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Introduction

Goal: Clustering a Data Set
Criteria:

• large intra-cluster cuts

• small inter-cluster cuts

Approach:

• Add artificial sink to graph

• Utilize Minimum Cut Trees



Terminology

Gα Given G = (V ,E ), construct Gα by introducing a
new node t and connecting it to all v ∈ V with edges
of capacity α.
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Terminology

Community Let s, r ∈ V . The Community of s in G with respect
to r is the minimal S such that s ∈ S and (S ,V − S)
is a minimum s − r cut.



Terminology

Community Let s, r ∈ V . The Community of s in G with respect
to r is the minimal S such that s ∈ S and (S ,V − S)
is a minimum s − r cut.

Web Community A Web community S is a collection of nodes
that has the property that all nodes of the Web
community predominantly link to other Web
community nodes. That is:

∑

v∈S

w(u, v) >

∑

v∈S̄

w(u, v), ∀u ∈ S



Terminology
Minimum Cut Tree

Let G (V ,E ) be a graph. A minimum cut tree of G is a weighted
tree, T , on vertex set V such that for any pair r , s ∈ V , the
capacity of the minimum (r , s)−cut in G is equal to the weight of
the minimum weight edge, c(e∗), in T on the unique path joining
the two nodes. Moreover, the bipartition of V obtained by
removing e∗ from T is a minimum (r , s)− cut.



Terminology
Minimum Cut Tree Example
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Figure: A Graph and Two Minimum Cut Trees



Terminology
Expansion

Let (S , S̄) be a cut in G . We define the expansion of a cut as:

Ψ(S) =

∑
u∈S, v∈S̄

w(u, v)

min{|S |, |S̄ |}



Terminology
Expansion

Let (S , S̄) be a cut in G . We define the expansion of a cut as:

Ψ(S) =

∑
u∈S, v∈S̄

w(u, v)

min{|S |, |S̄ |}

The expansion of a subgraph is the minimum expansion over all
cuts.
The expansion of a clustering is the minimum expansion over all
clusters.



Main Theorem

Theorem
Let G = (V ,E ) be an undirected graph, s ∈ V a source, and

connect an artificial sink t with edges of capacity α to all nodes.

Let S be the community of s with respect to t. For any non-empty

P and Q, such that P ∪ Q = S and P ∩ Q = ∅, the following

bounds always hold:

c(S ,V − S)

|V − S |
≤ α ≤

c(P ,Q)

min(|P |, |Q|)

Proof.
Follows from following four Lemmas.



Lemma
Let s, r ∈ V be two nodes of G and let S be the community of s

with respect to r . Then, there exists a min-cut tree TG of G , and

an edge (a, b) ∈ TG , such that the removal of (a, b) yields S and

V − S.



Lemma
Let s, r ∈ V be two nodes of G and let S be the community of s

with respect to r . Then, there exists a min-cut tree TG of G , and

an edge (a, b) ∈ TG , such that the removal of (a, b) yields S and

V − S.

Proof.
Follows from Gomory-Hu Algorithm.
Start the algorithm by finding a minimum cut separating s and r .
Choose the cut (S ,V − S).



Lemma
Let TG be a min-cut tree of a graph G = (V ,E ), and let (u,w) be

an edge of TG . Edge (u,w) yields the cut (U,W ) in G , with

u ∈ U, w ∈ W . Now, take any cut (U1,U2) of U, so that U1 and

U2 are non-empty, u ∈ U1, U1 ∪ U2 = U, and U1 ∩ U2 = ∅. Then:

c(W ,U2) ≤ c(U1,U2)



Lemma
Let TG be a min-cut tree of a graph G = (V ,E ), and let (u,w) be

an edge of TG . Edge (u,w) yields the cut (U,W ) in G , with

u ∈ U, w ∈ W . Now, take any cut (U1,U2) of U, so that U1 and

U2 are non-empty, u ∈ U1, U1 ∪ U2 = U, and U1 ∩ U2 = ∅. Then:

c(W ,U2) ≤ c(U1,U2)

Proof.
(U,W ) is a minimum (u,w)−cut.
(U1,W ∪ U2) is a (u,w)−cut.
Therefore,

c(U,W ) ≤ c(U1,W ∪ U2)

c(U1 ∪ U2,W ) ≤ c(U1,W ∪ U2)

c(U1,W ) + c(U2,W ) ≤ c(U1,W ) + c(U1,U2)

c(U2,W ) ≤ c(U1,U2)



Lemma
Let S be the community of s in Gα with respect to t. For any

non-empty P and Q, such that P ∪ Q = S and P ∩ Q = ∅, the

following bound always holds

α ≤
c(P ,Q)

min(|P |, |Q|)



Lemma
Let S be the community of s in Gα with respect to t. For any

non-empty P and Q, such that P ∪ Q = S and P ∩ Q = ∅, the

following bound always holds

α ≤
c(P ,Q)

min(|P |, |Q|)

