, Us) < c(Us, Ua)



Lemma

Let TG be a min-cut tree of a graph G = (V, E), and let (u, w) be
an edge of Tg. Edge (u,w) yields the cut (U, W) in G, with

ue U, we W. Now, take any cut (U, Us) of U, so that U; and
U, are non-empty, u € Uy, Uy U Uy = U, and Uy N Uy = 0. Then:

c(W, Us) < c(Us, Ua)

Proof.

(U, W) is a minimum (u, w)—cut.
(U, WU Us) is a (u, w)—cut.
Therefore,

c(U,W)<c

c(U1u U, W)<c

c(Ui, W)+ c(U, W) < ¢
c(U, W) <c

Ur, W U Up)

Ur, W U Up)

Ui, W) + c(Us, Us)
U1, Uz)

—~ —~ —~



Lemma

Let S be the community of s in G, with respect to t. For any
non-empty P and Q, such that PUQ =S and PN Q = 0, the
following bound always holds

(P, Q)
= min(PL,1QD)



Lemma

Let S be the community of s in G, with respect to t. For any
non-empty P and Q, such that PUQ =S and PN Q = 0, the
following bound always holds

(P, Q)
= min(PL,1QD)

Proof.

Consider the (s, t)—cut (S,V — SU{t}).
W.l.o.g., assume s € P.

By previous lemma, ¢(Q,V — SuU{t}) < ¢(P, Q)
But ¢(Q,V —SU{t}) > a-|Q

Therefore, o - min(|P|, |Q|) < ¢(P, Q)



Lemma
Let S be the community of s in G, with respect to t. Then, the
following bound always holds:

c(5,V-25)
272 o
V-5 -

«



Lemma
Let S be the community of s in G, with respect to t. Then, the
following bound always holds:

c(5,V-25)

St A
v—s =“

Proof.

(S,V —SuU{t}) is a minimum (s, t)—cut in G,
V — S and {t} form a partition of V — SU{t}
So, ¢(S5,V—-S5)<c(V-S5{t}))=a-|V-5|.



CUTCLUSTERING_ALGORITHM (G(V, E), a)

Let V/ =V Ut

Construct G,

Calculate the minimum-cut tree T’ of G,

Remove t from T’

Return all connected components as clusters of G



Figure: Clusters for « = 4 and o« = 5.



Lemma
Let vi,v» € V and 51,5, be their communities with respect to t in

G,. Then either 51 and S, are disjoint or one is a subset of the
other.



Lemma

Let vi,v» € V and 51,5, be their communities with respect to t in
G,. Then either 51 and S, are disjoint or one is a subset of the
other.

Proof.

Let (51, V — 51 U {t}) be the initial partition in constructing a
minimum cut tree.

Let (a, b) be the edge corresponding to the cut.

If s, € S1, the path from s; to t uses (a, b).

So, a minimum (s, t)—cut is contained in Sj.

If s, & S1, there is a minimum (sp, t)—cut disjoint from S; O



Heuristic

Sufficient to find neighbors of t in the minimum cut tree.
No need to calculate an entire min-cut tree of G,,.

By previous lemma, if we have a community S, no need to further
branch.



Heuristic

Sufficient to find neighbors of t in the minimum cut tree.

No need to calculate an entire min-cut tree of G,,.

By previous lemma, if we have a community S, no need to further
branch.

Heuristic:

Let c(v) = c({v},V — {v}).

Sort nodes in decreasing order of c(v).

Calculate min-cuts between t and ‘unmarked’ nodes in the given
order.

Reduces number of max-flow computations to almost the number
of clusters.



Nesting Property

Observation

e For o small, communities are large (i.e., one large cluster)

e As o — 0o, communities become singleton nodes



Nesting Property

Observation

e For o small, communities are large (i.e., one large cluster)

e As o — 0o, communities become singleton nodes

Lemma (The Nesting Property)

For a source s in G,,;, where aj € {a1,...,Qmax}, such that

a1 < ap < -+ < max, the communities Sy, ..., Smax are such that
51 C S, C...C Snax, where S; is the community of s with
respect to t in Gy,.



HEIRARCHICAL_CUTCLUSTERING (G(V, E))

Let G°=G
For (i=0;;i++)
Set new, smaller value a;
Call CutCluster_Basic(G', )
If ((clusters returned are of desired number and size) or
(clustering failed to create non-trivial clusters))
break
Contract clusters to produce G'*1
Return all clusters at all levels



Experimental Results

Algorithm applied to
CiteSeer

o A digital library for scientific literature.

e Viewed as graph with documents as nodes and directed arcs
denoting citations.
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o A digital library for scientific literature.
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denoting citations.

The Open Directory Project, dmoz

e A human edited directory of the Web.

e Web pages as nodes, edges corresponding to hyperlinks (links
between web-pages of same domain ignored)



Experimental Results

Algorithm applied to
CiteSeer

o A digital library for scientific literature.
e Viewed as graph with documents as nodes and directed arcs

denoting citations.

The Open Directory Project, dmoz

e A human edited directory of the Web.
e Web pages as nodes, edges corresponding to hyperlinks (links
between web-pages of same domain ignored)

The 9/11 Community

e Identifying web pages related to 9/11



Experimental Results

Problem: Algorithm (and minimum cut trees) defined for
undirected graphs

Fix: Normalize over outbound arcs for each node



Experimental Results

Problem: Algorithm (and minimum cut trees) defined for
undirected graphs

Fix: Normalize over outbound arcs for each node

Outcomes

e Good hierarchical clustering for both CiteSeer and dmoz.

e Concentration of topics within 9/11 community



Hac
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