
Nash Equilibria in Competitive Soieties, with Appliationsto Faility Loation, TraÆ Routing and AutionsAdrian Vetta�November 20, 2003Abstrat. We onsider the following lass of problems. The value of an outome to asoiety is measured via a submodular utility funtion (submodularity has a natural eonomiinterpretation: dereasing marginal utility). Deisions, however are ontrolled by non-ooperative agents who seek to maximise their own private utility. We present, under somebasi assumptions, guarantees on the soial performane of Nash equilibria. For submodularutility funtions, any Nash equilibrium gives an expeted soial utility within a fator 2 ofoptimal, subjet to a funtion-dependent additive term. For non-dereasing, submodularutility funtions, any Nash equilibrium gives an expeted soial utility within a fator 2of optimal. A ondition under whih all sets of soial and private utility funtions induepure strategy Nash equilibria is presented. The ase in whih agents, themselves, make useof approximation algorithms in deision making is disussed and performane guaranteesgiven. Finally we present some spei� problems that fall into our framework. Theseinlude the ompetitive versions of the faility loation problem and k-median problem, amaximisation version of the traÆ routing problem of Roughgarden and Tardos [16℄, andmultiple-item autions. 1. IntrodutionComputer sientists have long studied the osts inurred by the lak of omplete information orthe lak of unbounded omputational resoures. For example, the �elds of on-line algorithms andapproximation algorithms were developed in response to these two problems. However, these �eldspresume a single authority (or agent) whose goal is to optimise some objetive funtion. Whathappens when there is a lear soial objetive funtion but no single authority? In partiular,what if there are many agents whose goals are to optimise their own private objetive funtions,rather than to olletively optimise the soial objetive funtion? Motivated by examples of thistype onerning the internet, Koutsoupias and Papadimitriou [8℄ proposed applying game-theoretitehniques in order to analyse the osts resulting from a lak of oordination. Spei�ally, theyproposed the study of non-ooperative games via the use of Nash equilibria (where the agents'strategies are mutual best responses to eah other). Given the non-ooperative nature of these�Shool of Computer Siene and Department of Mathematis, MGill University. Email: vetta�math.mgill.a



2games and the fat that suh games may have many Nash equilibria, they proposed studying suhequilibria from a worst ase perspetive. That is, how bad an a Nash equilibrium be, with respetto the soial objetive, in omparison to the best ooperative solution (or solution produed inpresene of a single authority).The study of Nash equilibria is espeially fruitful for problems in whih the ations of the agentsmay be hanged quikly and at little ost. This is beause it is in suh irumstanes that Nashequilibria are most likely to arise in pratie. Suh problems abound in the high-teh eonomy.From a theoretial viewpoint, notable amongst them is the traÆ routing problem whih has beenstudied with great suess by Roughgarden and Tardos [16℄.In this paper we onsider a large lass of problems with the following struture. Deisions aremade by a set of non-ooperative agents whose ation spaes are subsets of an underlying groundset.The ations of the agents indue some soial utility, measured by a set funtion. The goal of theagents, though, is not to maximise the overall soial utility; rather, they seek to maximise theirown private utility funtions. The only assumptions we make are� The soial utility and private utility funtions are measured in the same standard unit.This standard utility unit may be money, gold, ake et. Clearly, suh a onditionis neessary. For example, no guarantees an be obtained if the value to soiety ismeasured in terms of the number of oranges but the agents seek to maximise thenumber of apples.� The soial utility funtion is submodular.Submodularity orresponds to a property that arises frequently in eonomis: de-reasing marginal utility. Here, the additional value aruing from an ation de-reases as the overall level of ativity in the soiety rises. For example, the additionalbene�t to a town of an extra taxi ompany is greater if there are urrently no taxi�rms in the town rather than if there are already one hundred taxi �rms.� The private utility of an agent is at least the hange in soial utility that would our if the agentdelined to partiipate in the game.We remark that, equivalently, we require that the private utility of an agent isat least the Vikrey utility with respet to that agent. This onept is often on-sidered in the study of aution mehanisms (see Vikrey-Clarke-Groves paymentmehanisms). Moreover, this ondition arises in other pratial situations as wewill see in our examples. (To illustrate why this ondition is often satis�ed, supposethat the members of the soiety are somehow able to negotiate how the total soial



3utility is divided up amongst the members. Now, given an outome, onsider thehange in the value of the game that ours if agent i then delines to partiipatein the game. Observe that the other agents will be willing to pay agent i up to thisamount just to partiipate in the game. Thus, this will be the minimum payo� thatagent i will aept.)Problems for whih these three assumptions hold are alled utility systems. For a utility system,it is possible to provide some strong guarantees onerning the soial utility provided by anyNash equilibrium (we will also show that good guarantees arise if we relax the third assumption).Spei�ally, for non-dereasing, submodular objetive funtions, any Nash equilibrium will give asolution with expeted soial utility within a fator 2 of the optimal solution, Hene, any Nashequilibrium is always at least half as good as the optimal soial solution. For submodular funtionsin general, the expeted soial utility of a Nash equilibrium is within a fator 2 of optimal, subjet toa funtion-based additive term (whih, as we will see in our examples, often has a lear eonomiinterpretation). An alternative form of guarantee that has interesting interpretations in ertainproblems (for example, the traÆ routing problem) is also given. These results are shown to betight.The other main result in the paper is to show that, given a simple ondition, utility systemshave the desirable property that they possess pure strategy Nash equilibria. We also disuss andprovide performane guarantees for instanes in whih the agents apply approximation algorithmsin determining their strategies.An outline of the paper is as follows. In Setion 2 we introdue the neessary bakground on gametheory and submodular funtions, and give a toy example to illustrate our ideas. In Setion 3 weprove our results onerning the soial performane of Nash equilibria. In Setion 4 we disuss purestrategy Nash equilibria and mixed strategy Nash equilibria. We then present the simple onditionunder whih a utility system will have pure strategy Nash equilibria. In Setion 5 we relax ourthird assumption and present results for the situation in whih the private utility of an agent isomparable to the Vikrey utility with respet to that agent (loss in soial utility that would resultfrom the agent dropping out of the game). Sine our three assumptions onerning the utilitysystem are not very restritive, the results are widely appliable. We illustrate this by presentinga range of problems that �t into our framework. Our �rst examples are ompetitive versions ofthe faility loation problem and the k-median problem, whih we introdue in Setion 6. Oneimpliation of the results in this setion is that ompetitive markets are less eÆient in industrieswith high �xed osts and high marginal pro�ts. Pratial examples of suh soial ineÆieniesinlude the dupliation of work, as well as the over-supply of lurative markets (and under-supply



4of less valuable markets) by �rms. Our next example, given in Setion 7, onerns traÆ routingin networks. In Setion 8, we onsider the issues of polynomial time implementations. Theseissues inlude the time it takes to obtain Nash equilibria and also the onsequenes of agents usingapproximation algorithms for strategy determination. One example in whih speed onsiderationsare of great importane is autions. Thus, our last example, given in Setion 9, is that of multiple-item autions. We present a simple polynomial time aution that �ts into our overall framework.It follows that the alloation of items given by the aution (in the presene of ompeting agentswho bid in a greedy manner) is at least half as eÆient as the optimal alloation given by a singleauthority. This mathes the performane guarantee Lehmann, Lehmann and Nisan [9℄ gave for theproblem where a single authority hooses an alloation.2. Bakground and a Simple ExampleIn this setion we present the required onepts and terminology. We will illustrate these oneptsusing the following simple stable marriage game. We have a group of men and a group of womenwhih at as a vertex set in a bipartite graph. There is an edge between man i and women j whosevalue represents the \quality" of resultant relationship should i and j deide to marry. We remarkthat the bipartite graph need not be omplete. We may assume that we have returned to the 1950sand soietal norms only allow men to propose to women. The objetive of eah man and woman isto maximise the value of any marriage. Thus, on reeiving a set of propositions, eah women willaept the proposal of highest value.2.1. some game theory.Suppose we have k agents and disjoint groundsets V1; V2; : : : ; Vk. Eah element in Vi represents anat that agent i may make, 1 � i � k; let ai � Vi be an ation (set of ats) available to agent i.We may wish to restrit the set of ations an agent may make; thus we may not allow every subsetof Vi to be a feasible ation. Towards this end, we let Ai = fai � Vi : ai is a feasible ationg =fa1i ; a2i ; : : : ; anii g be the set of all ations available to agent i. We all Ai the ation spae for agent i.In our marriage game the k agents are the men, and the groundset Vi is the set of edges Æ(i) inidentto man i in the graph. An ation for man i is either just a hoie of edge (i; j) 2 Æ(i) (orrespondingto a proposal to woman j) or the null-hoie (making no proposal). Thus Ai = f;g [ f(i; j) 2 Æ(i).Observe that we ould time-warp bak further and allow men to propose to and marry multiplewomen (although eah woman may still only aept one proposal); in suh a irumstane theation set Ai would onsist of all subsets of Æ(i). In our game multiple proposals are not allowed,but this observation is important beause it allows us to evaluate non-feasible outomes, and thiswill be important for the lass of valuation funtions that we onsider.



