Directed Scale-free Graphs

B. Bollobás, C. Borgs, J. Chayes, O. Riordan

April 11

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔅

B. Bollobás, C. Borgs, J. Chayes, O. Riordan Direct Scale-free Graphs

Outline

2 Analysis of the model

Other models

B. Bollobás, C. Borgs, J. Chayes, O. Riordan Direct Scale-free Graphs

ヘロト ヘワト ヘビト ヘビト

Outline

Other models

B. Bollobás, C. Borgs, J. Chayes, O. Riordan Direct Scale-free Graphs

イロト イポト イヨト イヨト

Outline

Description of the model

Other models

くロト (過) (目) (日)

Outline

Description of the model

くロト (過) (目) (日)

Description of the model

- Graph G(t₀) = G₀ with n₀ vertices and t₀ edges and constants α, β, γ, δ_{in} and δ_{out} s.t. α + β + γ = 1
- At timestep t, perform one of the following
 - w.p. α add a new vertex v and an edge (v, w) to an existing vertex w

イロト 不得 とくほ とくほ とう

э.

- w.p. β add an edge (v, w) to the existing graph
- w.p. γ add a new vertex v and an edge (w, v) from an existing vertex w

Analysis of the model

- G(t)- Graph at time t
- n(t) # of vertices at time t
- $x_i(t) \#$ of nodes with in-degree *i* at time *t*
- $y_i(t) \#$ of nodes with out-degree *i* at time *t*

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Analysis of the model(contd.)

Theorem: Let $i \ge 0$ be fixed. There are constants p_i and q_i such that $x_i(t) = p_i t + o(t)$ and $y_i(t) = q_i t + o(t)$ hold with probability 1. Furthermore, if $\alpha \delta_{in} + \gamma > 0$ and $\gamma < 1$, then as $i \to \infty$ we have

$$p_i \sim C_{IN} i^{-X_{IN}}$$
 .

If $\gamma \delta_{out} + \alpha > 0$ and $\alpha < 1$, then as $i \to \infty$ we have

$$q_i \sim \mathcal{C}_{OUT} i^{-X_{OUT}}$$
 .

イロト イポト イヨト イヨト

Analysis of the model(contd.)

Observation: Number of vertices, n(t) is n_0 plus a Binomial distribution with mean $(\alpha + \gamma)(t - t_0)$.

B. Bollobás, C. Borgs, J. Chayes, O. Riordan Direct Scale-free Graphs

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Chernoff Bound

Let $X_1, X_2, ..., X_n$ be independent Bernoulli trials such that, for $1 \le i \le n$, $\Pr[X_i = 1] = p$, where $0 . Then, for <math>X = \sum_{i=1}^n X_i, \mu = E[X] = np$, and any $0 < \delta < 1$,

$$\mathsf{Pr}[X > (1+\delta)\mu] < \left[rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight]^{\mu}$$

$$\Pr[X < (1-\delta)\mu] < e^{-\mu\delta^2/2}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Analysis of the model(contd.)

By the Chernoff bound, it follows that

$$\Pr[|n(t) - (\alpha + \gamma)t| \ge t^{1/2}\log t] \le e^{-c(\log t)^2}$$

イロト 不得 とくほ とくほ とう

ъ

In particular, the probability above is $o(t^{-1})$ as $t \to \infty$.

Analysis of the model(contd.)

- Now, we will estimate x_i(t) # of vertices of in-degree i at time t.
- In going from G(t) to G(t + 1), what is the chance of destroying a vertex of degree i?

• The answer

$$(\alpha + \beta) x_i(t) \frac{i + \delta_{in}}{t + \delta_{in} n(t)}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Analysis of the model(contd.)

- Now, we will estimate x_i(t) # of vertices of in-degree i at time t.
- In going from G(t) to G(t + 1), what is the chance of destroying a vertex of degree i?

• The answer

$$(\alpha + \beta) x_i(t) \frac{i + \delta_{in}}{t + \delta_{in} n(t)}.$$

イロン 不得 とくほ とくほ とうほ

Analysis of the model(contd.)

