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ABSTRACT. We consider the following class of problems. The value of an outcome to a
society is measured via a submodular utility function (submodularity has a natural economic
interpretation: decreasing marginal utility). Decisions, however are controlled by non-
cooperative agents who seek to maximise their own private utility. We present, under some
basic assumptions, guarantees on the social performance of Nash equilibria. For submodular
utility functions, any Nash equilibrium gives an expected social utility within a factor 2 of
optimal, subject to a function-dependent additive term. For non-decreasing, submodular
utility functions, any Nash equilibrium gives an expected social utility within a factor 2
of optimal. A condition under which all sets of social and private utility functions induce
pure strategy Nash equilibria is presented. The case in which agents, themselves, make use
of approximation algorithms in decision making is discussed and performance guarantees
given. Finally we present some specific problems that fall into our framework. These
include the competitive versions of the facility location problem and k-median problem, a
maximisation version of the traffic routing problem of Roughgarden and Tardos [16], and

multiple-item auctions.
1. INTRODUCTION

Computer scientists have long studied the costs incurred by the lack of complete information or
the lack of unbounded computational resources. For example, the fields of on-line algorithms and
approximation algorithms were developed in response to these two problems. However, these fields
presume a single authority (or agent) whose goal is to optimise some objective function. What
happens when there is a clear social objective function but no single authority? In particular,
what if there are many agents whose goals are to optimise their own private objective functions,
rather than to collectively optimise the social objective function? Motivated by examples of this
type concerning the internet, Koutsoupias and Papadimitriou [8] proposed applying game-theoretic
techniques in order to analyse the costs resulting from a lack of coordination. Specifically, they
proposed the study of non-cooperative games via the use of Nash equilibria (where the agents’

strategies are mutual best responses to each other). Given the non-cooperative nature of these
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games and the fact that such games may have many Nash equilibria, they proposed studying such
equilibria from a worst case perspective. That is, how bad can a Nash equilibrium be, with respect
to the social objective, in comparison to the best cooperative solution (or solution produced in
presence of a single authority).

The study of Nash equilibria is especially fruitful for problems in which the actions of the agents
may be changed quickly and at little cost. This is because it is in such circumstances that Nash
equilibria are most likely to arise in practice. Such problems abound in the high-tech economy.
From a theoretical viewpoint, notable amongst them is the traffic routing problem which has been
studied with great success by Roughgarden and Tardos [16].

In this paper we consider a large class of problems with the following structure. Decisions are
made by a set of non-cooperative agents whose action spaces are subsets of an underlying groundset.
The actions of the agents induce some social utility, measured by a set function. The goal of the
agents, though, is not to maximise the overall social utility; rather, they seek to maximise their

own private utility functions. The only assumptions we make are

e The social utility and private utility functions are measured in the same standard unit.

This standard utility unit may be money, gold, cake etc. Clearly, such a condition
is necessary. For example, no guarantees can be obtained if the value to society is
measured in terms of the number of oranges but the agents seek to maximise the

number of apples.
¢ The social utility function is submodular.

Submodularity corresponds to a property that arises frequently in economics: de-
creasing marginal utility. Here, the additional value accruing from an action de-
creases as the overall level of activity in the society rises. For example, the additional
benefit to a town of an extra taxi company is greater if there are currently no taxi

firms in the town rather than if there are already one hundred taxi firms.

e The private utility of an agent is at least the change in social utility that would occur if the agent

declined to participate in the game.

We remark that, equivalently, we require that the private utility of an agent is
at least the Vickrey utility with respect to that agent. This concept is often con-
sidered in the study of auction mechanisms (see Vickrey-Clarke-Groves payment
mechanisms). Moreover, this condition arises in other practical situations as we
will see in our examples. (To illustrate why this condition is often satisfied, suppose

that the members of the society are somehow able to negotiate how the total social



utility is divided up amongst the members. Now, given an outcome, consider the
change in the value of the game that occurs if agent ¢ then declines to participate
in the game. Observe that the other agents will be willing to pay agent ¢ up to this
amount just to participate in the game. Thus, this will be the minimum payoff that

agent 1 will accept.)

Problems for which these three assumptions hold are called utility systems. For a utility system,
it is possible to provide some strong guarantees concerning the social utility provided by any
Nash equilibrium (we will also show that good guarantees arise if we relax the third assumption).
Specifically, for non-decreasing, submodular objective functions, any Nash equilibrium will give a
solution with expected social utility within a factor 2 of the optimal solution, Hence, any Nash
equilibrium is always at least half as good as the optimal social solution. For submodular functions
in general, the expected social utility of a Nash equilibrium is within a factor 2 of optimal, subject to
a function-based additive term (which, as we will see in our examples, often has a clear economic
interpretation). An alternative form of guarantee that has interesting interpretations in certain
problems (for example, the traffic routing problem) is also given. These results are shown to be
tight.

The other main result in the paper is to show that, given a simple condition, utility systems
have the desirable property that they possess pure strategy Nash equilibria. We also discuss and
provide performance guarantees for instances in which the agents apply approximation algorithms
in determining their strategies.

An outline of the paper is as follows. In Section 2 we introduce the necessary background on game
theory and submodular functions, and give a toy example to illustrate our ideas. In Section 3 we
prove our results concerning the social performance of Nash equilibria. In Section 4 we discuss pure
strategy Nash equilibria and mixed strategy Nash equilibria. We then present the simple condition
under which a utility system will have pure strategy Nash equilibria. In Section 5 we relax our
third assumption and present results for the situation in which the private utility of an agent is
comparable to the Vickrey utility with respect to that agent (loss in social utility that would result
from the agent dropping out of the game). Since our three assumptions concerning the utility
system are not very restrictive, the results are widely applicable. We illustrate this by presenting
a range of problems that fit into our framework. Our first examples are competitive versions of
the facility location problem and the k-median problem, which we introduce in Section 6. One
implication of the results in this section is that competitive markets are less efficient in industries
with high fixed costs and high marginal profits. Practical examples of such social inefficiencies

include the duplication of work, as well as the over-supply of lucrative markets (and under-supply
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of less valuable markets) by firms. Our next example, given in Section 7, concerns traffic routing
in networks. In Section 8, we consider the issues of polynomial time implementations. These
issues include the time it takes to obtain Nash equilibria and also the consequences of agents using
approximation algorithms for strategy determination. One example in which speed considerations
are of great importance is auctions. Thus, our last example, given in Section 9, is that of multiple-
item auctions. We present a simple polynomial time auction that fits into our overall framework.
It follows that the allocation of items given by the auction (in the presence of competing agents
who bid in a greedy manner) is at least half as efficient as the optimal allocation given by a single
authority. This matches the performance guarantee Lehmann, Lehmann and Nisan [9] gave for the

problem where a single authority chooses an allocation.

2. BACKGROUND AND A SIMPLE EXAMPLE

In this section we present the required concepts and terminology. We will illustrate these concepts
using the following simple stable marriage game. We have a group of men and a group of women
which act as a vertex set in a bipartite graph. There is an edge between man ¢ and women 5 whose
value represents the “quality” of resultant relationship should ¢ and j decide to marry. We remark
that the bipartite graph need not be complete. We may assume that we have returned to the 1950s
and societal norms only allow men to propose to women. The objective of each man and woman is
to maximise the value of any marriage. Thus, on receiving a set of propositions, each women will

accept the proposal of highest value.