5A pure strategy is one in whih the agent deides to arry out a spei� ation. [For example,in the marriage game a pure strategy for man i orresponds to making a proposal to woman j.℄A mixed strategy is one in whih the agent deides upon an ation aording to some probabilitydistribution. The strategy spae Si of agent i is the set of mixed strategies. Thus we may representSi as Si = fsi 2 Rni : niXj=1 sji = 1; sji � 0gThus si 2 Si orresponds to the mixed strategy in whih ation a1i is implemented with probabilitys1i , ation a2i is implemented with probability s2i , et. Hene, a pure strategy orresponds to (0; 1)-vetor in Si. Now let A = A1 �A2 � � � � � Ak and let S = S1 � S2 � � � � � Sk. In addition, we letV = V1 [ V2 [ � � � [ Vk. Then for a funtion f : 2V ! R, we de�ne �f : S ! R as follows�f(S) = XA2A f(A) Pr(AjS)where Pr(AjS) is the probability that ation set A = fa1; a2; : : : ; akg is implemented given thatthe agents are using the strategy set S = fs1; s2; : : : ; skg. Thus �f(S) is just the expeted value off on the strategy set S.Given an ation set A = fa1; a2; : : : ; akg 2 A, let A�a0i denote the ation set obtained if agent ihanges its ation from ai to a0i. Formally, A�a0i = fa1; : : : ; ai�1; a0i; ai+1; : : : ; akg. Similarly, givena strategy set S = fs1; s2; : : : ; skg 2 S, let S � s0i = fs1; : : : ; si�1; s0i; si+1; : : : ; skg, i.e. the strategyset obtained if agent i hanges its strategy from si to s0i.In this paper we will denote by  : 2V ! R the soial utility funtion. In addition, for eahagent 1 � i � k, there is a private utility funtion �i : 2V ! R. [For the marriage game the soialutility funtion will be the sum of the the values of eah marriage. The private utility of eah agent(man) will be the value of the marriage he is in (or sum of value of his marriages in the multipleproposal version).℄ The goal of eah agent is, therefore, to selet a strategy in order to maximiseits private utility. Clearly, though, suh strategies may not produe a good solution with respetto soial utility . We say that set of strategies S 2 S is a Nash equilibrium if no agent has aninentive to hange strategy. That is, for any agent i,��i(S) � ��i(S � s0i) 8s0i 2 SiEquivalently, given the other agents strategies, si is the best response of agent i. We say that aNash equilibrium fs1; s2; : : : ; skg is a pure strategy Nash equilibrium if, for eah agent i, si is a purestrategy. Otherwise we say that the Nash equilibrium is a mixed strategy Nash equilibrium. Thefollowing result is due to Nash [10℄.



6Theorem 2.1. Any �nite, k-person, non-ooperative game has at least one Nash equilibrium. �Therefore, the task of omparing the performane of Nash equilibria against a soially optimalsolution is feasible.2.2. submodular funtions.A funtion with the form f : 2V ! R is alled a set funtion. A set funtion f is submodular iff(X) + f(Y ) � f(X \ Y ) + f(X [ Y ) 8X;Y � VIt is supermodular if this inequality is reversed. A set funtion f is non-dereasing if f(X) � f(Y ),8X � Y � V . For a set funtion f , the disrete derivative at X � V in the diretion D � V �Xis de�ned as f 0D(X) = f(X [D)� f(X)The following result is standard. Condition (III) shows that, in eonomi terms, submodularityorresponds to the property of dereasing marginal utility, that is, the additional value aruingfrom an ation dereases as the overall level of ativity in the soiety rises.Lemma 2.2. The following are equivalent:(I) f is submodular.(II) A � B implies f 0D(A) � f 0D(B), 8D � V �B.(III) A � B implies f 0i(A) � f 0i(B), 8i 2 V �B.Proof. First, we show that (III) implies (II). So assume that f 0i(A) � f 0i(B) when A � B andi 2 V �B. Let D = fi1; i2; : : : ; irg � V �B. Thenf(A [ fi1g)� f(A) � f(B [ fi1g)� f(B)f(A [ fi1; i2g)� f(A [ fi1g) � f(B [ fi1; i2g)� f(B [ fi1g)...f(A [ fi1; : : : ; irg)� f(A [ fi1; : : : ; ir�1g) � f(B [ fi1; : : : ; irg)� f(B [ fi1; : : : ; ir�1g)Summing, we obtain f(A [D)� f(A) � f(B [D)� f(B)f 0D(A) � f 0D(B)



7Next, we show that (II) implies (I). Assume that f 0D(A) � f 0D(B) when A � B and D � V � B.Take sets X and Y . Set A = X \ Y , B = Y and D = X � Y . Thenf 0D(A) � f 0D(B)f(D [A)� f(A) � f(D [B)� f(B)f(X)� f(X \ Y ) � f(X [ Y )� f(Y )Finally, we show that (I) implies (III). Assume f is submodular. Thus, f(X) + f(Y ) � f(X \Y ) + f(X [ Y ), 8X;Y � V . Let A � B and take i 2 V �B. Set X = A [ fig and Y = B. Thenf(A [ fig) + f(B) � f(A) + f(B [ fig). Hene, f(A [ fig) � f(A) � f(B [ fig) � f(B). �Observe that the objetive funtion in the marriage game is submodular. To see this onsider twosets of proposals P1 and P2, where the edge set orresponding to P1 is a subset of that orrespondingto P2. Now it is easy to see that the inrease in the total value of marriages resulting from addingan additional proposal (edge) to P1 and P2 is greater (or equal) in the former ase.2.3. utility systems.Given our ompetitive game, let the optimal soial solution be 
 = f�1; �2; : : : ; �kg, with op-timal value opt = (
). Here we onsider the private utilities of the agents in a solutionS = fs1; s2; : : : ; skg. First, we introdue some more notation. We denote by ;i, the null strat-egy (ation) for agent i; suh a strategy orresponds to agent i delining to take part in the game.We denote by ; = f;1; ;2; : : : ; ;kg the strategy set in whih eah player has a null strategy. Forsimpliity, we will assume that (;) = 0.Now take an arbitrary ordering of the agents. Without loss of generality, we may assume thatthe ordering is f1; 2; : : : ; kg. Now given A 2 A we set Ai = fa1; a2; : : : ; ai; ;i+1; : : : ; ;kg. Similarlygiven S 2 S we set Si = fs1; s2; : : : ; si; ;i+1; : : : ; ;kg. Then, by onstrution, it follows thatLemma 2.3. For an ation set A 2 A and set funtion , we have (A) =Pki=1 0ai(Ai�1). �Corollary 2.4. For any strategy set S 2 S and set funtion , we have �(S) =Pki=1 �0si(Si�1). �Now take our submodular, soial utility funtion  : 2V ! R (we remark that � is also submod-ular) and our olletion of private utility funtions �i : 2V ! R, 1 � i � k. Reall that our thirdassumption regarding the utility funtions states that the private utility to an agent is at least asgreat as the loss in soial utility resulting from the agent dropping out of the game. That is, thesystem (;[i�i) has the property��i(S) � �0si(S � ;i) 8S 2 S(1)



