Graph Clustering and Minimum Cut Trees

Flake, Tarjan, Tsioutsiouliklis

April 4, 2007

Introduction

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Goal: Clustering a Data Set Criteria:

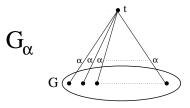
- large intra-cluster cuts
- small inter-cluster cuts

Approach:

- Add artificial sink to graph
- Utilize Minimum Cut Trees

▲日▼▲□▼▲□▼▲□▼ □ のので

 G_{α} Given G = (V, E), construct G_{α} by introducing a new node t and connecting it to all $v \in V$ with edges of capacity α .



◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Community Let $s, r \in V$. The Community of s in G with respect to r is the minimal S such that $s \in S$ and (S, V - S) is a minimum s - r cut.

Community Let $s, r \in V$. The Community of s in G with respect to r is the minimal S such that $s \in S$ and (S, V - S) is a minimum s - r cut.

Web Community A Web community S is a collection of nodes that has the property that all nodes of the Web community predominantly link to other Web community nodes. That is:

$$\sum_{v\in S} w(u,v) > \sum_{v\in \overline{S}} w(u,v), \quad \forall u \in S$$

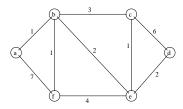
Terminology Minimum Cut Tree

A D M 4 目 M 4 日 M 4 1 H 4

Let G(V, E) be a graph. A minimum cut tree of G is a weighted tree, T, on vertex set V such that for any pair $r, s \in V$, the capacity of the minimum (r, s)-cut in G is equal to the weight of the minimum weight edge, $c(e^*)$, in T on the unique path joining the two nodes. Moreover, the bipartition of V obtained by removing e^* from T is a minimum (r, s)- cut.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Minimum Cut Tree Example



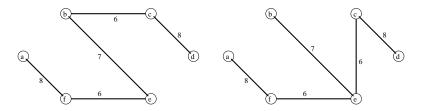


Figure: A Graph and Two Minimum Cut Trees

Terminology Expansion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Let (S, \overline{S}) be a cut in G. We define the expansion of a cut as:

$$\Psi(S) = \frac{\sum_{u \in S, v \in \bar{S}} w(u, v)}{\min\{|S|, |\bar{S}|\}}$$

Terminology Expansion

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let (S, \overline{S}) be a cut in G. We define the expansion of a cut as:

$$\Psi(S) = \frac{\sum_{u \in S, v \in \overline{S}} w(u, v)}{\min\{|S|, |\overline{S}|\}}$$

The expansion of a subgraph is the minimum expansion over all cuts.

The expansion of a clustering is the minimum expansion over all clusters.

Main Theorem

▲日▼▲□▼▲□▼▲□▼ □ のので

Theorem

Let G = (V, E) be an undirected graph, $s \in V$ a source, and connect an artificial sink t with edges of capacity α to all nodes. Let S be the community of s with respect to t. For any non-empty P and Q, such that $P \cup Q = S$ and $P \cap Q = \emptyset$, the following bounds always hold:

$$\frac{c(S,V-S)}{|V-S|} \le \alpha \le \frac{c(P,Q)}{\min(|P|,|Q|)}$$

Proof.

Follows from following four Lemmas.

Let $s, r \in V$ be two nodes of G and let S be the community of s with respect to r. Then, there exists a min-cut tree T_G of G, and an edge $(a, b) \in T_G$, such that the removal of (a, b) yields S and V - S.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let $s, r \in V$ be two nodes of G and let S be the community of s with respect to r. Then, there exists a min-cut tree T_G of G, and an edge $(a, b) \in T_G$, such that the removal of (a, b) yields S and V - S.

Proof.

Follows from Gomory-Hu Algorithm.

Start the algorithm by finding a minimum cut separating s and r. Choose the cut (S, V - S).

▲日▼▲□▼▲□▼▲□▼ □ のので

Let T_G be a min-cut tree of a graph G = (V, E), and let (u, w) be an edge of T_G . Edge (u, w) yields the cut (U, W) in G, with $u \in U$, $w \in W$. Now, take any cut (U_1, U_2) of U, so that U_1 and U_2 are non-empty, $u \in U_1$, $U_1 \cup U_2 = U$, and $U_1 \cap U_2 = \emptyset$. Then:

 $c(W, U_2) \leq c(U_1, U_2)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let T_G be a min-cut tree of a graph G = (V, E), and let (u, w) be an edge of T_G . Edge (u, w) yields the cut (U, W) in G, with $u \in U$, $w \in W$. Now, take any cut (U_1, U_2) of U, so that U_1 and U_2 are non-empty, $u \in U_1$, $U_1 \cup U_2 = U$, and $U_1 \cap U_2 = \emptyset$. Then:

 $c(W, U_2) \leq c(U_1, U_2)$

Proof. (U, W) is a minimum (u, w)-cut. $(U_1, W \cup U_2)$ is a (u, w)-cut. Therefore,

$$egin{aligned} c(U,W) &\leq c(U_1,W\cup U_2)\ c(U_1\cup U_2,W) &\leq c(U_1,W\cup U_2)\ c(U_1,W) + c(U_2,W) &\leq c(U_1,W) + c(U_1,U_2)\ c(U_2,W) &\leq c(U_1,U_2) \end{aligned}$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● ● ●

Let S be the community of s in G_{α} with respect to t. For any non-empty P and Q, such that $P \cup Q = S$ and $P \cap Q = \emptyset$, the following bound always holds

$$\alpha \leq \frac{c(P,Q)}{\min(|P|,|Q|)}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let S be the community of s in G_{α} with respect to t. For any non-empty P and Q, such that $P \cup Q = S$ and $P \cap Q = \emptyset$, the following bound always holds

$$\alpha \leq \frac{c(P,Q)}{\min(|P|,|Q|)}$$

▲日▼▲□▼▲□▼▲□▼ □ のので

Proof.