- Now, we will estimate x_i(t) # of vertices of in-degree i at time t.
- In going from G(t) to G(t + 1), what is the chance of destroying a vertex of degree i?
- The answer

$$(\alpha + \beta) \mathbf{x}_i(t) \frac{i + \delta_{in}}{t + \delta_{in} \mathbf{n}(t)}.$$

ヘロト 不得 とうき とうとう

Analysis of the model(contd.)

Putting everything together, we get

$\mathbf{E}[x_{i}(t+1)|G(t)] = x_{i}(t) + \frac{(\alpha+\beta)}{t+\delta_{in}n(t)} \Big((i-1+\delta_{in})x_{i-1}(t) - (i+\delta_{in})x_{i}(t) \Big) + \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}}.$

ヘロト 人間 とくほとくほとう

э

 $x_{-1}(t)=0.$

Analysis of the model(contd.)

Putting everything together, we get

$$\mathbf{E}[x_i(t+1)|G(t)] = x_i(t) + \frac{(\alpha+\beta)}{t+\delta_{in}n(t)} \Big((i-1+\delta_{in})x_{i-1}(t) - (i+\delta_{in})x_i(t) \Big) + \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}}.$$

ヘロト 人間 とくほとく ほとう

3

 $x_{-1}(t) = 0.$

Analysis of the model(contd.)

Putting everything together, we get

$$\mathbf{E}[x_i(t+1)|G(t)] = x_i(t) + \frac{(\alpha+\beta)}{t+\delta_{in}n(t)} \Big((i-1+\delta_{in})x_{i-1}(t) - (i+\delta_{in})x_i(t) \Big) + \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}}.$$

イロト イポト イヨト イヨト

3

 $x_{-1}(t) = 0.$

Analysis of the model(contd.)

By the Chernoff bound, it follows that

$$\Pr[|n(t) - (\alpha + \gamma)t| \ge t^{1/2}\log t] \le e^{-c(\log t)^2}.$$

In particular, the probability above is $o(t^{-1})$ as $t \to \infty$.

We could assume that w.p. $1 - o(t^{-1})$,

$$|n(t) - (\alpha + \gamma)t| = o(t^{3/5}).$$

$$(\alpha + \beta) \frac{i + \delta_{in}}{t + \delta_{in} n(t)} x_i(t) = O(1)$$
 true for $n(t) \ge 0$

Analysis of the model(contd.)

By the Chernoff bound, it follows that

$$\Pr[|n(t) - (\alpha + \gamma)t| \ge t^{1/2}\log t] \le e^{-c(\log t)^2}.$$

In particular, the probability above is $o(t^{-1})$ as $t \to \infty$.

We could assume that w.p. $1 - o(t^{-1})$,

$$|n(t)-(\alpha+\gamma)t|=o(t^{3/5}).$$

$$(\alpha + \beta) \frac{i + \delta_{in}}{t + \delta_{in} n(t)} x_i(t) = O(1)$$
 true for $n(t) \ge 0$

ヘロト 人間 とくほとく ほとう

э.

Analysis of the model(contd.)

By the Chernoff bound, it follows that

$$\Pr[|n(t) - (\alpha + \gamma)t| \ge t^{1/2}\log t] \le e^{-c(\log t)^2}.$$

In particular, the probability above is $o(t^{-1})$ as $t \to \infty$.

We could assume that w.p. $1 - o(t^{-1})$,

$$|n(t)-(\alpha+\gamma)t|=o(t^{3/5}).$$

$$(\alpha + \beta) \frac{i + \delta_{in}}{t + \delta_{in} n(t)} x_i(t) = O(1)$$
 true for $n(t) \ge 0$

ヘロト 人間 とくほとく ほとう

э.