8Given ondition (1), we say that the system (;[i�i) is a utility system. Note that for the marriagegame this ondition holds, if a player drops out of the game the overall value of the game fallsby at most the value of his marriage (in fat, possibly less as then his wife may be able to marryanother man). The utility system (;[i�i) is said to be basi if we have equality in ondition (1),that is ��i(S) = �0si(S � ;i). Observe that, sine we are assuming that utilities are measured in thesame units, we may view the game in the following manner. The funtion  represents the valueof the game (or size of the ake), and �i represents the return to the agent i (i.e. the size of agenti's piee of the ake). Therefore we also require that the sum of the sizes of the piees must besmaller than the total size of the ake. That is we require that the sum of the private utilities ofthe agents is at most the soial utilityXi ��i(S) � �(S) 8S 2 S(2)In suh a irumstane we say that the utility system (;[i�i) is valid. Note that the utilitysystem for the marriage game is valid. Note, we do not require that Pi ��i(S) = �(S). In fat, aswe shall see the value �(S) �Pi ��i(S) often has a lear meaning. For the moment we may view�(S)�Pi ��i(S) as the utility of some non-agent, say the utility of the general publi.Observe that onditions (1) and (2) must hold if the following two onditions hold�i(A) � 0ai(A� ;i)(3) Xi �i(A) � (A)(4)We now show that valid utility systems do exist.Theorem 2.5. For any submodular funtion , there exist funtions �i, 1 � i � k suh that(;[i�i) is a valid utility system. In partiular, the basi utility system is valid.Proof. So we need to show that, for the basi utility system, Condition (2) holds. Now�(S) = kXi=1 �0si(Si�1) [by Lemma 2.3℄= kXi=1 �0si(Si � ;i)� kXi=1 �0si(S � ;i) [by Lemma 2.2℄= kXi=1 ��i(S) [sine (;[i�i) is basi℄ �



93. Main ResultsIn this setion we present our guarantees onerning the soial value of a Nash equilibrium. Inpartiular, for a valid utility system with a non-dereasing, submodular, soial utility funtion wewill show that any Nash equilibrium has an expeted soial value of at least half that of an optimalsoial solution. In fat, following an approah of Conforti and Cornu�ejols [2℄, we obtain a tighterbound (although it provides the same guarantee in the worst ase) with respet to a parameterbased upon the disrete urvature of the non-dereasing, submodular funtion. For a valid utilitysystem with a submodular, soial utility funtion it is not possible to obtain a simple multipliativeguarantee. However, the expeted soial value of the Nash equilibrium is at least half the soialoptimal subjet to an additive term. This additive term is funtion-dependent and often has a leansoial/eonomi interpretation; for example, we will see in the Setion 6 that, for the ompetitivefaility loation problem, it is bounded by the �xed investment osts.Given S 2 S, suppose that player j uses a mixed strategy sj that plays the pure strategiesa1j ; : : : ; atj with probabilities p1; : : : ; pt. Then in 
 [ S, player j uses a mixed strategy that playsthe pure strategies �j [ a1j ; : : : ; �j [ atj with probabilities p1; : : : ; pt, where �j is the pure stragtegyused in 
. We then obtain the following result, onerning any strategy set S 2 S.Lemma 3.1. Let  be a submodular set funtion. Then for any S 2 S�(
) � �(S) + Xi:�i 6=si �0�i(S � ;i)� Xi:si 6=�i �0si(
 [ Si�1)Proof. Observe that, by Lemma 2.2,�(
 [ S) � �(S) + Xi:�i 6=si �0�i(S [ 
i�1)� �(S) + Xi:�i 6=si �0�i(S � ;i)In addition, �(
 [ S) = �(
) + Xi:si 6=�i �0si(
 [ Si�1)Thus, �(
) � �(S) + Xi:�i 6=si �0�i(S � ;i)� Xi:si 6=�i �0si(
 [ Si�1) �Now let us fous spei�ally on the ase of Nash equilibria. We then obtain the followingguarantee onerning the soial value of a Nash equilibrium.



10Theorem 3.2. Let  be a submodular set funtion. If (;[i�i) is a valid utility system then forany Nash equilibrium S 2 S we haveopt � 2 �(S)� Xi:si=�i �0si(S � ;i)� Xi:si 6=�i �0si(
 [ Si�1)Proof. Observe thatXi:�i 6=si �0�i(S � ;i) � Xi:�i 6=si maxti2Si �0ti(S � ;i)� Xi:�i 6=si ��i(S) [sine S is a Nash equilibrium℄� �(S)� Xi:si=�i �0si(S � ;i) [by (1) and (2)℄Note that 
 is a strategy set onsisting of pure strategies. Therefore opt = (
) = �(
). So wehave opt � �(S) + Xi:�i 6=si �0�i(S � ;i)� Xi:si 6=�i �0si(
 [ Si�1) [by Lemma 3.1℄� 2�(S)� Xi:si=�i �0si(S � ;i)� Xi:si 6=�i �0si(
 [ Si�1) �Observe that, for a general submodular funtion , the term Pi:si=�i �0si(S � ;i) and/or thethe term Pi:si 6=�i �0si(
 [ Si�1) may be negative. Thus, the soial value of the Nash equilibriumis at least half the soial optimal subjet to a funtion-dependent additive term. As mentioned,this additive term often has a eonomi/soial meaning. An alternative type of guarantee is alsoavailable. This result has lean impliations in ertain problems, for example, in the traÆ routingproblem of Setion 7.Theorem 3.3. Let  be a submodular set funtion. If (;[i�i) is a valid utility system then forany Nash equilibrium S 2 S we have2�(S) � �(
 [ S) + Xi:si=�i �0�i(S � ;i)Proof. 2�(S) � (
) + Xi:si 6=�i �0si(
 [ Si�1) + Xi:si=�i �0si(S � ;i)= �(
 [ S) + Xi:si=�i �0si(S � ;i)= �(
 [ S) + Xi:si=�i �0�i(S � ;i) �



11Theorem 3.4. Let  be a non-dereasing submodular set funtion. If (;[i�i) is a valid utilitysystem then for any Nash equilibrium S 2 S we haveopt � 2 �(S)Proof. For non-dereasing, submodular funtions the additive term in Theorem 3.2 is positiveand, hene, we obtain a fator 2 guarantee. �We remark that in some ases (depending upon the value of a measure of urvature of the non-dereasing submodular set funtion) Theorem 3.4 an be strengthened slightly; we omit the details.Note also that the soial objetive funtion in the marriage game is non-dereasing (the value ofthe game an not derease with additional proposals) so we obtain a fator 2 guarantee for Nashequilibria in this game. Theorems 3.2 and 3.4 are both tight. We will give an example to show thisin Setion 6 when we disuss the ompetitive k-median problem.4. Pure Strategy Nash EquilibriaReall Theorem 2.1 whih states that �nite, non-ooperative, k-agent games have a Nash equi-librium. Unfortunately this is just an existene result and o�ers no help in atually �nding Nashequilibria. In addition, the result just guarantees the existene of a mixed strategy Nash equilib-rium. It is not the ase that there need be pure strategy Nash equilibria; in fat, generally omplexgames (and many simple games) will not have a pure strategy Nash equilibria. The existene ofpure strategy Nash equilibria is of interest for several reasons. In many pratial situations, e.g.deisions onerning the loation of failities, agents are likely to adopt pure strategies. They areunlikely to hose one ation amongst many on the basis of a oin toss. Furthermore, the strategyspae of pure strategies is muh smaller than the strategy spae of mixed strategies. Thus, the dis-overy of pure strategy Nash equilibria may beome a feasible. Moreover, given this smaller spae,it is more reasonable to imagine that the agents an and will at in suh a way as to generate apure strategy Nash equilibria. In this setion, we will show that any basi utility system has purestrategy Nash equilibria. We will also disuss how suh equilibria may be realised in pratie.Theorem 4.1. Take a valid utility system (;[i�i). If the utility system is basi then there arepure strategy Nash equilibria.Proof. Consider a direted graph D, eah node of whih orresponds to one of the possiblepure strategy sets (i.e. ation sets). There is an ar from node fa1; a2; : : : ; ai; : : : ; akg to nodefa1; a2; : : : ; a0i; : : : ; akg if �i(fa1; a2; : : : ; ai; : : : ; akg) < �i(fa1; a2; : : : ; a0i; : : : ; akg), for some agenti. It follows that a node fa1; a2; : : : ; akg in D orresponds to a pure strategy Nash equilibrium