2.1. SOME GAME THEORY.

Suppose we have k agents and disjoint groundsets Vi, Vo, ..., V;. Each element in V; represents an
act that agent i may make, 1 < i < k; let a; C V; be an action (set of acts) available to agent 1.
We may wish to restrict the set of actions an agent may make; thus we may not allow every subset
of V; to be a feasible action. Towards this end, we let A4; = {a; C V; : a; is a feasible action} =
{ail, a?, ...,a;"} be the set of all actions available to agent . We call A; the action space for agent 1.
In our marriage game the k agents are the men, and the groundset V; is the set of edges §(7) incident
to man 7 in the graph. An action for man i is either just a choice of edge (i, j) € d(i) (corresponding
to a proposal to woman j) or the null-choice (making no proposal). Thus A; = {0} U {(i,5) € d(i).
Observe that we could time-warp back further and allow men to propose to and marry multiple
women (although each woman may still only accept one proposal); in such a circumstance the
action set A; would consist of all subsets of §(i). In our game multiple proposals are not allowed,

but this observation is important because it allows us to evaluate non-feasible outcomes, and this

will be important for the class of valuation functions that we consider.
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A pure strategy is one in which the agent decides to carry out a specific action. [For example,
in the marriage game a pure strategy for man 4 corresponds to making a proposal to woman j.]
A mized strategy is one in which the agent decides upon an action according to some probability
distribution. The strategy space S; of agent i is the set of mixed strategies. Thus we may represent

S; as
S; = {s; e R" :ZSZ = I,Sg > 0}
j=1
1

Thus s; € S; corresponds to the mixed strategy in which action a; is implemented with probability

1
S5

2

action af is implemented with probability s?, etc. Hence, a pure strategy corresponds to (0,1)-
vector in S;. Now let A = A4 x Ay x -+ X A; and let S = 81 x Sy x -+- x 8. In addition, we let
V =ViUV,aU---UV;. Then for a function f : 2 — R, we define f : S — R as follows
f(S) =" f(A)Pr(A]S)
AcA

where Pr(A|S) is the probability that action set A = {aj,a9,...,ar} is implemented given that
the agents are using the strategy set S = {sy,s2,...,s;}. Thus f(S) is just the expected value of
f on the strategy set S.

Given an action set A = {a1,a9,...,a;} € A, let A® a} denote the action set obtained if agent i
changes its action from a; to a}. Formally, A®a, = {a1,...,a,-1,a},a;41,...,a;}. Similarly, given
a strategy set S = {s1,59,...,5:} € S, let S® s, = {s1,...,8i-1,8}, Sit1,..., Sk}, i.e. the strategy
set obtained if agent 7 changes its strategy from s; to s.

In this paper we will denote by v : 2 — R the social utility function. In addition, for each
agent 1 < i < k, there is a private utility function ; : 2" — R. [For the marriage game the social
utility function will be the sum of the the values of each marriage. The private utility of each agent
(man) will be the value of the marriage he is in (or sum of value of his marriages in the multiple
proposal version).] The goal of each agent is, therefore, to select a strategy in order to maximise
its private utility. Clearly, though, such strategies may not produce a good solution with respect

to social utility v. We say that set of strategies S € S is a Nash equilibrium if no agent has an

incentive to change strategy. That is, for any agent i,
@;(S) > a;(S® S;) ng €S;

Equivalently, given the other agents strategies, s; is the best response of agent i. We say that a
Nash equilibrium {s1, s2,..., sk} is a pure strategy Nash equilibrium if, for each agent i, s; is a pure
strategy. Otherwise we say that the Nash equilibrium is a mized strateqy Nash equilibrium. The

following result is due to Nash [10].
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Theorem 2.1. Any finite, k-person, non-cooperative game has at least one Nash equilibrium. 0O

Therefore, the task of comparing the performance of Nash equilibria against a socially optimal

solution is feasible.

2.2. SUBMODULAR FUNCTIONS.

A function with the form f: 2" — R is called a set function. A set function f is submodular if
FX)+fY) 2 f(XNY)+ f(XUY) VXY CV

It is supermodular if this inequality is reversed. A set function f is non-decreasing if f(X) < f(Y),
VX CY CV. For a set function f, the discrete derivative at X C V in the direction D C V — X

is defined as
fp(X) = f(XUD) - f(X)

The following result is standard. Condition (III) shows that, in economic terms, submodularity
corresponds to the property of decreasing marginal utility, that is, the additional value accruing

from an action decreases as the overall level of activity in the society rises.

Lemma 2.2. The following are equivalent:

(I) f is submodular.
(II) A C B implies f},(A)
(IIT) A C B implies f}(A)

f/(B), Vi€V - B.

)

>
>

Proof. First, we show that (III) implies (II). So assume that f/(A) > f/(B) when A C B and
i€V —B. Let D = {i1,in,...,ir} CV — B. Then

f(AU{i}) = f(4) = f(BU{ii}) - F(B)
FIAAU{ir,i0}) — f(AU{ia}) = f(BU{ir,i2}) — f(BU{i1})

fFAU{dy, ... i }) — fFAULGg, ..y ip })

v

F(BUSis,.. in}) = F(BU it ip1})
Summing, we obtain

f(AUD) = f(A)

v

f(BUD) - f(B)

n(4) = fp(B)
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Next, we show that (II) implies (I). Assume that f;,(A) > f;,(B) when A C Band D CV — B.
Take sets X and Y. Set A=XNY,B=Y and D =X —Y. Then

fp(A) > fp(B)
f(DUA) - f(A) > f(DUB) - f(B)

fX)-f(XnY) = f(XUY)-f(Y)

Finally, we show that (I) implies (III). Assume f is submodular. Thus, f(X) + f(Y) > f(X N
V)+ f(XUY), VX, Y CV. Let AC Band takei € V — B. Set X = AU{i} and Y = B. Then
FAU{Y) + (B) > f(A) + F(BU{i}). Hence, f(AU{i}) — f(A) > F(BUG}) - f(B). O

Observe that the objective function in the marriage game is submodular. To see this consider two
sets of proposals P; and P», where the edge set corresponding to P; is a subset of that corresponding
to P,. Now it is easy to see that the increase in the total value of marriages resulting from adding

an additional proposal (edge) to P; and P, is greater (or equal) in the former case.

2.3. UTILITY SYSTEMS.
Given our competitive game, let the optimal social solution be Q = {o01,09,...,0}, with op-
timal value opT = (). Here we consider the private utilities of the agents in a solution
S = {s1,82,...,8}. First, we introduce some more notation. We denote by ();, the null strat-
egy (action) for agent i; such a strategy corresponds to agent 7 declining to take part in the game.
We denote by ) = {01, 0a,...,0x} the strategy set in which each player has a null strategy. For
simplicity, we will assume that y(()) = 0.

Now take an arbitrary ordering of the agents. Without loss of generality, we may assume that
the ordering is {1,2,...,k}. Now given A € A we set A’ = {ay,a2,...,0a;,0;i11,...,0;}. Similarly

given S € S we set S* = {s1,589,...,8i,0;41,...,01}. Then, by construction, it follows that
Lemma 2.3. For an action set A € A and set function -y, we have y(A) = Zle Vi (A1), O

Corollary 2.4. For any strategy set S € S and set function vy, we have ¥(S) = Zle 'S/gi(Si*I). O

Now take our submodular, social utility function  : 2V — R (we remark that ¥ is also submod-
ular) and our collection of private utility functions a; : 2V — R, 1 <4 < k. Recall that our third
assumption regarding the utility functions states that the private utility to an agent is at least as
great as the loss in social utility resulting from the agent dropping out of the game. That is, the

system (v, U;;) has the property

(1) a;(S) > y.(Se) vSeS
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Given condition (1), we say that the system (v, U;q;) is a utility system. Note that for the marriage
game this condition holds, if a player drops out of the game the overall value of the game falls
by at most the value of his marriage (in fact, possibly less as then his wife may be able to marry
another man). The utility system (v, U;q;) is said to be basic if we have equality in condition (1),
that is a;(S) = 7;,(S @ 0;). Observe that, since we are assuming that utilities are measured in the
same units, we may view the game in the following manner. The function 7 represents the value
of the game (or size of the cake), and «; represents the return to the agent 7 (i.e. the size of agent
i’s piece of the cake). Therefore we also require that the sum of the sizes of the pieces must be
smaller than the total size of the cake. That is we require that the sum of the private utilities of

the agents is at most the social utility
(2) > ai(s) < (8 vSes

In such a circumstance we say that the utility system (v,U;q;) is valid. Note that the utility
system for the marriage game is valid. Note, we do not require that ), @;(S) = 7(S5). In fact, as
we shall see the value ¥(S) — 3. @;(S) often has a clear meaning. For the moment we may view
¥(S) — >, @i(S) as the utility of some non-agent, say the utility of the general public.