Analysis of the model(contd.)

$$\mathbf{E}\left[\frac{\alpha+\beta}{t+\delta_{in}n(t)}(i+\delta_{in})x_i(t)\right]$$

= $\frac{\alpha+\beta}{t+\delta_{in}(\alpha+\beta)t}(i+\delta_{in})\mathbf{E}x_i(t)\left(1+o(t^{-2/5})\right)$
= $\frac{\alpha+\beta}{t+\delta_{in}(\alpha+\beta)t}(i+\delta_{in})\mathbf{E}x_i(t)+o(t^{-2/5})$

ヘロト 人間 とくほとくほとう

æ

B. Bollobás, C. Borgs, J. Chayes, O. Riordan Direct Scale-free Graphs

Analysis of the model(contd.)

.

$$\mathbf{E}\left[\frac{\alpha+\beta}{t+\delta_{in}n(t)}(i+\delta_{in})x_i(t)\right]$$

= $\frac{\alpha+\beta}{t+\delta_{in}(\alpha+\beta)t}(i+\delta_{in})\mathbf{E}x_i(t)\left(1+o(t^{-2/5})\right)$
= $\frac{\alpha+\beta}{t+\delta_{in}(\alpha+\beta)t}(i+\delta_{in})\mathbf{E}x_i(t)+o(t^{-2/5})$

ヘロト 人間 とくほとくほとう

æ

B. Bollobás, C. Borgs, J. Chayes, O. Riordan Direct Scale-free Graphs

Analysis of the model(contd.)

$$\mathbf{E}[x_i(t+1)|G(t)] = x_i(t) + \frac{(\alpha+\beta)}{t+\delta_{in}n(t)} \Big((i-1+\delta_{in})x_{i-1}(t) - (i+\delta_{in})x_i(t) \Big) + \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}}.$$

Taking expectation of both sides,

$$\begin{aligned} \mathbf{E} x_i(t+1) = \mathbf{E} x_i(t) &+ \\ &\frac{(\alpha+\beta)}{t+\delta_{in}(\alpha+\beta)t} \Big((i-1+\delta_{in}) \mathbf{E} x_{i-1}(t) - (i+\delta_{in}) \mathbf{E} x_i(t) \Big) \\ &+ \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}} + o(t^{-2/5}). \end{aligned}$$

ヘロア 人間 アメヨア 人口 ア

Analysis of the model(contd.)

$$\mathbf{E}[x_i(t+1)|G(t)] = x_i(t) + \frac{(\alpha+\beta)}{t+\delta_{in}n(t)} \Big((i-1+\delta_{in})x_{i-1}(t) - (i+\delta_{in})x_i(t) \Big) + \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}}.$$

Taking expectation of both sides,

$$\begin{aligned} \mathbf{E} x_i(t+1) = \mathbf{E} x_i(t) &+ \\ &\frac{(\alpha+\beta)}{t+\delta_{in}(\alpha+\beta)t} \Big((i-1+\delta_{in}) \mathbf{E} x_{i-1}(t) - (i+\delta_{in}) \mathbf{E} x_i(t) \Big) \\ &+ \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}} + o(t^{-2/5}). \end{aligned}$$

ヘロト 人間 ト ヘヨト ヘヨト

Analysis of the model(contd.)

As in the Preferential attachment model, we will assume

 $\mathbf{E} x_i(t) \sim p_i t$

Now we obtain a recurrence relation in p_i 's.

$$p_{i}(t+1) = p_{i}t + \frac{(\alpha+\beta)}{t+\delta_{in}(\alpha+\beta)t} \Big((i-1+\delta_{in})p_{i-1}t - (i+\delta_{in})p_{i}t \Big) + \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Analysis of the model(contd.)

As in the Preferential attachment model, we will assume

 $\mathbf{E} \mathbf{x}_i(t) \sim \mathbf{p}_i t$

Now we obtain a recurrence relation in p_i 's.

$$p_{i}(t+1) = p_{i}t + \frac{(\alpha+\beta)}{t+\delta_{in}(\alpha+\beta)t} ((i-1+\delta_{in})p_{i-1}t - (i+\delta_{in})p_{i}t) + \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}}.$$

ヘロト 人間 とくほとくほとう

1

Analysis of the model(contd.)