Consider the (s, t)-cut $(S, V - S \cup \{t\})$. W.I.o.g., assume $s \in P$. By previous lemma, $c(Q, V - S \cup \{t\}) \leq c(P, Q)$ But $c(Q, V - S \cup \{t\}) \geq \alpha \cdot |Q|$ Therefore, $\alpha \cdot \min(|P|, |Q|) \leq c(P, Q)$

Let S be the community of s in G_{α} with respect to t. Then, the following bound always holds:

$$\frac{c(S, V-S)}{|V-S|} \le \alpha$$

Let S be the community of s in G_{α} with respect to t. Then, the following bound always holds:

$$\frac{c(S,V-S)}{|V-S|} \le \alpha$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Proof. $(S, V - S \cup \{t\})$ is a minimum (s, t)-cut in G_{α} V - S and $\{t\}$ form a partition of $V - S \cup \{t\}$ So, $c(S, V - S) \le c(V - S, \{t\}) = \alpha \cdot |V - S|$. CUTCLUSTERING_ALGORITHM ($G(V, E), \alpha$)

Let $V' = V \cup t$ Construct G_{α} Calculate the minimum-cut tree T' of G_{α} Remove t from T'Return all connected components as clusters of G

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

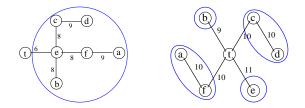


Figure: Clusters for $\alpha = 1$ and $\alpha = 2$.

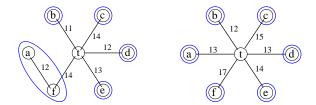


Figure: Clusters for $\alpha = 4$ and $\alpha = 5$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let $v_1, v_2 \in V$ and S_1, S_2 be their communities with respect to t in G_{α} . Then either S_1 and S_2 are disjoint or one is a subset of the other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $v_1, v_2 \in V$ and S_1, S_2 be their communities with respect to t in G_{α} . Then either S_1 and S_2 are disjoint or one is a subset of the other.

Proof.

Let $(S_1, V - S_1 \cup \{t\})$ be the initial partition in constructing a minimum cut tree.

Let (a, b) be the edge corresponding to the cut. If $s_2 \in S_1$, the path from s_1 to t uses (a, b). So, a minimum (s_2, t) -cut is contained in S_1 . If $s_2 \notin S_1$, there is a minimum (s_2, t) -cut disjoint from S_1

Heuristic

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Sufficient to find neighbors of t in the minimum cut tree. No need to calculate an entire min-cut tree of G_{α} . By previous lemma, if we have a community S, no need to further branch.

Heuristic

Sufficient to find neighbors of t in the minimum cut tree. No need to calculate an entire min-cut tree of G_{α} . By previous lemma, if we have a community S, no need to further branch.

Heuristic:

Let $c(v) = c(\{v\}, V - \{v\}).$

Sort nodes in decreasing order of c(v).

Calculate min-cuts between t and 'unmarked' nodes in the given order.

Reduces number of max-flow computations to almost the number of clusters.

Nesting Property

Observation

- For α small, communities are large (i.e., one large cluster)
- As $\alpha \to \infty$, communities become singleton nodes

Nesting Property

Observation

- For α small, communities are large (i.e., one large cluster)
- As $\alpha \to \infty$, communities become singleton nodes

Lemma (The Nesting Property)

For a source s in G_{α_i} , where $\alpha_i \in \{\alpha_1, \ldots, \alpha_{\max}\}$, such that $\alpha_1 < \alpha_2 < \cdots < \alpha_{\max}$, the communities S_1, \ldots, S_{\max} are such that $S_1 \subseteq S_2 \subseteq \ldots \subseteq S_{\max}$, where S_i is the community of s with respect to t in G_{α_i} .

HEIRARCHICAL_CUTCLUSTERING (G(V, E))

Let $G^0 = G$ For (i = 0; ; i + +)Set new, smaller value a_i Call CutCluster_Basic (G^i, α_i) If ((clusters returned are of desired number and size) or (clustering failed to create non-trivial clusters)) break

Contract clusters to produce G^{i+1}

Return all clusters at all levels

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Algorithm applied to

CiteSeer

- A digital library for scientific literature.
- Viewed as graph with documents as nodes and directed arcs denoting citations.

▲日▼▲□▼▲□▼▲□▼ □ ののの

Algorithm applied to

CiteSeer

- A digital library for scientific literature.
- Viewed as graph with documents as nodes and directed arcs denoting citations.

The Open Directory Project, dmoz

- A human edited directory of the Web.
- Web pages as nodes, edges corresponding to hyperlinks (links between web-pages of same domain ignored)

A D M 4 目 M 4 日 M 4 1 H 4

Algorithm applied to

CiteSeer

- A digital library for scientific literature.
- Viewed as graph with documents as nodes and directed arcs denoting citations.

The Open Directory Project, dmoz

- A human edited directory of the Web.
- Web pages as nodes, edges corresponding to hyperlinks (links between web-pages of same domain ignored)

The 9/11 Community

• Identifying web pages related to 9/11

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Problem: Algorithm (and minimum cut trees) defined for undirected graphs

Fix: Normalize over outbound arcs for each node

A D M 4 目 M 4 日 M 4 1 H 4

Problem: Algorithm (and minimum cut trees) defined for undirected graphs

Fix: Normalize over outbound arcs for each node

Outcomes

- Good hierarchical clustering for both CiteSeer and *dmoz*.
- Concentration of topics within 9/11 community

▲日 → ▲園 → ▲目 → ▲目 → ▲日 →