Observe that conditions (1) and (2) must hold if the following two conditions hold

(3) ai(A)

v

Vo (A ®0;)

(4) Z%‘(A) < v(4)

We now show that valid utility systems do exist.

Theorem 2.5. For any submodular function -, there exist functions «;, 1 < i < k such that

(v, Ui;) is a valid utility system. In particular, the basic utility system is valid.

Proof. So we need to show that, for the basic utility system, Condition (2) holds. Now

k
y(S) = Z%i(Si_l) [by Lemma 2.3]
i=1

k
= Zﬁ;i(Si & 0;)
i=1

v

k
ZW;(S ®0;) [by Lemma 2.2]
i=1

k
= Zc‘zi(S) [since (y,U;q;) is basic]
i=1



3. MAIN RESULTS

In this section we present our guarantees concerning the social value of a Nash equilibrium. In
particular, for a valid utility system with a non-decreasing, submodular, social utility function we
will show that any Nash equilibrium has an expected social value of at least half that of an optimal
social solution. In fact, following an approach of Conforti and Cornuéjols [2], we obtain a tighter
bound (although it provides the same guarantee in the worst case) with respect to a parameter
based upon the discrete curvature of the non-decreasing, submodular function. For a valid utility
system with a submodular, social utility function it is not possible to obtain a simple multiplicative
guarantee. However, the expected social value of the Nash equilibrium is at least half the social
optimal subject to an additive term. This additive term is function-dependent and often has a clean
social/economic interpretation; for example, we will see in the Section 6 that, for the competitive
facility location problem, it is bounded by the fixed investment costs.

Given S € S, suppose that player j uses a mixed strategy s; that plays the pure strategies
a}, . ,a§- with probabilities p1,...,p;. Then in QU S, player j uses a mixed strategy that plays
the pure strategies o; U ajl-, ey 05 U a§ with probabilities p1, ..., p;, where o; is the pure stragtegy

used in 2. We then obtain the following result, concerning any strategy set S € S.

Lemma 3.1. Let 7y be a submodular set function. Then for any S € S
FOQ) <HS)+ D Ah(Seb)— > A (Qus
2075 118, #0;

Proof. Observe that, by Lemma 2.2,

FQUS) < FS)+ Y. T (SuQiTh

110 F£S;

¥(S) + Y s (S @)

110 F£S;

(AN

In addition,
¥QUS) = D+ D A (QuUST
1:8;F£0;
Thus,
¥Q) < S+ D AnSen) - > A (usTh
120 #5; 118,70
O
Now let us focus specifically on the case of Nash equilibria. We then obtain the following

guarantee concerning the social value of a Nash equilibrium.
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Theorem 3.2. Let 7y be a submodular set function. If (y,U;c;) is a valid utility system then for
any Nash equilibrium S € S we have

oPT < 29(S)— Y A (Seh) - > ¥, (QusTh
1:8,=0; 1:8;F£0;

Proof. Observe that

D n(Sel) < ), maxy(Sel)
1:0;7S; 1:0;7S;
< Z @;(S) [since S is a Nash equilibrium]
1:0;7£S;
< AS) = Y A (Se) [by (1) and (2)]

1:8;=0;

Note that € is a strategy set consisting of pure strategies. Therefore OPT = v(Q2) = 4(Q). So we

have
orT < F(S)+ Y. W (S@h)— > F,(QuST') [by Lemma 3.1]
110 F5S; 1:8;F£0;
< 298 - Y ASet) - Y AL @ush
1:8,=0; 1:8;7£0;

O

Observe that, for a general submodular function v, the term >, _ . 7 (S @ 0;) and/or the
the term >, . 7, (QU S'=1) may be negative. Thus, the social value of the Nash equilibrium
is at least half the social optimal subject to a function-dependent additive term. As mentioned,
this additive term often has a economic/social meaning. An alternative type of guarantee is also
available. This result has clean implications in certain problems, for example, in the traffic routing

problem of Section 7.

Theorem 3.3. Let v be a submodular set function. If (y,U;;) is a valid utility system then for
any Nash equilibrium S € § we have
27(S) >¥(QUS)+ Y . (Seh)
1:8;=0;

Proof.

29(S) > Q)+ Y Y(QUSTH+ D AL (S

i:8;70; 118, =0

= QU+ > A, (Seh)

1:8;=0;

= QU+ > T (Se)

1:8;=0;
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Theorem 3.4. Let v be a non-decreasing submodular set function. If (y,U;;) is a valid utility

system then for any Nash equilibrium S € S we have
opT < 27(9)

Proof. For non-decreasing, submodular functions the additive term in Theorem 3.2 is positive
and, hence, we obtain a factor 2 guarantee. O

We remark that in some cases (depending upon the value of a measure of curvature of the non-
decreasing submodular set function) Theorem 3.4 can be strengthened slightly; we omit the details.
Note also that the social objective function in the marriage game is non-decreasing (the value of
the game can not decrease with additional proposals) so we obtain a factor 2 guarantee for Nash
equilibria in this game. Theorems 3.2 and 3.4 are both tight. We will give an example to show this

in Section 6 when we discuss the competitive k-median problem.

4. PURE STRATEGY NASH EQUILIBRIA

Recall Theorem 2.1 which states that finite, non-cooperative, k-agent games have a Nash equi-
librium. Unfortunately this is just an existence result and offers no help in actually finding Nash
equilibria. In addition, the result just guarantees the existence of a mixed strategy Nash equilib-
rium. It is not the case that there need be pure strategy Nash equilibria; in fact, generally complex
games (and many simple games) will not have a pure strategy Nash equilibria. The existence of
pure strategy Nash equilibria is of interest for several reasons. In many practical situations, e.g.
decisions concerning the location of facilities, agents are likely to adopt pure strategies. They are
unlikely to chose one action amongst many on the basis of a coin toss. Furthermore, the strategy
space of pure strategies is much smaller than the strategy space of mixed strategies. Thus, the dis-
covery of pure strategy Nash equilibria may become a feasible. Moreover, given this smaller space,
it is more reasonable to imagine that the agents can and will act in such a way as to generate a
pure strategy Nash equilibria. In this section, we will show that any basic utility system has pure

strategy Nash equilibria. We will also discuss how such equilibria may be realised in practice.

Theorem 4.1. Take a valid utility system (v, U;c;). If the utility system is basic then there are
pure strategy Nash equilibria.