Let

$$c_1 = \frac{(\alpha + \beta)}{1 + \delta_{in}(\alpha + \beta)}.$$

Let $p_{-1} = 0$ and for $i \ge 0$,

$$p_i = c_1 \left((i - 1 + \delta_{in}) p_{i-1} - (i + \delta_{in}) p_i \right) \\ + \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}}.$$

イロト 不得 とくほと くほとう

E 990

Analysis of the model(contd.)

Solving the recurrence, we get $p_0 = \alpha/(1 + c_1 \delta_m)$,

$$\boldsymbol{\rho}_1 = (1 + \delta_m + \boldsymbol{c}_1^{-1})^{-1} \left(\frac{\alpha \delta_i \boldsymbol{n}}{1 + \boldsymbol{c}_1 \delta_{in}} + \frac{\gamma}{\boldsymbol{c}_1} \right),$$

and for $i \ge 1$,

$$p_{i} = \frac{(i-1+\delta_{in})_{i-1}}{(i+\delta_{in}+c_{1}^{-1})_{i-1}}p_{1}$$

= $\frac{(i-1+\delta_{in})!}{(i+\delta_{in}+c_{1}^{-1})!}\frac{(1+\delta_{in}+c_{1}^{-1})!}{\delta_{in}!}p_{1}.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Analysis of the model(contd.)

Wanted to show that

$$p_i \sim C_{IN} i^{-X_{IN}}$$

$$X_{IN} = (\delta_{in} + c_1^{-1}) - (\delta_{in} + c_1^{-1}) = 1 + c_1^{-1}$$

ヘロン ヘアン ヘビン ヘビン

$$X_{OUT} = (\delta_{out} + c_2^{-1}) - (\delta_{out} + c_2^{-1}) = 1 + c_2^{-1}$$

where $c_1 = \frac{\alpha + \beta}{1 + \delta_{in}(\alpha + \gamma)}$ and $c_2 = \frac{\beta + \gamma}{1 + \delta_{out}(\alpha + \gamma)}$.

Analysis of the model(contd.)

Wanted to show that

$$p_i \sim C_{IN} i^{-X_{IN}}$$

$$X_{IN} = (\delta_{in} + c_1^{-1}) - (\delta_{in} + c_1^{-1}) = 1 + c_1^{-1}$$

ヘロア 人間 アメヨア 人口 ア

$$X_{OUT} = (\delta_{out} + c_2^{-1}) - (\delta_{out} + c_2^{-1}) = 1 + c_2^{-1}$$

where $c_1 = \frac{\alpha + \beta}{1 + \delta_{in}(\alpha + \gamma)}$ and $c_2 = \frac{\beta + \gamma}{1 + \delta_{out}(\alpha + \gamma)}$.

Analysis of the model(contd.)

Wanted to show that

$$p_i \sim C_{IN} i^{-X_{IN}}$$

$$X_{IN} = (\delta_{in} + c_1^{-1}) - (\delta_{in} + c_1^{-1}) = 1 + c_1^{-1}$$

ヘロア 人間 アメヨア 人口 ア

$$X_{OUT} = (\delta_{out} + c_2^{-1}) - (\delta_{out} + c_2^{-1}) = 1 + c_2^{-1}$$

where $c_1 = \frac{\alpha + \beta}{1 + \delta_{in}(\alpha + \gamma)}$ and $c_2 = \frac{\beta + \gamma}{1 + \delta_{out}(\alpha + \gamma)}$.

Analysis of the model(contd.)

Theorem:

$$\mathbf{E}x_{i}(t) - p_{i}t| = O(t^{3/5}).$$
(1)

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Proof: Recurrence for expectation

$$\begin{aligned} \mathbf{E}x_{i}(t+1) = \mathbf{E}x_{i}(t) &+ \\ & \frac{(\alpha+\beta)}{t+\delta_{in}(\alpha+\beta)t} \Big((i-1+\delta_{in})\mathbf{E}x_{i-1}(t) - (i+\delta_{in})\mathbf{E}x_{i}(t) \Big) \\ &+ \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}} + o(t^{-2/5}). \end{aligned}$$

$$\begin{aligned} \text{Writing } \mathbf{E}x_{i}(t) = p_{i}t + \epsilon_{i}(t), \\ \epsilon_{i}(t+1) = \Big(\frac{c_{1}(i-1+\delta_{in})}{t} \Big) \epsilon_{i-1}(t) + \Big(1 - \frac{c_{1}(i+\delta_{in})}{t} \Big) \epsilon_{i}(t) + o(t^{-2/5}). \end{aligned}$$

Analysis of the model(contd.)