12if and only if the node has out-degree zero. In partiular, the system has a pure strategy Nashequilibrium if D is ayli. We will show that for basi utility systems this is indeed the ase.Suppose D is not ayli. Then take a direted yle C in D. Suppose the yle ontainsnodes orresponding to the ation sets A0 = fa01; a02; : : : ; a0kg; A1 = fa11; a12; : : : ; a1kg; : : : ; At =fat1; at2; : : : ; atkg where A0 = At. It follows that the ation sets Ar and Ar+1 di�er in only theation of one agent, say agent ir. Thus ari = ar+1i if i 6= ir, and �ir(Ar) < �ir(Ar+1), that is�ir(far1; ar2; : : : ; arkg) < �ir(far+11 = ar1; : : : ; ar+1ir�1 = arir�1 ; ar+1ir ; ar+1ir+1 = arir+1 ; : : : ; ar+1k = arkg)In partiular, it must be the ase thatPt�1r=0 �ir(Ar+1)��ir(Ar) > 0. We will obtain a ontraditionby showing that, in fat, Pt�1r=0 �ir(Ar+1)� �ir(Ar) = 0. Now �ir(Ar+1) = 0ar+1ir (Ar+1 � ;ir ) and�ir(Ar) = 0arir (Ar � ;ir). Thus�ir(Ar+1)� �ir(Ar) = 0ar+1ir (Ar+1 � ;ir)� 0arir (Ar � ;ir)= ((Ar+1)� (Ar+1 � ;ir))� ((Ar)� (Ar � ;ir))= ((Ar+1)� (Ar)) + ((Ar � ;ir)� (Ar+1 � ;ir))= (Ar+1)� (Ar)Here the last equality follows from the observation that ari = ar+1i if i 6= ir. Then, sine A0 = At,we obtain t�1Xr=0 �ir(Ar+1)� �ir(Ar) = tXr=0 (Ar+1)� (Ar)= (At)� (A0)= 0 �Observe that Theorem 4.1 states not only that a pure strategy Nash equilibrium exists, but theproof also shows how one may be obtained. Spei�ally, if we start with any pure strategy set S (forexample, S = f;1; ;2; : : : ;kg) and the agents sequentially alter their ations in order to maximisetheir own pro�ts then we will automatially onverge to a pure strategy Nash equilibrium. Inaddition, this is true even if the agents do not hose an optimal response at eah step, but ratherjust hose any ation that leads to an improvement in their private utility. So suppose that agentsan quikly adapt their ations. Then pure strategy Nash equilibria an be generated just by theagents ating in any greedy fashion.We note that for Theorem 4.1 we do require that the utility system be basi. For example,suppose we have a utility system (;[i�i) in whih (A) =M , for some large onstant M . Hene



13g is a onstant funtion and is, therefore, submodular. Consequently, we have 0ai(A � ;i) = 0.It follows that, if the system is not basi, the only onstraints on the private utility funtions arethat Pi �i(A) �M , 8A 2 A and that �i(A) � 0, 8i. However, this presents no real restrition onthe game, other than that the private payo�s must be non-negative. It is, therefore, easy to giveexamples with no pure strategy Nash equilibria.5. A Broader FrameworkIn this setion we relax our third assumption, that is ��i(S) � �0si(S � ;i). Instead we willonsider the situation in whih the private utility of an agent is omparable to the Vikrey utilitywith respet to that agent (loss in soial utility that would result from the agent withdrawing fromthe game).We say that (;[i�i) is a (P,Q)-utility system if, for some onstants P;Q > 0,��i(S) � 1P �0si(S � ;i)�Q(5)A (P,Q)-utility system is (P,Q)-basi if we have equality in ondition (5): ��i(S) = 1P �0si(S�;i)�Q.The system is valid if Pi ��i(S) � �(S). Then we easily obtain the following results.Theorem 5.1. Let  be a submodular set funtion. If (;[i�i) is a valid (P,Q)-utility system thenfor any Nash equilibrium S 2 S we have opt � (1 + P ) �(S) + (kQ�Pi �0si(S [
� si)). �Theorem 5.2. Let  be a non-dereasing, submodular set funtion. If (;[i�i) is a valid (P,Q)-utility system then for any Nash equilibrium S 2 S we have opt � (P + Æ()) �(S) + kQ. �Theorem 5.3. Take a valid (P,Q)-utility system. If the system is (P,Q)-basi then there are purestrategy Nash equilibria. �6. The Competitive Faility Loation and k-Median ProblemsIn this setion we onsider the faility loation and k-median problems. First we will desribethe problems and then introdue ompetitive versions of the problems. We will then show thatthese ompetitive problems �t into the framework given in the previous setions.6.1. the base problems.Both these faility loation problems have the following form. We are given a bipartite graphG = (W [U;E) with vertex partition W and U . The set W onsists of loations at whih failitiesmay be built. The set U onsists of loations at whih onsumers are found. For larity, we willrefer to verties inW as loations and the verties in U as markets. In the base problems we have asingle agent or monopolisti �rm. The monopolist wishes to onstrut failities at various loationsin W in order to maximise its pro�ts.



14 Eah market u in U has an assoiated value �u. A faility may be built at a loation v for a�xed ost v . A faility at loation v is able to servie a market loated at u for the marginal ost�vu. The marginal pro�t of the �rm is its revenue minus its marginal osts. The pro�t of the �rmis its marginal pro�t minus its �xed osts (i.e. revenue minus total osts). The onsumer surplusis de�ned to be the total value minus total prie. The soial surplus is de�ned to be pro�ts plusonsumer surplus or, equivalently, total value minus total osts.Let us examine these terms in more detail. Consider the revenue of the �rm. This is just thesum of the pries it harges eah market for serviing it. What will this prie be, though, in themonopolisti ase? Observe that onsumers in market u have no hoie but to be servied by themonopolist. Their only onstraint is that they will not pay more that �u; thus, the �rm will hargeu a prie pu = �u. It follows that onsumer surplus is zero in the monopolist ase. Thus a �rmmaximising pro�ts is also, inadvertently, maximising the soial surplus.Observe that the �rm will refuse to servie a market u from a faility v if �vu > �u. Thus a�rm an always obtain a marginal revenue of zero with respet to eah market. Thus our objetivefuntion will not be a�eted if we assume that our bipartite graph is omplete and we have �vu � �ufor eah edge vu (that is setting �vu = �u where �vu > �u will not a�et the outome).For the faility loation problem, the �rm may open whihever failities it desires. So, formally,the faility loation problem ismaxA�W �(A) = maxA�W  Xu maxv2A (�u � �vu) � Xv2A v!In the k-median problem the �rm faes an additional onstraint in that it an open at most kfailities. Formally, the k-median problem ismaxA�W;jAj�k �(A) = maxA�W;jAj�k  Xu maxv2A (�u � �vu) � Xv2A v!The performane of algorithms for these problems has been widely studied, (see, for example,[3℄,[11℄,[2℄,[5℄ and [1℄). Note, it is often assumed that for the k-median problem there are no �xedosts i.e. v = 0;8v.We also remark that, reently, the minimisation versions of both these problems have also re-eived widespread attention (see, for example, [4℄ and [7℄). The minimisation problems orrespondto minimising the total osts of serviing all the markets. The broader eonomi viewpoint impliedby the traditional maximisation problem, though, allows for very lean ompetitive formulations.It is these formulations that we will now introdue.