Proof. Consider a directed graph D, each node of which corresponds to one of the possible
pure strategy sets (i.e. action sets). There is an arc from node {a1,a2,...,a;,...,a;} to node
{ar,a9,...,d,, ... ,ap} if o;({ar,a9,... a4, ...,0r}) < a;j({a1,a9,...,a},...,a;}), for some agent

i. It follows that a node {ai,as,...,ar} in D corresponds to a pure strategy Nash equilibrium
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if and only if the node has out-degree zero. In particular, the system has a pure strategy Nash
equilibrium if D is acyclic. We will show that for basic utility systems this is indeed the case.
Suppose D is not acyclic. Then take a directed cycle C' in D. Suppose the cycle contains
nodes corresponding to the action sets Ag = {al,ad,...,ad}, 41 = {al,ad,... at},.... Ay =
{at,dl,... al} where Ay = A;. Tt follows that the action sets A, and A, differ in only the

action of one agent, say agent i,. Thus a] = a}*! if i # i,, and o;, (A;) < y, (Ar11), that is

. ror r . r+1 _ 7 r+1 _ 7 r+1 r+1 _ 7 r+1 _ r
a;, ({al,ab, ... a,}) < o, ({a] =ay,...,0; " =a; et e =ap .0 =ay})

t

T;E a;, (Ar41)—a;, (A;) > 0. We will obtain a contradiction

In particular, it must be the case that
by showing that, in fact, Y'_f a;, (Ar41) — @i, (4,) = 0. Now a;, (A, 41) = Vi1 (Arpr ® 05,) and

a; (A;) = fy;; (A, ® 0;,). Thus
o i) = i (A4) = Al (Arsa @0,) = vy (A, &0
= (Y A1) = v(Ar @05,)) — (v(4y) —v(Ar ©05,))
= (Y(Ars1) = 7(A) + (v(Ar & 0s,) — v(Arg1 & 05,))

= Y(Ary1) —v(4)

Here the last equality follows from the observation that a] = a?“ if ¢ # 4. Then, since Ag = Ay,

we obtain

t—1 t
i (A1) — i, (Ar) = D y(Arp1) —v(4)
r=0 r=0

= 7(A¢) —v(4o)

=0

O
Observe that Theorem 4.1 states not only that a pure strategy Nash equilibrium exists, but the
proof also shows how one may be obtained. Specifically, if we start with any pure strategy set S (for
example, S = {01, 0s,...0;}) and the agents sequentially alter their actions in order to maximise
their own profits then we will automatically converge to a pure strategy Nash equilibrium. In
addition, this is true even if the agents do not chose an optimal response at each step, but rather
just chose any action that leads to an improvement in their private utility. So suppose that agents
can quickly adapt their actions. Then pure strategy Nash equilibria can be generated just by the
agents acting in any greedy fashion.
We note that for Theorem 4.1 we do require that the utility system be basic. For example,

suppose we have a utility system (v, U;c;) in which v(A) = M, for some large constant M. Hence
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g is a constant function and is, therefore, submodular. Consequently, we have ’y:li(A & 0;) = 0.
It follows that, if the system is not basic, the only constraints on the private utility functions are
that >, a;(A) < M, VA € A and that ;(A) > 0, Vi. However, this presents no real restriction on
the game, other than that the private payoffs must be non-negative. It is, therefore, easy to give

examples with no pure strategy Nash equilibria.
5. A BROADER FRAMEWORK

In this section we relax our third assumption, that is a;(S) > ;. (S @ 0;). Instead we will
consider the situation in which the private utility of an agent is comparable to the Vickrey utility
with respect to that agent (loss in social utility that would result from the agent withdrawing from
the game).

We say that (v,U;«;) is a (P, Q)-utility system if, for some constants P,Q > 0,

L

(5) a;(S) > ﬁ%i(S@@i)—Q

A (P,Q)-utility system is (P, Q)-basic if we have equality in condition (5): @;(S) = £ 7, (S®0;) - Q.
The system is valid if ), &;(S) < 7(S). Then we easily obtain the following results.

Theorem 5.1. Let vy be a submodular set function. If (v, U;a;) is a valid (P,Q)-utility system then
for any Nash equilibrium S € S we have oPT < (1 + P)4(S) + (kQ — 32, 75, (SUQ — 57)). O

Theorem 5.2. Let vy be a non-decreasing, submodular set function. If (v, U;e;) is a valid (P,Q)-
utility system then for any Nash equilibrium S € S we have oPT < (P 4+ 6(7))7(S) + kQ. O

Theorem 5.3. Take a valid (P,Q)-utility system. If the system is (P,Q)-basic then there are pure
strategy Nash equilibria. 0

6. THE COMPETITIVE FACILITY LOCATION AND k-MEDIAN PROBLEMS

In this section we consider the facility location and k-median problems. First we will describe
the problems and then introduce competitive versions of the problems. We will then show that

these competitive problems fit into the framework given in the previous sections.

6.1. THE BASE PROBLEMS.

Both these facility location problems have the following form. We are given a bipartite graph
G = (W UU, E) with vertex partition W and U. The set W consists of locations at which facilities
may be built. The set U consists of locations at which consumers are found. For clarity, we will
refer to vertices in W as locations and the vertices in U as markets. In the base problems we have a
single agent or monopolistic firm. The monopolist wishes to construct facilities at various locations

in W in order to maximise its profits.
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Each market u in U has an associated wvalue m,. A facility may be built at a location v for a
fized cost c,,. A facility at location v is able to service a market located at u for the marginal cost
Avu- The marginal profit of the firm is its revenue minus its marginal costs. The profit of the firm
is its marginal profit minus its fixed costs (i.e. revenue minus total costs). The consumer surplus
is defined to be the total value minus total price. The social surplus is defined to be profits plus
consumer surplus or, equivalently, total value minus total costs.

Let us examine these terms in more detail. Consider the revenue of the firm. This is just the
sum of the prices it charges each market for servicing it. What will this price be, though, in the
monopolistic case? Observe that consumers in market 4 have no choice but to be serviced by the
monopolist. Their only constraint is that they will not pay more that m,; thus, the firm will charge
u a price p, = m,. It follows that consumer surplus is zero in the monopolist case. Thus a firm
maximising profits is also, inadvertently, maximising the social surplus.

Observe that the firm will refuse to service a market u from a facility v if A,, > m,. Thus a
firm can always obtain a marginal revenue of zero with respect to each market. Thus our objective
function will not be affected if we assume that our bipartite graph is complete and we have \,,, < 7,
for each edge vu (that is setting A\, = m, where A\, > 7, will not affect the outcome).

For the facility location problem, the firm may open whichever facilities it desires. So, formally,

the facility location problem is

max pu(A) = - —

ACW nid) i ( rzfleaf(wu vu) Z c”)
- - u vEA

In the k-median problem the firm faces an additional constraint in that it can open at most k

facilities. Formally, the k-median problem is

max pu(A) =  max max(my — Apu) — ch
ACW,| A<k ACW,|A|<k — veA =~

The performance of algorithms for these problems has been widely studied, (see, for example,
[3],[11],[2],[5] and [1]). Note, it is often assumed that for the k-median problem there are no fixed
costs i.e. ¢, = 0, Vv.

We also remark that, recently, the minimisation versions of both these problems have also re-
ceived widespread attention (see, for example, [4] and [7]). The minimisation problems correspond
to minimising the total costs of servicing all the markets. The broader economic viewpoint implied
by the traditional maximisation problem, though, allows for very clean competitive formulations.

It is these formulations that we will now introduce.
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6.2. THE COMPETITIVE PROBLEMS.

The base problems correspond to the monopolistic situation. The corresponding competitive prob-
lem is as follows. Instead of a single monopoly, suppose we have k competing firms (or agents). In
the competitive facility location problem the number of facilities each firm may open is unrestricted;
whereas in the competitive k-median problem each firm may build at most one facility (in fact, our
results hold for a more general problem in which firm 4 can open at most m; facilities). We allow
firms to build at the same location, but assume, however, that the costs differ for each firm. Thus
firm 4, 1 <4 < k, may build a facility at location v for a fixed cost ¢!. In addition, the marginal
cost of firm i servicing a market v from a facility at location v is A!,. Again, the value of market
U 1S .

The competitive situation differs markedly from the monopolistic case. Consider, for example,
the pricing strategies of firms in non-competitive and competitive markets. We have seen that in
the monopolistic case there is no consumer surplus; the monopoly gets all of the social surplus for
itself. In a competitive market, though, firms have to compete for the market u. Let AL, A2, ... Xk

be the lowest marginal costs with which the firms can supply market u, i.e.