Proof.
Consider the (s, t)−cut (S ,V − S ∪ {t}).
W.l.o.g., assume s ∈ P .
By previous lemma, c(Q,V − S ∪ {t}) ≤ c(P ,Q)
But c(Q,V − S ∪ {t}) ≥ α · |Q|
Therefore, α · min(|P |, |Q|) ≤ c(P ,Q)



Lemma
Let S be the community of s in Gα with respect to t. Then, the

following bound always holds:

c(S ,V − S)

|V − S |
≤ α



Lemma
Let S be the community of s in Gα with respect to t. Then, the

following bound always holds:

c(S ,V − S)

|V − S |
≤ α

Proof.
(S ,V − S ∪ {t}) is a minimum (s, t)−cut in Gα

V − S and {t} form a partition of V − S ∪ {t}
So, c(S ,V − S) ≤ c(V − S , {t}) = α · |V − S |.



CutClustering Algorithm (G (V ,E ), α)

Let V ′ = V ∪ t

Construct Gα

Calculate the minimum-cut tree T ′ of Gα

Remove t from T ′

Return all connected components as clusters of G
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Figure: Clusters for α = 1 and α = 2.
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Figure: Clusters for α = 4 and α = 5.



Lemma
Let v1, v2 ∈ V and S1,S2 be their communities with respect to t in

Gα. Then either S1 and S2 are disjoint or one is a subset of the

other.



Lemma
Let v1, v2 ∈ V and S1,S2 be their communities with respect to t in

Gα. Then either S1 and S2 are disjoint or one is a subset of the

other.

Proof.
Let (S1,V − S1 ∪ {t}) be the initial partition in constructing a
minimum cut tree.
Let (a, b) be the edge corresponding to the cut.
If s2 ∈ S1, the path from s1 to t uses (a, b).
So, a minimum (s2, t)−cut is contained in S1.
If s2 6∈ S1, there is a minimum (s2, t)−cut disjoint from S1



Heuristic

Sufficient to find neighbors of t in the minimum cut tree.
No need to calculate an entire min-cut tree of Gα.
By previous lemma, if we have a community S , no need to further
branch.



Heuristic

Sufficient to find neighbors of t in the minimum cut tree.
No need to calculate an entire min-cut tree of Gα.
By previous lemma, if we have a community S , no need to further
branch.

Heuristic:

Let c(v) = c({v},V − {v}).
Sort nodes in decreasing order of c(v).
Calculate min-cuts between t and ‘unmarked’ nodes in the given
order.
Reduces number of max-flow computations to almost the number
of clusters.



Nesting Property

Observation

• For α small, communities are large (i.e., one large cluster)

• As α → ∞, communities become singleton nodes



Nesting Property

Observation

• For α small, communities are large (i.e., one large cluster)

• As α → ∞, communities become singleton nodes

Lemma (The Nesting Property)

For a source s in Gαi
, where αi ∈ {α1, . . . , αmax}, such that

α1 < α2 < · · · < αmax, the communities S1, . . . ,Smax are such that

S1 ⊆ S2 ⊆ . . . ⊆ Smax, where Si is the community of s with

respect to t in Gαi
.



Heirarchical CutClustering (G (V ,E ))

Let G 0 = G

For (i = 0; ; i + +)
Set new, smaller value ai

Call CutCluster Basic(G i , αi )
If ((clusters returned are of desired number and size) or

(clustering failed to create non-trivial clusters))
break

Contract clusters to produce G i+1

Return all clusters at all levels



Experimental Results

Algorithm applied to

CiteSeer

• A digital library for scientific literature.

• Viewed as graph with documents as nodes and directed arcs
denoting citations.



Experimental Results

Algorithm applied to

CiteSeer

• A digital library for scientific literature.

• Viewed as graph with documents as nodes and directed arcs
denoting citations.

The Open Directory Project, dmoz

• A human edited directory of the Web.

• Web pages as nodes, edges corresponding to hyperlinks (links
between web-pages of same domain ignored)



Experimental Results

Algorithm applied to

CiteSeer

• A digital library for scientific literature.

• Viewed as graph with documents as nodes and directed arcs
denoting citations.

The Open Directory Project, dmoz

• A human edited directory of the Web.

• Web pages as nodes, edges corresponding to hyperlinks (links
between web-pages of same domain ignored)

The 9/11 Community

• Identifying web pages related to 9/11



Experimental Results

Problem: Algorithm (and minimum cut trees) defined for
undirected graphs

Fix: Normalize over outbound arcs for each node



Experimental Results

Problem: Algorithm (and minimum cut trees) defined for
undirected graphs

Fix: Normalize over outbound arcs for each node

Outcomes

• Good hierarchical clustering for both CiteSeer and dmoz.

• Concentration of topics within 9/11 community
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