156.2. the ompetitive problems.The base problems orrespond to the monopolisti situation. The orresponding ompetitive prob-lem is as follows. Instead of a single monopoly, suppose we have k ompeting �rms (or agents). Inthe ompetitive faility loation problem the number of failities eah �rm may open is unrestrited;whereas in the ompetitive k-median problem eah �rm may build at most one faility (in fat, ourresults hold for a more general problem in whih �rm i an open at most mi failities). We allow�rms to build at the same loation, but assume, however, that the osts di�er for eah �rm. Thus�rm i, 1 � i � k, may build a faility at loation v for a �xed ost iv. In addition, the marginalost of �rm i serviing a market u from a faility at loation v is �ivu. Again, the value of marketu is �u.The ompetitive situation di�ers markedly from the monopolisti ase. Consider, for example,the priing strategies of �rms in non-ompetitive and ompetitive markets. We have seen that inthe monopolisti ase there is no onsumer surplus; the monopoly gets all of the soial surplus foritself. In a ompetitive market, though, �rms have to ompete for the market u. Let �1u; �2u; : : : ; �kube the lowest marginal osts with whih the �rms an supply market u, i.e.�iu = min(�iv;u : �rm i has an open faility at v)and let �u = mini �iu. What will happen in suh a situation? Let I�u = fj : j = argmini �iug bethe olletion of most ompetitive �rms with respet to market u. Then, not surprisingly, a �rmi�u 2 I�u will ompete most eÆiently and will thus servie market u. However, the �rm will notbe able to harge �u; instead, it will only be able to harge the marginal ost of the seond mosteÆient �rm. Thus u will pay a prie of pu = mini6=i�u �iu in order to be servied. If the �rm i�utries to harge more than this it will be under-ut by another �rm. Sine the prie pu may be lessthan �u, positive onsumer surpluses may now arise. Hene, the soial surplus is indeed sharedbetween the individual �rms and the onsumers; market u ontributes �u � pu to the onsumersurplus and pu � �u to the marginal pro�ts of the �rm that servies it. (It may be the ase thatmultiple �rms all have the lowest marginal osts with respet to a market u, that is jI�uj � 2. Insuh irumstanes we will assume that ustomers in u randomly alloate their ustom betweenthese �rms. The marginal pro�ts for these �rms will, though, be zero with respet to a market u,sine they will ompete away eah others pro�ts.)Let �i = fu : i 2 I�ug and nu = jI�uj. Then, given a set of ations A = A1 � A2 � � � � � Ak wehave:



16The pro�t of eah �rm i is !i(A) = Xu2�i (pu � �iu)nu �Xv2ai iv= Xu2�i(pu � �iu)�Xv2ai ivThe onsumer surplus is �(A) = Xu (�u � pu)= Xi Xu2�i (�u � pu)nuThe soial surplus is �(A) = Xu (�u � �i�uu )�Xi Xv2ai iv= Xi Xu2�i (�u � �iu)nu �Xi Xv2ai ivSo from a soial viewpoint it would be best for a single authority to diret where eah �rm shouldloate in order to maximise the soial surplus (utility). However, the �rms themselves will hoosestrategies aording to their own private pro�t (utility) funtions. We next show, however, thatthese ompetitive formulations �t into the framework we have developed and, thus, we are able toobtain guarantees onerning the soial performane on Nash equilibria in these faility loationproblems.Before doing so we remark that it is ommon pratie to present the faility loation problem,as we have done, in terms of building failities at spei� loations in order to servie markets.This, though, appears to be at odds with the statement that, from a pratial point of view,our game-theoreti analysis is best suited to problems in whih strategies are easy to hange.Note, though, that we an view the problem in the following manner. Instead of faility loationdeisions we have �xed investment deisions. These �xed investments enable the �rms to servievarious markets at spei� marginal osts. Thus, from this wider perspetive, the problem is thatof making �xed investments in order to allow aess to markets. From this perspetive these failityloation problems are very suitable for a game-theoreti analysis, as it is quite plausible that theseinvestment deisions an be easily adapted.6.3. the soial performane of nash equilibria in the faility loation problems.First we need to show that we an formulate both the ompetitive faility loation problem andthe ompetitive k-median problem appropriately for our purposes.



17Lemma 6.1. The ompetitive faility loation and k-median problems an be formulated in theation set framework.Proof. Consider �rst the ompetitive faility loation problem. Reall that for our base problemswe have a bipartite graph G = (W [ U;E). It follows that eah agent i has a groundset Vi = W .Now, sine a �rm may open failities at any set of loations, we have Ai = fX : X � Vig. Nextonsider the ompetitive k-median problem. Again, eah agent i has a groundset Vi = W . Now,sine eah �rm may open at most one faility we have Ai = ; [ fv : v 2 Vig. �Next we need to show that our soial utility (surplus) funtion is submodular.Lemma 6.2. The soial surplus funtion � is submodular.Proof. So �(A) =Xu (�u � �i�uu )�Xi Xv2ai iv = h(A) � g(A)Now, learly, g(A) + g(B) = g(A \ B) + g(A [ B), for A;B � V = [iVi. So it suÆes to showthat h is submodular i.e. Pu �i�uu is supermodular. In what follows, we add an ation set desriptorto distinguish between the four types of ation set (A;B;A \ B and A [ B). Let i 2 Nu(A [ B).Without loss of generality, assume that �u(A[B) = �ivi;u where vi 2 A. Then �u(A[B) = �u(A).Clearly, however, �u(A \B) � �u(B). It follows that h(A) + h(B) � h(A \B) + h(A [B). �As mentioned, traditionally, the k-median problem is usually presented in the absene of �xedosts i.e. iv = 0, 8i8v. Suh a formulation gives the following property.Corollary 6.3. In the absene of �xed osts, the soial surplus funtion � is non-dereasing.Proof. In the absene of �xed osts we have g(A) = 0, 8A � V . Clearly h is a non-dereasingfuntion, and hene � is also non-dereasing. �Lemma 6.4. The system (�;[i!i) is a valid utility system. In partiular, the utility system isbasi.Proof. Reall that our private utility (pro�t) funtions are!i(A) = Xu2�i(pu � �iu)�Xv2ai ivWe now show that (�;[i!i) is a basi utility system, that is�0ai(A� ;i) = �(A)� �(A� ;i) = Xu2�i(pu � �iu)�Xv2ai ivThe hange in the soial utility is the inrease in the total marginal pro�ts minus the inrease inthe total �xed ost, when agent i hanges its ation from the null ation to ation ai. The inrease



18in total marginal pro�ts, though, is just the sum over all markets of the extra eÆieny gained byi having ation ai. This, in turn, is the di�erene between the marginal osts of i, in those marketswhere it is the most eÆient �rm, and the marginal osts of the next most eÆient �rm. This isjust Pu2�i(pu � �iu). Clearly the total hange in the �xed osts is Pv2ai iv, as required. Hene,the system (�;[i!i) is a basi utility system. By Theorem 2.5, the utility system is also valid. �We are now in the position to apply Theorems 3.2 and 3.4. If we denote by FC(S) and MP (S)the expeted �xed osts and expeted marginal pro�ts, respetively, assoiated with a solutionS 2 S, thenTheorem 6.5. For the ompetitive k-median and faility loations problems, any Nash equilibriumS 2 S satis�es opt � 2 ��(S) + FC(S) = ��(S) +MP(S) + ��(S)Proof. From Theorem 3.2 we have ��(
) � 2��(S) �Pi:si=�i ��0si(S � ;i)�Pi:si 6=�i ��0si(
 [ Si�1).On the addition of an extra �rm to the game, the soial surplus an deteriorate by at most the�xed osts inurred by the new �rm. Thus the additive term is upper bounded by FC(S). Theresult then follows from the observation that MP (S)� FC(S) + ��(S) = ��(S). �We will see that Theorem 6.5 is tight. Let us �rst omment briey upon its impliations. Thetheorem tell us that our guarantee is good when either the �xed osts or the marginal pro�ts plusonsumer surplus indued by the solution S are small ompared to opt. Conversely, if the �xedosts and marginal pro�ts plus onsumer surplus are both large then the overall soial performanemay be very poor. Suh a situation may arise in industries in whih there are high start-up ostsombined with markets that ontain a olletion of highly valuable ustomers. As a result, �rmsmay over-supply the valuable ustomers (at the expense of less valuable ustomers) leading to awasteful dupliation of servies. Suh examples are ommon in the high-teh industry where theourrene of high initial osts often allows a �rm aess to lurative markets. A less obviousexample is the health industry. Here there are very high �xed and initial osts in the atualprovision of health are, and also in the assoiated revenue olletion system (e.g. insuraneompanies, HMOs, �nane departments in hospitals, et). In addition, the market also ontainsmany highly valuable ustomers from both the private setor (ompanies with large workfores)and the publi setor (government supported Mediare patients). In ontrast, there is a large lassof less valuable ustomers. The resulting soial ineÆienies are illustrated by the large number ofuninsured itizens, as well as the dupliation of servies.In the absene of �xed osts, we obtain, from Theorem 3.4