A= min()\f,’u : firm 4 has an open facility at v)

and let )\, = min; \!,. What will happen in such a situation? Let I = {j : j = argmin; \};} be
the collection of most competitive firms with respect to market u. Then, not surprisingly, a firm
iy, € I will compete most efficiently and will thus service market . However, the firm will not
be able to charge m,; instead, it will only be able to charge the marginal cost of the second most

! in order to be serviced. If the firm i},

efficient firm. Thus u will pay a price of p, = min;;: Y
tries to charge more than this it will be under-cut by another firm. Since the price p, may be less
than m,, positive consumer surpluses may now arise. Hence, the social surplus is indeed shared
between the individual firms and the consumers; market u contributes m, — p, to the consumer
surplus and p, — A\, to the marginal profits of the firm that services it. (It may be the case that
multiple firms all have the lowest marginal costs with respect to a market w, that is [I}| > 2. In
such circumstances we will assume that customers in v randomly allocate their custom between
these firms. The marginal profits for these firms will, though, be zero with respect to a market wu,
since they will compete away each others profits.)

Let I'y = {u :i € I'} and n, = |I}|. Then, given a set of actions A = A; x Ay x -+ x A} we

have:
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The profit of each firm ¢ is

uel veEa;
_ 7 i
- E (pu - >‘u) - E : Cy

u€el’; vEa;

The consumer surplus is

The social surplus is

) = Y- Y Y

i VEa;
1 u€ly i VEa;

So from a social viewpoint it would be best for a single authority to direct where each firm should
locate in order to maximise the social surplus (utility). However, the firms themselves will choose
strategies according to their own private profit (utility) functions. We next show, however, that
these competitive formulations fit into the framework we have developed and, thus, we are able to
obtain guarantees concerning the social performance on Nash equilibria in these facility location
problems.

Before doing so we remark that it is common practice to present the facility location problem,
as we have done, in terms of building facilities at specific locations in order to service markets.
This, though, appears to be at odds with the statement that, from a practical point of view,
our game-theoretic analysis is best suited to problems in which strategies are easy to change.
Note, though, that we can view the problem in the following manner. Instead of facility location
decisions we have fixed investment decisions. These fixed investments enable the firms to service
various markets at specific marginal costs. Thus, from this wider perspective, the problem is that
of making fixed investments in order to allow access to markets. From this perspective these facility
location problems are very suitable for a game-theoretic analysis, as it is quite plausible that these

investment decisions can be easily adapted.

6.3. THE SOCIAL PERFORMANCE OF NASH EQUILIBRIA IN THE FACILITY LOCATION PROBLEMS.
First we need to show that we can formulate both the competitive facility location problem and

the competitive k-median problem appropriately for our purposes.
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Lemma 6.1. The competitive facility location and k-median problems can be formulated in the

action set framework.

Proof. Consider first the competitive facility location problem. Recall that for our base problems
we have a bipartite graph G = (W U U, E). It follows that each agent ¢ has a groundset V; = W.
Now, since a firm may open facilities at any set of locations, we have A; = {X : X C V;}. Next
consider the competitive k-median problem. Again, each agent ¢ has a groundset V; = W. Now,
since each firm may open at most one facility we have A; = 0 U {v: v € V;}. O

Next we need to show that our social utility (surplus) function is submodular.

Lemma 6.2. The social surplus function p is submodular.

Proof. So

p(A) =D (my = Aie) =Y cl = h(A) —g(A)

u i VEa;

Now, clearly, g(A) + g(B) = g(AN B) + g(A U B), for A,B C V = U;V;. So it suffices to show
that h is submodularie. ), )\f}*‘ is supermodular. In what follows, we add an action set descriptor
to distinguish between the four types of action set (A, B, AN B and AU B). Let i € N,(A U B).
Without loss of generality, assume that A\, (AU B) = Afj“u where v; € A. Then A\, (AUB) = X\, (A).
Clearly, however, A, (AN B) > A\, (B). It follows that h(A) + h(B) > h(AN B) + h(A U B). O

As mentioned, traditionally, the k-median problem is usually presented in the absence of fixed

costs i.e. ¢ =0, ViVo. Such a formulation gives the following property.

Corollary 6.3. In the absence of fixed costs, the social surplus function p is non-decreasing.

Proof. In the absence of fixed costs we have g(A) = 0, VA C V. Clearly h is a non-decreasing

function, and hence y is also non-decreasing. 0

Lemma 6.4. The system (u,Ujw;) is a valid utility system. In particular, the utility system is

basic.

Proof. Recall that our private utility (profit) functions are
wilA) =Y (pu—X) = ¢
u€el’; vEa;
We now show that (i, U;w;) is a basic utility system, that is
o, (A®0;) = p(A) —p(A@ D) = Y (pu = N) = Y _ <
uel’; vea;
The change in the social utility is the increase in the total marginal profits minus the increase in

the total fixed cost, when agent ¢ changes its action from the null action to action a;. The increase
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in total marginal profits, though, is just the sum over all markets of the extra efficiency gained by
1 having action a;. This, in turn, is the difference between the marginal costs of 4, in those markets
where it is the most efficient firm, and the marginal costs of the next most efficient firm. This is
just Zueri (py — AL). Clearly the total change in the fixed costs is ZUEGZ_ c!, as required. Hence,
the system (u, U;w;) is a basic utility system. By Theorem 2.5, the utility system is also valid. O

We are now in the position to apply Theorems 3.2 and 3.4. If we denote by F'C'(S) and M P(S)

the expected fixed costs and expected marginal profits, respectively, associated with a solution

S €S8, then

Theorem 6.5. For the competitive k-median and facility locations problems, any Nash equilibrium
S € S satisfies

opT < 24(S) + FC(S) = (S)+ MP(S) +((S)

Proof. From Theorem 3.2 we have i(Q) < 24a(S) — Y., —o, 5, (S ® 0i) = Y.y, i, (QUSTH).
On the addition of an extra firm to the game, the social surplus can deteriorate by at most the
fixed costs incurred by the new firm. Thus the additive term is upper bounded by FC(S). The
result then follows from the observation that M P(S) — FC(S) + ¢(S) = u(S). O

We will see that Theorem 6.5 is tight. Let us first comment briefly upon its implications. The
theorem tell us that our guarantee is good when either the fixed costs or the marginal profits plus
consumer surplus induced by the solution S are small compared to OPT. Conversely, if the fixed
costs and marginal profits plus consumer surplus are both large then the overall social performance
may be very poor. Such a situation may arise in industries in which there are high start-up costs
combined with markets that contain a collection of highly valuable customers. As a result, firms
may over-supply the valuable customers (at the expense of less valuable customers) leading to a
wasteful duplication of services. Such examples are common in the high-tech industry where the
occurrence of high initial costs often allows a firm access to lucrative markets. A less obvious
example is the health industry. Here there are very high fixed and initial costs in the actual
provision of health care, and also in the associated revenue collection system (e.g. insurance
companies, HMOs, finance departments in hospitals, etc). In addition, the market also contains
many highly valuable customers from both the private sector (companies with large workforces)
and the public sector (government supported Medicare patients). In contrast, there is a large class
of less valuable customers. The resulting social inefficiencies are illustrated by the large number of
uninsured citizens, as well as the duplication of services.

In the absence of fixed costs, we obtain, from Theorem 3.4
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Theorem 6.6. Consider the competitive k-median problem in the absence of fized costs. Then any

Nash equilibrium S € S satisfies

oPT < (1+0(p)p(S) < 2u(S5) O

6.4. PURE STRATEGY NASH EQUILIBRIA AND FACILITY LOCATION.
Observe that both facility location problems have the desirable property that they possess pure
strategy Nash equilibria. This follows from Theorem 4.1 and Lemma 6.4.