Theorem:

$$\mathbf{E}x_{i}(t) - p_{i}t| = O(t^{3/5}).$$
(1)

くロト (過) (目) (日)

ъ

Proof: Recurrence for expectation

$$\begin{aligned} \mathbf{E}x_{i}(t+1) = \mathbf{E}x_{i}(t) &+ \\ & \frac{(\alpha+\beta)}{t+\delta_{in}(\alpha+\beta)t} \Big((i-1+\delta_{in})\mathbf{E}x_{i-1}(t) - (i+\delta_{in})\mathbf{E}x_{i}(t) \Big) \\ &+ \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}} + o(t^{-2/5}). \end{aligned}$$

$$\begin{aligned} \text{Writing } \mathbf{E}x_{i}(t) = p_{i}t + \epsilon_{i}(t), \\ \epsilon_{i}(t+1) = \Big(\frac{c_{1}(i-1+\delta_{in})}{t} \Big) \epsilon_{i-1}(t) + \Big(1 - \frac{c_{1}(i+\delta_{in})}{t} \Big) \epsilon_{i}(t) + o(t^{-2/5}). \end{aligned}$$

Analysis of the model(contd.)

Theorem:

$$\mathbf{E}x_{i}(t) - p_{i}t| = O(t^{3/5}).$$
(1)

ヘロト 人間 ト ヘヨト ヘヨト

3

Proof: Recurrence for expectation

$$\begin{aligned} \mathbf{E}x_{i}(t+1) = \mathbf{E}x_{i}(t) &+ \\ & \frac{(\alpha+\beta)}{t+\delta_{in}(\alpha+\beta)t} \Big((i-1+\delta_{in})\mathbf{E}x_{i-1}(t) - (i+\delta_{in})\mathbf{E}x_{i}(t) \Big) \\ &+ \alpha \mathbf{1}_{\{i=0\}} + \gamma \mathbf{1}_{\{i=1\}} + o(t^{-2/5}). \end{aligned}$$
Writing $\mathbf{E}x_{i}(t) = p_{i}t + \epsilon_{i}(t),$

$$\epsilon_{i}(t+1) = \Big(\frac{c_{1}(i-1+\delta_{in})}{t}\Big)\epsilon_{i-1}(t) + \Big(1 - \frac{c_{1}(i+\delta_{in})}{t}\Big)\epsilon_{i}(t) + o(t^{-2/5}). \end{aligned}$$

Analysis of the model(contd.)

Proof contd: We induct on *t*. Assume $|\epsilon_i(t)| \le At^{3/5} \forall i \ge 0$

$$\begin{split} |\epsilon_{i}(t+1)| &\leq \\ \left(\frac{c_{1}(i-1+\delta_{in})}{t}\right) |\epsilon_{i-1}(t)| + \left(1 - \frac{c_{1}(i+\delta_{in})}{t}\right) |\epsilon_{i}(t)| + |o(t^{-2/5})| \\ \left(\frac{c_{1}(i-1+\delta_{in})}{t}\right) A t^{3/5} + \left(1 - \frac{c_{1}(i+\delta_{in})}{t}\right) A t^{3/5} + |o(t^{-2/5})| \\ \left(1 - \frac{c_{1}}{t}\right) A t^{3/5} + |o(t^{-2/5})| \end{split}$$

ヘロト ヘアト ヘビト ヘビト

3

B. Bollobás, C. Borgs, J. Chayes, O. Riordan Direct Scale-free Graphs

Analysis of the model(contd.)