19Theorem 6.6. Consider the ompetitive k-median problem in the absene of �xed osts. Then anyNash equilibrium S 2 S satis�esopt � (1 + Æ(�)) ��(S) � 2 ��(S) �6.4. pure strategy nash equilibria and faility loation.Observe that both faility loation problems have the desirable property that they possess purestrategy Nash equilibria. This follows from Theorem 4.1 and Lemma 6.4.Theorem 6.7. For the ompetitive faility loation and k-median problems there exist pure strategyNash equilibria. �6.5. tight examples.We previously laimed that Theorems 3.2 and 3.4 were both tight. We will now prove this usingthe following example onerning the ompetitive 2-median problem shown in Figure 1. Let therebe two agents with two possible loations, v1 and v2, at whih to loate; we use the supersripts1 and 2 to distinguish between the respetive opies of vi, i 2 f1; 2g. In addition, there are fourmarkets u1; u2; u3 and u4. The value of eah market is one. All marginal osts are 1, exept forthe six (represented by labelled edges) shown in the �gure. In addition, there are no �xed osts.Thus the soial surplus funtion is non-dereasing and submodular.
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Figure 1. A tight example.The optimal strategy set is 
 = fv12 ; v21g, i.e. �rm 1 should use the pure strategy (ation) ofloating at v2, whilst �rm 2 should use the pure strategy of loating at v1. Suh a strategy pairingwill give a soial surplus of 4.We remark that the strategy set 
 is also a Nash equilibrium. However, there are other Nashequilibria. Consider though the pure strategy set S = fv11 ; v22g. It is easy to verify that this is alsoNash equilibrium. Eah �rm has a private pro�t of 1 under S, and if they hange their strategy(whilst the other stiks with its strategy) they still reeive a pro�t of 1. The soial surplus of thisstrategy set is 2. Thus, the soial value of this Nash equilibrium is a fator 2 o� that of the optimalsolution.



20 Next we show that Theorem 3.2 is also tight. To do this we, again, use an example from the2-median problem, see Figure 2. There are still two possible loations, v1 and v2. However, wehave the following �xed osts. Firm 1 an loate at v11 for a ost 1, but an loate at v12 for nothing;�rm 2 an loate at v22 for a ost 1, but an loate at v21 for nothing. These �xed osts are shownboxed in Figure 2. We have two markets u1 and u2, both of whih have a value 1. All marginalost are also 1 exept for the four shown, whih are zero.
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Figure 2. A tight example.The optimal strategy set is 
 = fv12 ; v21g, i.e. �rm 1 should use the pure strategy (ation) ofloating at v2, whilst �rm 2 should use the pure strategy of loating at v1. Suh a strategy pairingwill give a soial surplus of 2 (and private pro�ts of one eah).Again, the strategy set 
 is also a Nash equilibrium. However is is easy to hek that the purestrategy set S = fv11 ; v22g is also Nash equilibrium. This Nash equilibrium has a soial surplus of0. The �xed osts of the solution, though, are 2. Similarly, the marginal pro�ts of the solution arealso 2. So Theorem 6.5 and, hene, Theorem 3.2 are tight.7. The Selfish Traffi Routing ProblemIn this setion we onsider the problem of routing traÆ in a network. Congestion in the networkauses delays and is ostly for individual agents and soiety as a whole. It would help, therefore,if the traÆ ould be direted by a single authority. However, it is individual agents who maketheir own routing deisions. Thus the problem appears suitable for analysis via our tehniques. Inpartiular, here we sketh how a maximisation version of the sel�sh routing problem of Roughgardenand Tardos [16℄ �ts into our framework. They onsidered the following network routing problem.There is a direted network G = (V;A) and k soure-destination vertex pairs, fs1; t1g; : : : ; fsk; tkg(note that we do not require k to be large). The olletion of paths from si to ti is denoted by Piwith P = [iPi. A ow is a funtion f : P ! R+ ; for a �xed ow f , we have fa = PP2P:a2P fP .Now f = [ifi where fi is a ow from si to ti. We will abuse our notation slightly and also denoteby fi the value of the ow fi; given the ontext this should not ause any onfusion.



21Eah ar a 2 A has a load-dependent lateny funtion, denoted by la(f). The lateny of a pathP with respet to a ow f is de�ned as the sum of the latenies of the edges in the path, denotedby lP (f) = Pa2A la(fa). The lateny with respet to an agent i is li(f) =PPi2Pi lPi(f)fPi . Thelateny l(f) of a ow f is the total lateny inurred by f i.e.l(f) = Xa2A la(fa) fa = XP2P lP (f) fP = Xi li(f)In [16℄ the soial objetive is to minimise the total lateny, given that a ow of value ri must berouted from si to ti. The private objetive of an agent i is to minimise its own lateny i.e. li(f).We onsider a maximisation version of this problem. Eah agent may route a ow of weight atmost ri from si to ti. Assoiated with eah soure-destination fsi; tig pairing is a value �i thatsigni�es the revenue (utility) from routing one unit of ow from si to ti. However, we still assoiatewith a routing the lateny-based ost. Thus, a ow f that suessfully routes fi units of ow fromsi to ti will indue a pro�t to agent i of �i(f) = �i fi � li(f). Hene, the soial objetive is tomaximise the funtion �(f) = Xi �i(f) = Xi �i fi � li(f)and agent i seeks to maximise the private objetive funtion �i. We will now show that this problemalso �ts into our framework. To do this we will disretise the problem by assuming that ow maybe sent only in whole unit inrements; for this problem it is not diÆult to generalise the resultsto ontinuous spae.Lemma 7.1. The routing problem an be formulated in the ation set framework.Proof. The ation spae Ai of agent i onsists of any ow fi of value at most ri from si to ti. Wenow show how this �ts into our framework. For eah agent i we have a olletion of paths Pi fromsi to ti. The agent assigns a weight to eah path pi 2 Pi. Let the groundset Vi onsist of ri opiesof eah path pi i.e. p1i ; : : : ; prii . Here the hoie of ptr orrespond to the routing of t units of ow onpath pi.We may allow an agent to selet multiple opies of a path. In suh a irumstane only theation orresponding to the opy with the greatest amount of ow is implemented. (Alternatively,we may restrit the ation spae of agent i to allow for the hoie of at most one opy of eah pathpi). Note that if no opy of pi is hosen then no ow is sent along that path. �Now onsider that lateny funtions la(f). We will assume that these funtions are non-negative,non-dereasing and onvex. Note that these assumptions orrespond to some natural properties oftraÆ systems. The non-dereasing property implies that the osts inurred inrease as the volumeof the traÆ inreases; the onvexity property implies that the additional osts inurred (by adding



22an additional unit of traÆ) inrease as the volume of the traÆ inreases. Observe that onvexityimplies that the lateny funtions are supermodular when restrited to our disretised spae. Itfollows easily thatLemma 7.2. For the sel�sh routing problem, the soial objetive funtion � is submodular. �Lemma 7.3. For the sel�sh routing problem, the system (�; �i) is a valid utility system.Proof. We will show, for eah agent i, that �i(f) � �0fi(f � ;i). Now�0fi(f � ;i) = �(f)� �(f � fi)= Xj (fj �j � lj(f))� Xj:j 6=i (fj �j � lj(f � fi))= fi �i � li(f) + Xj:j 6=i (lj(f � fi)� lj(f))� fi �i � li(f)= �i(f)Thus (�; �i) is a utility system. We have already seen that �(f) = Pi �i(f) and, thus, the utilitysystem is valid. �So we then obtain the following guarantees.Theorem 7.4. For the sel�sh routing problem, any Nash equilibrium S 2 S satis�esopt � 2 ��(S)� Xi:si=�i ��0si(S � ;i)� Xi:si 6=�i ��0si(
 [ Si�1) �Thus we obtain a fator 2 guarantee if, for example, ��0si(S � ;i); ��0si(
 [ Si�1) � 0, 8i. Analternative guarantee follows from Theorem 3.3. This ompares the value of a Nash equilibrium Sagainst the soial value of a partiular solution, S +
, that routes twie as muh traÆ.Theorem 7.5. For any Nash equilibrium S 2 S, we have2��(S) � ��(
 [ S) + Xi:si=�i ��0�i(S � ;i) � ��(S +
) �A result of this avour also follows from the work of [16℄; the soial value of a Nash equilibriumis at least the soial value of the optimal solution that routes twie as muh traÆ when the allthe rewards �i are halved.If � is non-dereasing (hene, it is always in the interest of agent i to route all ri units of ow),then from Theorem 3.4 we obtainTheorem 7.6. If � is non-dereasing then, for the sel�sh routing problem, any Nash equilibriumS 2 S satis�es opt � 2 ��(S) �



238. Polynomial Time ConsiderationsOur disussion regarding pure strategy Nash equilibria touhed upon the importane of speedonsiderations in the strategy determination. We disuss this in more detail in this setion. Let usmeasure the size of the problem input in terms of the size of the groundsets Vi, 1 � i � k. It wouldbe useful if we obtained a Nash equilibria in polynomial time in the problem size. Two fators areimportant here:(i) Bounding the number of times an agent hanges strategy before a Nash equilibria is obtained.(ii) Bounding the time an agent takes to deide upon a strategy.How to bound the number of iterations required before onvergene to a Nash equilibria is animportant open question. In the presene of pure Nash equilibria, as we have seen, the overallsize of the state spae gives one upper bound. We note, however, that good guarantees may beobtained within a onstant number of iterations (we only need eah agent to hange strategies aonstant number of times). That is, solutions that arise long before we reah a Nash equilibriaalso provide good guarantees. Thus, although these solutions may not be stable, they do give goodperformane. We omit the details here.Regarding the seond fator, if the size of the ation spae Ai of agent i is polynomial in jVij, thenthe agent an easily �nd its best strategy in polynomial time. However, the ation spae Ai maybe as large as 2jVij. Thus in some irumstanes it may not be possible to �nd an optimal strategyquikly. It may, though, be possible to obtain approximately optimal strategies in polynomialtime. We will show that the use of approximation algorithms by the agents in their strategydetermination does lead to guarantees on the soial performane of Nash equilibria. We have onediÆulty to overome though. The use of approximately optimal strategies is not onsistent withthe onept of a Nash equilibria. That is, approximately optimal strategies are not the optimalbest response strategies required by Nash equilibria. Thus, we are really using approximate Nashequilibria. They are equilibria in the sense that no agent an �nd (by whatever methods they areusing) a better alternative strategy in polynomial time.So suppose that eah agent has aess to an approximation algorithm at eah stage. Let thesealgorithms have an approximation guarantee of �, say. Then, Theorem 3.2, Theorem 3.3 andTheorem 3.4 apply (with slightly weaker guarantees) to approximate Nash equilibria. For example,if our soial utility funtion is non-dereasing, we have the following theorem.Theorem 8.1. Let  be a non-dereasing, submodular set funtion, and (;[i�i) be a valid util-ity system. If the agents an generate �-approximate solutions, then for any approximate Nash



24equilibrium S 2 S we haveopt � (� + Æ()) �(S) � (� + 1) �(S) �For an example onsider the ase of matroids. A matroid T is a family of subsets of V suh that(i) ; 2 T .(ii) If Y 2 T and X � Y , then X 2 T .(iii) If X;Y 2 T and jXj < jY j, then 9y 2 Y �X suh that X [ fyg 2 T .Fisher, Nemhauser and Wolsey [6℄ gave a simple 2-approximation algorithm for the problem ofmaximising a non-dereasing, submodular funtion over a matroid. Thus, if eah ation set Ai isa matroid then we haveCorollary 8.2. Let  be a non-dereasing, submodular set funtion, and (;[i�i) be a valid utilitysystem. If eah Ai is a matroid, then we obtain an approximate Nash equilibrium S 2 S withopt � (2 + Æ()) �(S) � 3 �(S) �9. Multiple-Item AutionsConsider the following lass of aution: there is one seller (autioneer) with a set J of n di�erentitems, and a set of k potential buyers (agents) who have a private valuation for eah subset ofitems. One form of aution within this lass is ombinatorial autions. These are autions in whihagents may make bids on subsets of items (ombinatorial bids), rather than just bids on individualitems. There is a very large literature on ombinatorial autions; see de Vries and Vohra [17℄ for asurvey. The following are fators whih the seller may wish to onsider when designing an autionstruture in whih to sell the items.(1) Simpliity: the rules of the aution should be easily understood.(2) Fairness: agents need to believe that the rules of the aution are fair.(3) Speed: the aution should not take too long to omplete.(4) EÆieny: the seller may wish to alloate the items to maximise the soial value.(5) Revenue: the seller wants to maximise the total revenue it reeives from the aution.Note that goals 4) and 5) may not be ompatible. Hene, in this setion we will fous on goals1) to 4). We will also be onerned with the ase in whih the private valuation funtion vi, foreah buyer i, is submodular i.e. the marginal valuations are non-inreasing. Reently, Lehmann,Lehmann and Nisan [9℄ onsidered the alloation problem indued by this framework. There, asingle authority wishes to �nd an alloation of optimal eÆieny (soial value). They present apolynomial time algorithm that produes an alloation with soial value at least one half that ofthe optimal solution, provided that the agents valuations are submodular. Their approah is as



25follows. The authority knows (or has aess to) eah agents valuation funtion. The authoritythen greedily assigns one item at a time, say in the order 1; 2; : : : ; n. Let V (j) the be value of thealloation after the jth item is assign. Item j + 1 is then assigned to the agent so as to maximiseV (j + 1) � V (j). That is, item j + 1 is assigned to the agent with the highest marginal valuationfor the item, given the alloation of items 1; 2; : : : ; j. It an be shown that the alloation produedby suh a proess is, indeed, at least half optimal.Again, our interest is in the ompetitive situation in whih the seller and buyers all seek tomaximise their own utility. We present a simple lass of multi-round aution that is guaranteed toprodue an alloation within a fator 2 of optimal, despite the valuation funtions being privateknowledge and with the sellers and buyers ating in a sel�sh manner. Moreover, the alloationproedure of [9℄ an easily be implemented within this lass of aution.9.1. the rules of the aution.We now give the rules of the aution. In the �rst round, the seller sets a prie pj for eah itemj in the aution. Eah buyer then states whih items it is willing to purhase at these pries.If more than one agent aepts the prie pj then in the next round the autioneer will raise theprie (by any amount it hooses) of item j. If no agent aepts the prie pi then in the nextround the autioneer will lower the prie (by any amount it hooses) of item j. After eah roundthe autioneer announes provisional winners for eah item. The provisional winner of an itemwill be randomly seleted from amongst those agents that have the highest bid for the item. Theannounement of provisional winners tells the agents who will win the items if the aution wereto terminate at that time. This information allows the agents to make bids with the knowledgeof whether their bids from previous rounds have been \aepted". Provisionally winning bids areonsidered binding and annot be withdrawn. A provisionally winning bid for an item only easesto be of interest after a higher bid for that item has been made. However, in future rounds, agentsmay ignore any bids they made that were not provisionally winning. The aution terminates whenthere is exatly one bidder for eah every item, and no agent wishes to hange its bid (that is, bidfor a set of items that is a superset of its urrent set of winning items).[We remark that it is important that provisionally winning bids annot be withdrawn; if bidsan be withdrawn then the results (that will follow) regarding polynomial time onvergene arelost. It should be noted, however, if this aution did allow the withdrawal of bids then we wouldatually onverge to an optimal alloation. To see this, suppose that fT1; T2; : : : ; Tkg is an optimalalloation but fS1; S2; : : : ; Skg is the solution produed by the aution, with termination item priesfp1; p2; : : : ; png. Now for eah agent, vi(Si)�Pj2Si pj � vi(Ti)�Pj2Ti pj otherwise agent i would