Theorem 6.7. For the competitive facility location and k-median problems there exist pure strategy
Nash equilibria. O

6.5. TIGHT EXAMPLES.

We previously claimed that Theorems 3.2 and 3.4 were both tight. We will now prove this using
the following example concerning the competitive 2-median problem shown in Figure 1. Let there
be two agents with two possible locations, v; and wve, at which to locate; we use the superscripts
1 and 2 to distinguish between the respective copies of v;, i € {1,2}. In addition, there are four
markets w1, u9,u3 and ug. The value of each market is one. All marginal costs are 1, except for
the six (represented by labelled edges) shown in the figure. In addition, there are no fixed costs.

Thus the social surplus function is non-decreasing and submodular.

FIGURE 1. A tight example.

The optimal strategy set is @ = {vi,v?}, i.e. firm 1 should use the pure strategy (action) of
locating at v, whilst firm 2 should use the pure strategy of locating at v;. Such a strategy pairing
will give a social surplus of 4.

We remark that the strategy set 2 is also a Nash equilibrium. However, there are other Nash
equilibria. Consider though the pure strategy set S = {v{,v2}. Tt is easy to verify that this is also
Nash equilibrium. Each firm has a private profit of 1 under S, and if they change their strategy
(whilst the other sticks with its strategy) they still receive a profit of 1. The social surplus of this
strategy set is 2. Thus, the social value of this Nash equilibrium is a factor 2 off that of the optimal

solution.
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Next we show that Theorem 3.2 is also tight. To do this we, again, use an example from the
2-median problem, see Figure 2. There are still two possible locations, v; and v,. However, we
have the following fixed costs. Firm 1 can locate at v{ for a cost 1, but can locate at v1 for nothing;
firm 2 can locate at v3 for a cost 1, but can locate at v? for nothing. These fixed costs are shown
boxed in Figure 2. We have two markets u; and us, both of which have a value 1. All marginal

cost are also 1 except for the four shown, which are zero.

FIGURE 2. A tight example.

The optimal strategy set is Q@ = {vi,v?}, i.e. firm 1 should use the pure strategy (action) of
locating at vy, whilst firm 2 should use the pure strategy of locating at v;. Such a strategy pairing
will give a social surplus of 2 (and private profits of one each).

Again, the strategy set ) is also a Nash equilibrium. However is is easy to check that the pure
strategy set S = {vl,v3} is also Nash equilibrium. This Nash equilibrium has a social surplus of
0. The fixed costs of the solution, though, are 2. Similarly, the marginal profits of the solution are

also 2. So Theorem 6.5 and, hence, Theorem 3.2 are tight.

7. THE SELFISH TRAFFIC ROUTING PROBLEM

In this section we consider the problem of routing traffic in a network. Congestion in the network
causes delays and is costly for individual agents and society as a whole. It would help, therefore,
if the traffic could be directed by a single authority. However, it is individual agents who make
their own routing decisions. Thus the problem appears suitable for analysis via our techniques. In
particular, here we sketch how a maximisation version of the selfish routing problem of Roughgarden
and Tardos [16] fits into our framework. They considered the following network routing problem.
There is a directed network G = (V, A) and k source-destination vertex pairs, {s1,¢1},...,{sk, tx}
(note that we do not require k to be large). The collection of paths from s; to ¢; is denoted by P;
with P = U;P;. A flow is a function f : P — RY; for a fixed flow f, we have fo = Y pcp.aep fP-
Now f = U;f; where f; is a flow from s; to ¢;. We will abuse our notation slightly and also denote

by f; the value of the flow f;; given the context this should not cause any confusion.
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Each arc a € A has a load-dependent latency function, denoted by l,(f). The latency of a path
P with respect to a flow f is defined as the sum of the latencies of the edges in the path, denoted
by Ip(f) = > ucala(fa). The latency with respect to an agent i is l;(f) = X p.cp. Lp,(f)fp,. The

latency [(f) of a flow f is the total latency incurred by f i.e.

l(f) = Zla(fa)fa = ZlP(f)fP = le(f)

acA PeP

In [16] the social objective is to minimise the total latency, given that a flow of value r; must be
routed from s; to ¢;. The private objective of an agent 7 is to minimise its own latency i.e. [;(f).

We consider a maximisation version of this problem. Each agent may route a flow of weight at
most 7; from s; to t;. Associated with each source-destination {s;,¢;} pairing is a value 7; that
signifies the revenue (utility) from routing one unit of flow from s; to ¢;. However, we still associate
with a routing the latency-based cost. Thus, a flow f that successfully routes f; units of low from
s; to t; will induce a profit to agent i of (;(f) = m; fi — l;(f). Hence, the social objective is to

maximise the function
K(F) = DG = D mifi—L(f)
i i
and agent 7 seeks to maximise the private objective function (;. We will now show that this problem
also fits into our framework. To do this we will discretise the problem by assuming that flow may

be sent only in whole unit increments; for this problem it is not difficult to generalise the results

to continuous space.

Lemma 7.1. The routing problem can be formulated in the action set framework.

Proof. The action space A; of agent i consists of any flow f; of value at most r; from s; to ¢;. We
now show how this fits into our framework. For each agent 7 we have a collection of paths P; from
s; to t;. The agent assigns a weight to each path p; € P;. Let the groundset V; consist of r; copies
of each path p; i.e. p}, ...,p;". Here the choice of pl correspond to the routing of ¢ units of low on
path p;.

We may allow an agent to select multiple copies of a path. In such a circumstance only the
action corresponding to the copy with the greatest amount of flow is implemented. (Alternatively,
we may restrict the action space of agent 7 to allow for the choice of at most one copy of each path
p;). Note that if no copy of p; is chosen then no flow is sent along that path. O

Now consider that latency functions l,(f). We will assume that these functions are non-negative,
non-decreasing and convex. Note that these assumptions correspond to some natural properties of
traffic systems. The non-decreasing property implies that the costs incurred increase as the volume

of the traffic increases; the convexity property implies that the additional costs incurred (by adding



22

an additional unit of traffic) increase as the volume of the traffic increases. Observe that convexity
implies that the latency functions are supermodular when restricted to our discretised space. It

follows easily that
Lemma 7.2. For the selfish routing problem, the social objective function k is submodular. O

Lemma 7.3. For the selfish routing problem, the system (k,(;) is a valid utility system.

Proof. We will show, for each agent i, that ;(f) > £, (f & 0;). Now
Ky (f@0) = k(f)—k(f-fi)
= > (fim = L) = D (fim —Li(f = £)
J JigF#
= fimi— L)+ Y G = 1) =)
JigFi

< fimi = Li(f)
= G(f)

Thus (k,(;) is a utility system. We have already seen that x(f) = >, ;(f) and, thus, the utility
system is valid. O

So we then obtain the following guarantees.

Theorem 7.4. For the selfish routing problem, any Nash equilibrium S € S satisfies
orT < 2R(S)— Y R (S@l)- Y R, (Qush O
1:8;=0; 1:8;F£0;
Thus we obtain a factor 2 guarantee if, for example, & (S @ 0;), &} (Q U S*"!) > 0, Vi. An
alternative guarantee follows from Theorem 3.3. This compares the value of a Nash equilibrium S

against the social value of a particular solution, S + €2, that routes twice as much traffic.

Theorem 7.5. For any Nash equilibrium S € S, we have
2R(S) > RQUS)+ > R (Seh) > &S+Q) O
i:8;=0;

A result of this flavour also follows from the work of [16]; the social value of a Nash equilibrium
is at least the social value of the optimal solution that routes twice as much traffic when the all
the rewards m; are halved.