Proof contd: For large *t*, we approximate

$$(t+1)^{3/5} = t^{3/5}(1+1/t)^{3/5} \ge t^{3/5}(1+\frac{2}{5}t^{-1}).$$

$$\begin{aligned} |\epsilon_i(t+1)| &\leq \quad \left(1 - \frac{c_1}{t}\right) A t^{3/5} + |o(t^{-2/5})| \\ &\leq \quad A t^{3/5} - c_1 t^{-2/5} + |o(t^{-2/5})| \\ &\leq \quad A (t+1)^{3/5} - \frac{2}{5} t^{-2/5} - c_1 t^{-2/5} + |o(t^{-2/5})| \\ &\leq \quad A (t+1)^{3/5} \end{aligned}$$

Azuma-Hoeffding inequality

Suppose that $X_0, X_1, ..., X_n$ is a martingale w.r.t $A_0, A_1, ..., A_n$, and $a_i \le X_{i+1} - X_i \le b_i$ i = 1, 2, ..., n - 1, then for any $t \ge 0$, we have

$$\Pr[|X_n - X_0| \ge t] \le 2e^{-t^2 / \sum_i (b_i - a_i)^2}$$

We use Azuma-Hoeffding inequality to show concentration of $x_i(t)$.

Azuma-Hoeffding inequality

Suppose that $X_0, X_1, ..., X_n$ is a martingale w.r.t $A_0, A_1, ..., A_n$, and $a_i \le X_{i+1} - X_i \le b_i$ i = 1, 2, ..., n - 1, then for any $t \ge 0$, we have

$$\Pr[|X_n - X_0| \ge t] \le 2e^{-t^2 / \sum_i (b_i - a_i)^2}$$

We use Azuma-Hoeffding inequality to show concentration of $x_i(t)$.

Restriction in the sequence of choices

- A-H inequality can be applied only to those sequences where the number of vertices introduced is roughly the mean.
- $\bullet\,$ Denote the set of such sequences by ${\cal A}\,$
- **Pr**(a sequence $C \in A$) $\geq 1 o(t^{-1})$

It is easy to see that

$$\mathbf{E}(x_i(t)|\mathcal{A}) = p_i t + o(t) \tag{2}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Concentration

Given \mathcal{A} ,

- # of old vertices involved in determining G(t) at most 2t
- Changing a choice from v to v' only affects the degrees of v and v'
- $x_i(t)$ changes by at most 2.

Applying A-H inequality,

$$\Pr[|x_i(t) - \mathsf{E}(x_i(t)|\mathcal{A})| \ge t^{3/4}|\mathcal{A}] \le 2e^{-2t^{3/2}/((2t)2^2)} = 2e^{-\sqrt{t}/4}.$$
(3)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem: Assume $\alpha, \gamma < 1$, and that $\alpha \delta_{in} + \gamma \delta_{out} > 0$. Let $i, j \ge 0$ be fixed. Let $n_{i,j} - \#$ of vertices with in-degree *i* and out-degree *j*. Then there is a constant $f_{i,j}$ such that $n_{ij}(t) = f_{ij}t + o(t)$ holds with probability 1. Furthermore, for $j \ge 1$ fixed and $i \to \infty$,

$$f_{ij}\sim C_j i^{-X_{IN}'}$$

while for $i \ge 1$ fixed and $j \to \infty$,

$$f_{ij} \sim D_i j^{-X'_{OUT}}.$$

イロト 不得 とくほ とくほ とう

1

where the C_i and D_i are positive constants.

Results

- In the world wide web, $X_{IN} = 2.1$ and $X_{OUT} = 2.7$.
- For $c_2 = 0.59, \alpha = 0.41, c_1 = 1/1.1$ and

$$\delta_{in} = \frac{1.1(\alpha + \beta) - 1}{1 - \beta},$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

the model achieves the measured exponents.

Other Models

Nodes with *fitness*:

- Every node has an in-fitness and out-fitness associated with it, denoted by λ_ν and μ_ν.
- λ_v and μ_v are drawn from distributions D_{IN} and D_{OUT} on the non-negative reals.

ヘロト ヘアト ヘビト ヘビト

æ