26have hanged its bid to Ti. Summing over all agents we haveXi vi(Si)�Xi Xj2Si pj � Xi vi(Ti)�Xi Xj2Ti pjXi vi(Si)�Xj2J pj � Xi vi(Ti)�Xj2J pjXi vi(Si) � Xi vi(Ti)Thus, fS1; S2; : : : ; Skg is an optimal alloation.℄9.2. performane guarantees.It is lear that this aution does satis�es the goal of simpliity. It also satis�es the goal of fairnesssine the highest bidder for an item wins it (with possibly a random hoie in the ase of a tie). Inontrast, note that in ombinatorially autions it is not always lear to the agents that items arealloated in a \fair" manner. Next, we onsider the issue of eÆieny. In order to do this we needto examine the ations of agents in suh an aution. Faed with a set of pries how do the agentsreat. To begin with we will assume that the agents at in a myopially rational manner, see [13℄,that is, they make a best response to the urrent pries and alloation. Hene an agent \bids" onall the items in a subset that maximise its utility given the stated pries (this inludes all it bidsthat are urrently provisionally winning bids). Later we will show that our performane guaranteesstill hold even when the agents are allowed to make loally myopially optimal bids (to be de�ned).This generalisation is useful as it is easy for the agents to �nd loally myopially optimal bids,whereas obtaining the myopially optimal bid may take exponential time.Note that the valuation funtions of an agent are submodular. Thus, sine we have a �xedprie per item, the private utility funtions (i.e. private valuation minus aution prie) are alsosubmodular. Now, at a given stage in the aution, suppose that agent i has provisionally winningbids for a set Si of the items at the urrent pries. Then, sine bids annot be withdrawn, in thenext stage the agents must optimise with respet to the groundset J �Si. That is, the agent mustlook to bid on other items given that it has already bid for Si. For example, when onsidering aset X � J � Si, the agent must evaluate the set by onsidering vi(X [ Si) not vi(X), sine theagent is already ontrated to buy Si (the agent stops being ontated to buy an item j in Si onlyif the prie pj rises in a later phase and another agent aepts the new prie but agent i does not).Let us onsider the utility to agent i if it is alloated the set Si in the aution. The agentpays a prie p(Si) = Pj2Si pj for the set of items and, thus, reeives a private utility of ui(Si) =vi(Si) � p(Si). So the goal of the eah agent is to maximise its private utility. The soial utilitydenoted by �(S) is just the sum of the values of the sets in the alloation produed by the bidding



27strategies S = fS1; : : : ; Skg. Observe that �(S) also equals the sum of the private utilities plus therevenue from the aution (that is, the utility of the autioneer).Lemma 9.1. Take a Nash equilibrium S, then for any agent i, we haveui(S) = �(S)� �(S � ;i)� p(Si)Proof. Note that a Nash equilibrium orresponds to a ompleted aution. Thus, eah agent i issold the subset Si of items it bid for. Reall that we may view only the provisional winning bidsas being binding and hene we may assume that no other agent has a binding bid on any of theseitems. Therefore �(S)� �(S �;i) = vi(Si). To see this, note that if agent i were able to withdrawits bids then the soial value of the aution would fall by vi(Si) sine no other bidders has a bindingfor those items at the urrent pries. Now ui(S) = vi(Si)� p(Si) and the lemma follows. �In order to apply our results we must ensure that our aution an be implemented in ourframework. This, though, is easy. Assume that the autioneer has set the pries, then an ation ofagent i is just a subset of the groundset i.e. whih item pries the agent aepts. For the purposesof analysis we may \pretend" that there are multiple opies of eah item, and that eah agentreeives a opy of an item if the agent aepts an item prie. This allows us to assign a soial valueto outomes like �(
 [ S) whih were used in the previous proofs (the soial value is just the sumof the values of the set of items assigned to eah agent). Note that for any real aution solutionsthough, for example S and 
, there must be exatly one winning bid for eah item.So the aution does �t into our framework, but it is not immediately obvious that we an nowapply Theorem 3.2. This is beause we have ui(S) = ��0si(S) � p(Si) rather than ui(S) = ��0si(S).Fortunately, however, we also have �(S) = Pi ui(S) +Pi p(Si) rather than �(S) = Pi ui(S). Itis easy to hek that these di�erenes anel eah other out in the proof, and so it follows thatTheorem 3.2 does indeed hold in this aution problem.We will make the standard assumption that there are zero disposable osts. Thus, the privatevaluation funtions vi are non-dereasing. Sine we evaluate (possibly non-feasible) solutions fromthe \multiple-opies" viewpoint that all bids are aepted, it follows that � is a non-dereasingfuntion. Hene by Theorem 3.4 we obtainTheorem 9.2. The soial value of any aution solution S satis�esopt � (1 + Æ(�)) ��(S) � 2 ��(S) �It is also easy to hek that Theorem 5.3 still applies given Lemma 9.1. Thus we haveTheorem 9.3. The aution has pure strategy Nash equilibria. �



28 So given that the agents bid in a myopially rational manner, the aution produes an alloationwith eÆieny within a fator 2 of the most eÆient alloation.
9.3. fast implementations.As mentioned, in the ase of autions fast implementation is very important. In pratie, thismeans take the time required for the aution should be polynomial in the number of items. Herewe will outline some of the issues involved. Firstly, how long does eah round take? Until nowwe have assumed that eah agent bids in a myopially rational manner and, thus, maximises asubmodular objetive funtion at eah round. This may be too time onsuming for our purposes.However, the performane guarantees hold even when the agents bid in a simple loally optimal(greedy) manner at eah stage. Agent i when faed with a set of pries fp1; p2; : : : ; png greedilyhooses a subset Si as follows. Initially Si = ;. Add to Si an item j suh that ui(Si[fjg) > ui(Si),that is vi(Si [ fjg) > vi(Si) + pj, then repeat. If no suh item exists then stop.We now disuss why suh a strategy is loally myopially optimal. First note that suh abidding strategy restrits agent i to bid for a set of items Si with the property that ui(Ti) � 0, forall Ti � Si. We all this the risk-free property; we say that a bidding strategy that is not risk-freeis risky. To see why the agents (without any information regarding the private valuations of theother bidders) will wish to adopt a risk-free bidding strategy, suppose instead that an agent adoptsa risky strategy. It is then easy to provide the other agents with private valuations that ensurethat the agent reeives a set X that indues a negative utility. Thus, without any informationregarding the private valuations of the other bidders, the agents will wish to restrit their attentionto risk-free bidding strategies. In addition, the bidding strategy given above, also ensures that anagent bids for a maximal risk-free sets. These maximal sets are loally myopially optimal; to seethis, suppose we have a risk-free set Si that is not maximal, then there is an item j suh thatui(Ti [ fjg) > ui(Ti), for all Ti � Si.It an easily be shown that if the agents make maximal risk-free bids then a fator two approxima-tion guarantee is also obtained. We sketh a proof. Suh bids ensures that eah agent has positiveutility; thus, �(S) � rev, where rev is the revenue the autioneer reeives from the aution. More-over, it an also easily be shown that �(S) � opt�rev. To see this, suppose that fT1; T2; : : : ; Tkgis an optimal alloation but fS1; S2; : : : ; Skg is the solution produed by the aution, with termina-tion item pries fp1; p2; : : : ; png. Now for eah agent, vi(Si)�Pj2Si pj � vi(Si [ Ti)�Pj2Si[Ti pjotherwise there is an item j 2 Ti � Si suh that ui(Si [ fjg) > ui(Si) and agent i would not have



29bid for Si. Summing over all agents we haveXi vi(Si)�Xi Xj2Si pj � Xi vi(Si [ Ti)�Xi Xj2Si[Ti pjXi vi(Si) � Xi vi(Si [ Ti)�Xi Xj2Ti pjXi vi(Si) � Xi vi(Ti)�Xi Xj2Ti pj�(S) � opt� revThe result then follows.We an polynomially bound, using standard bisetion method tehniques, the number of roundsrequired to omplete the aution easily. For example, we now show how the alloation proedureof [9℄ an be implemented by suh an aution. The autioneer initially announes a set of priesfp1; p2; : : : ; png = fV; V; : : : ; V g (where V is an upper bound on the value any bidder attahes toany single item) and then hanges the pries of eah item, in turn, until there is exatly one bidderfor the item. Note that, when an item is onsidered the items that still have prie V will have nobidders. It follows that the agent that has the greatest marginal valuation for that item (given theurrent alloation indued by the items that have already been onsidered) will be the agent thatmakes the highest bid on the item. Note that, by submodularity, no agent will want to bid for anitem in a later round after it has been onsidered (even though suh bids are allowed). Thus weobtain assignment proedure of [9℄, and the implementation time is polynomial in the number ofitems. To see this observe that, by bisetion tehniques, the number of rounds required to ompletethe aution is at most O(n log V ).Remark An obvious question here is whether better performane guarantees an be obtained inautions whih allow ombinatorial bidding.Aknowledgments. I am espeially grateful to Tim Roughgarden and Niolas Stier for ommentsand suggestions that greatly improved this paper. I am also very grateful to Vahab Mirrokni,Andreas Shulz, Brue Shepherd and Santosh Vempala for interesting disussions on this work.Finally, I would like to thank Eva Tardos for suggesting autions as a possible appliation of themethod. Referenes[1℄ A. Ageev and M. Sviridenko, \An 0.828-approximation algorithm for the unapaitated loation problems",Disrete Applied Mathematis, 93, pp289-96, 1999.
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