If  is non-decreasing (hence, it is always in the interest of agent i to route all r; units of flow),
then from Theorem 3.4 we obtain
Theorem 7.6. If k is non-decreasing then, for the selfish routing problem, any Nash equilibrium

S € S satisfies
orT < 2£K(S) O
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8. PoLyNOMIAL TIME CONSIDERATIONS

Our discussion regarding pure strategy Nash equilibria touched upon the importance of speed
considerations in the strategy determination. We discuss this in more detail in this section. Let us
measure the size of the problem input in terms of the size of the groundsets V;, 1 <1 < k. It would
be useful if we obtained a Nash equilibria in polynomial time in the problem size. Two factors are
important here:

(i) Bounding the number of times an agent changes strategy before a Nash equilibria is obtained.
(ii) Bounding the time an agent takes to decide upon a strategy.

How to bound the number of iterations required before convergence to a Nash equilibria is an
important open question. In the presence of pure Nash equilibria, as we have seen, the overall
size of the state space gives one upper bound. We note, however, that good guarantees may be
obtained within a constant number of iterations (we only need each agent to change strategies a
constant number of times). That is, solutions that arise long before we reach a Nash equilibria
also provide good guarantees. Thus, although these solutions may not be stable, they do give good
performance. We omit the details here.

Regarding the second factor, if the size of the action space A; of agent i is polynomial in |V;], then
the agent can easily find its best strategy in polynomial time. However, the action space A; may
be as large as 2/Vil. Thus in some circumstances it may not be possible to find an optimal strategy
quickly. It may, though, be possible to obtain approximately optimal strategies in polynomial
time. We will show that the use of approximation algorithms by the agents in their strategy
determination does lead to guarantees on the social performance of Nash equilibria. We have one
difficulty to overcome though. The use of approximately optimal strategies is not consistent with
the concept of a Nash equilibria. That is, approximately optimal strategies are not the optimal
best response strategies required by Nash equilibria. Thus, we are really using approzimate Nash
equilibria. They are equilibria in the sense that no agent can find (by whatever methods they are
using) a better alternative strategy in polynomial time.

So suppose that each agent has access to an approximation algorithm at each stage. Let these
algorithms have an approximation guarantee of £, say. Then, Theorem 3.2, Theorem 3.3 and
Theorem 3.4 apply (with slightly weaker guarantees) to approximate Nash equilibria. For example,

if our social utility function is non-decreasing, we have the following theorem.

Theorem 8.1. Let v be a non-decreasing, submodular set function, and (y,U;a;) be a valid util-

ity system. If the agents can generate £-approximate solutions, then for any approzimate Nash
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equilibrium S € S we have
OPT < (£+44(7))7(S) < (E+1)7(9) O

For an example consider the case of matroids. A matroid T is a family of subsets of V' such that
(i) 0eT.

(i) fY € T and X CY, then X € T.

(iii) If X,Y € T and |X| < |Y], then 3y € Y — X such that X U {y} € T.

Fisher, Nemhauser and Wolsey [6] gave a simple 2-approximation algorithm for the problem of
maximising a non-decreasing, submodular function over a matroid. Thus, if each action set A4; is

a matroid then we have

Corollary 8.2. Let «y be a non-decreasing, submodular set function, and (7, U;;) be a valid utility

system. If each A; is a matroid, then we obtain an approzimate Nash equilibrium S € S with
OPT < (2+44(7))7(S) < 3%(5) O
9. MULTIPLE-ITEM AUCTIONS

Consider the following class of auction: there is one seller (auctioneer) with a set J of n different
items, and a set of k£ potential buyers (agents) who have a private valuation for each subset of
items. One form of auction within this class is combinatorial auctions. These are auctions in which
agents may make bids on subsets of items (combinatorial bids), rather than just bids on individual
items. There is a very large literature on combinatorial auctions; see de Vries and Vohra [17] for a
survey. The following are factors which the seller may wish to consider when designing an auction

structure in which to sell the items.

1
2

Simplicity: the rules of the auction should be easily understood.
Fairness: agents need to believe that the rules of the auction are fair.

(1)

(2)

(3) Speed: the auction should not take too long to complete.

(4) Efficiency: the seller may wish to allocate the items to maximise the social value.
(

5) Revenue: the seller wants to maximise the total revenue it receives from the auction.

Note that goals 4) and 5) may not be compatible. Hence, in this section we will focus on goals
1) to 4). We will also be concerned with the case in which the private valuation function v;, for
each buyer ¢, is submodular i.e. the marginal valuations are non-increasing. Recently, Lehmann,
Lehmann and Nisan [9] considered the allocation problem induced by this framework. There, a
single authority wishes to find an allocation of optimal efficiency (social value). They present a
polynomial time algorithm that produces an allocation with social value at least one half that of

the optimal solution, provided that the agents valuations are submodular. Their approach is as
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follows. The authority knows (or has access to) each agents valuation function. The authority
then greedily assigns one item at a time, say in the order 1,2,...,n. Let V(j) the be value of the
allocation after the jth item is assign. Item j + 1 is then assigned to the agent so as to maximise
V(j+ 1) —V(j). That is, item j 4 1 is assigned to the agent with the highest marginal valuation
for the item, given the allocation of items 1, 2,..., 5. It can be shown that the allocation produced
by such a process is, indeed, at least half optimal.

Again, our interest is in the competitive situation in which the seller and buyers all seek to
maximise their own utility. We present a simple class of multi-round auction that is guaranteed to
produce an allocation within a factor 2 of optimal, despite the valuation functions being private
knowledge and with the sellers and buyers acting in a selfish manner. Moreover, the allocation

procedure of [9] can easily be implemented within this class of auction.

9.1. THE RULES OF THE AUCTION.

We now give the rules of the auction. In the first round, the seller sets a price p; for each item
j in the auction. Each buyer then states which items it is willing to purchase at these prices.
If more than one agent accepts the price p; then in the next round the auctioneer will raise the
price (by any amount it chooses) of item j. If no agent accepts the price p; then in the next
round the auctioneer will lower the price (by any amount it chooses) of item j. After each round
the auctioneer announces provisional winners for each item. The provisional winner of an item
will be randomly selected from amongst those agents that have the highest bid for the item. The
announcement of provisional winners tells the agents who will win the items if the auction were
to terminate at that time. This information allows the agents to make bids with the knowledge
of whether their bids from previous rounds have been “accepted”. Provisionally winning bids are
considered binding and cannot be withdrawn. A provisionally winning bid for an item only ceases
to be of interest after a higher bid for that item has been made. However, in future rounds, agents
may ignore any bids they made that were not provisionally winning. The auction terminates when
there is exactly one bidder for each every item, and no agent wishes to change its bid (that is, bid
for a set of items that is a superset of its current set of winning items).

[We remark that it is important that provisionally winning bids cannot be withdrawn; if bids
can be withdrawn then the results (that will follow) regarding polynomial time convergence are
lost. It should be noted, however, if this auction did allow the withdrawal of bids then we would
actually converge to an optimal allocation. To see this, suppose that {T},T5,..., T} is an optimal
allocation but {S7, So, ..., Sk} is the solution produced by the auction, with termination item prices

{p1,p2,...,pn}. Now for each agent, v;(S;) — Ejesi pj > vi(T;) — ZjeTi pj otherwise agent 4 would
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have changed its bid to 7;. Summing over all agents we have

;vi(Si)—Zij Zvi(Ti)—Zij

v

7 jESZ‘ ) i jGTi

> wi(Si) = p; D uilT) =) v

i jeJ 7 jeJ

> owilS) = > wi(T)

) )

v

Thus, {S1,S9,..., Sk} is an optimal allocation.]

9.2. PERFORMANCE GUARANTEES.

It is clear that this auction does satisfies the goal of simplicity. It also satisfies the goal of fairness
since the highest bidder for an item wins it (with possibly a random choice in the case of a tie). In
contrast, note that in combinatorially auctions it is not always clear to the agents that items are
allocated in a “fair” manner. Next, we consider the issue of efficiency. In order to do this we need
to examine the actions of agents in such an auction. Faced with a set of prices how do the agents
react. To begin with we will assume that the agents act in a myopically rational manner, see [13],
that is, they make a best response to the current prices and allocation. Hence an agent “bids” on
all the items in a subset that maximise its utility given the stated prices (this includes all it bids
that are currently provisionally winning bids). Later we will show that our performance guarantees
still hold even when the agents are allowed to make locally myopically optimal bids (to be defined).
This generalisation is useful as it is easy for the agents to find locally myopically optimal bids,
whereas obtaining the myopically optimal bid may take exponential time.

Note that the valuation functions of an agent are submodular. Thus, since we have a fixed
price per item, the private utility functions (i.e. private valuation minus auction price) are also
submodular. Now, at a given stage in the auction, suppose that agent ¢ has provisionally winning
bids for a set S; of the items at the current prices. Then, since bids cannot be withdrawn, in the
next stage the agents must optimise with respect to the groundset J — S;. That is, the agent must
look to bid on other items given that it has already bid for S;. For example, when considering a
set X C J — S;, the agent must evaluate the set by considering v;(X U S;) not v;(X), since the
agent is already contracted to buy S; (the agent stops being contacted to buy an item j in S; only
if the price p; rises in a later phase and another agent accepts the new price but agent 7 does not).

Let us consider the utility to agent ¢ if it is allocated the set S; in the auction. The agent
pays a price p(S;) = Zjesi p; for the set of items and, thus, receives a private utility of u;(S;) =
v;(S;) — p(S;). So the goal of the each agent is to maximise its private utility. The social utility
denoted by 7(S) is just the sum of the values of the sets in the allocation produced by the bidding
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strategies S = {S1,...,Sk}. Observe that n(S) also equals the sum of the private utilities plus the

revenue from the auction (that is, the utility of the auctioneer).

Lemma 9.1. Toke a Nash equilibrium S, then for any agent i, we have
u;(S) = n(S) —n(S & 0;) — p(S:)

Proof. Note that a Nash equilibrium corresponds to a completed auction. Thus, each agent i is
sold the subset S; of items it bid for. Recall that we may view only the provisional winning bids
as being binding and hence we may assume that no other agent has a binding bid on any of these
items. Therefore n(S) —n(S & 0;) = v;(S;). To see this, note that if agent 7 were able to withdraw
its bids then the social value of the auction would fall by v;(S;) since no other bidders has a binding
for those items at the current prices. Now u;(S) = v;(S;) — p(S;) and the lemma follows. O

In order to apply our results we must ensure that our auction can be implemented in our
framework. This, though, is easy. Assume that the auctioneer has set the prices, then an action of
agent ¢ is just a subset of the groundset i.e. which item prices the agent accepts. For the purposes
of analysis we may “pretend” that there are multiple copies of each item, and that each agent
receives a copy of an item if the agent accepts an item price. This allows us to assign a social value
to outcomes like n(Q U S) which were used in the previous proofs (the social value is just the sum
of the values of the set of items assigned to each agent). Note that for any real auction solutions
though, for example S and 2, there must be exactly one winning bid for each item.

So the auction does fit into our framework, but it is not immediately obvious that we can now
apply Theorem 3.2. This is because we have u;(S) = 7;,(S) — p(S;) rather than u;(S) = 7, (S).
Fortunately, however, we also have n(S) = >, u;(S) + >_, p(S;) rather than n(S) = >, u;(S). It
is easy to check that these differences cancel each other out in the proof, and so it follows that
Theorem 3.2 does indeed hold in this auction problem.

We will make the standard assumption that there are zero disposable costs. Thus, the private
valuation functions v; are non-decreasing. Since we evaluate (possibly non-feasible) solutions from
the “multiple-copies” viewpoint that all bids are accepted, it follows that 7 is a non-decreasing

function. Hence by Theorem 3.4 we obtain
Theorem 9.2. The social value of any auction solution S satisfies
opT < (144(n)n(S) < 27(S) O
It is also easy to check that Theorem 5.3 still applies given Lemma 9.1. Thus we have

Theorem 9.3. The auction has pure strategy Nash equilibria. O
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So given that the agents bid in a myopically rational manner, the auction produces an allocation

with efficiency within a factor 2 of the most efficient allocation.

9.3. FAST IMPLEMENTATIONS.

As mentioned, in the case of auctions fast implementation is very important. In practice, this
means take the time required for the auction should be polynomial in the number of items. Here
we will outline some of the issues involved. Firstly, how long does each round take? Until now
we have assumed that each agent bids in a myopically rational manner and, thus, maximises a
submodular objective function at each round. This may be too time consuming for our purposes.
However, the performance guarantees hold even when the agents bid in a simple locally optimal
(greedy) manner at each stage. Agent ¢ when faced with a set of prices {p1,pa,...,pn} greedily
chooses a subset S; as follows. Initially S; = . Add to S; an item j such that u;(S; U{j}) > u;(S;),
that is v;(S; U {j}) > vi(S;) + p;. then repeat. If no such item exists then stop.

We now discuss why such a strategy is locally myopically optimal. First note that such a
bidding strategy restricts agent 4 to bid for a set of items S; with the property that w;(7;) > 0, for
all T; C S;. We call this the risk-free property; we say that a bidding strategy that is not risk-free
is risky. To see why the agents (without any information regarding the private valuations of the
other bidders) will wish to adopt a risk-free bidding strategy, suppose instead that an agent adopts
a risky strategy. It is then easy to provide the other agents with private valuations that ensure
that the agent receives a set X that induces a negative utility. Thus, without any information
regarding the private valuations of the other bidders, the agents will wish to restrict their attention
to risk-free bidding strategies. In addition, the bidding strategy given above, also ensures that an
agent bids for a maximal risk-free sets. These maximal sets are locally myopically optimal; to see
this, suppose we have a risk-free set S; that is not maximal, then there is an item j such that
(T, U{j}) > wi(Ty), for all T; C .

It can easily be shown that if the agents make maximal risk-free bids then a factor two approxima-
tion guarantee is also obtained. We sketch a proof. Such bids ensures that each agent has positive
utility; thus, n(S) > REV, where REV is the revenue the auctioneer receives from the auction. More-
over, it can also easily be shown that 7(S) > OPT — REV. To see this, suppose that {11, T, ..., Tk}
is an optimal allocation but {S1, So, ..., S} is the solution produced by the auction, with termina-
tion item prices {p1,p2,...,pn}. Now for each agent, v;(S;) — Zjesi pj > vi(S;UT;) — ZjESiUTi Dj
otherwise there is an item j € T; — S; such that u;(S; U{j}) > u;(S;) and agent i would not have
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bid for S;. Summing over all agents we have

2SN =2 ) p 2 PulSiVE) =3, D

) i JES; 1 jES;UT;
Zvi(SZ) > sz (S; UT;) ZZp]
i 1 JeT;

dowilS) = D o wi(T) =D p

i i i jET;
n(S) > OPT — REV
The result then follows.

We can polynomially bound, using standard bisection method techniques, the number of rounds
required to complete the auction easily. For example, we now show how the allocation procedure
of [9] can be implemented by such an auction. The auctioneer initially announces a set of prices
{p1,p2,-- ., pn} ={V,V,...,V} (where V is an upper bound on the value any bidder attaches to
any single item) and then changes the prices of each item, in turn, until there is exactly one bidder
for the item. Note that, when an item is considered the items that still have price V' will have no
bidders. It follows that the agent that has the greatest marginal valuation for that item (given the
current allocation induced by the items that have already been considered) will be the agent that
makes the highest bid on the item. Note that, by submodularity, no agent will want to bid for an
item in a later round after it has been considered (even though such bids are allowed). Thus we
obtain assignment procedure of [9], and the implementation time is polynomial in the number of
items. To see this observe that, by bisection techniques, the number of rounds required to complete

the auction is at most O(n log V).

Remark An obvious question here is whether better performance guarantees can be obtained in

auctions which allow combinatorial bidding.
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