
Nash Equilibria in Competitive So
ieties, with Appli
ationsto Fa
ility Lo
ation, TraÆ
 Routing and Au
tionsAdrian Vetta�November 20, 2003Abstra
t. We 
onsider the following 
lass of problems. The value of an out
ome to aso
iety is measured via a submodular utility fun
tion (submodularity has a natural e
onomi
interpretation: de
reasing marginal utility). De
isions, however are 
ontrolled by non-
ooperative agents who seek to maximise their own private utility. We present, under somebasi
 assumptions, guarantees on the so
ial performan
e of Nash equilibria. For submodularutility fun
tions, any Nash equilibrium gives an expe
ted so
ial utility within a fa
tor 2 ofoptimal, subje
t to a fun
tion-dependent additive term. For non-de
reasing, submodularutility fun
tions, any Nash equilibrium gives an expe
ted so
ial utility within a fa
tor 2of optimal. A 
ondition under whi
h all sets of so
ial and private utility fun
tions indu
epure strategy Nash equilibria is presented. The 
ase in whi
h agents, themselves, make useof approximation algorithms in de
ision making is dis
ussed and performan
e guaranteesgiven. Finally we present some spe
i�
 problems that fall into our framework. Thesein
lude the 
ompetitive versions of the fa
ility lo
ation problem and k-median problem, amaximisation version of the traÆ
 routing problem of Roughgarden and Tardos [16℄, andmultiple-item au
tions. 1. Introdu
tionComputer s
ientists have long studied the 
osts in
urred by the la
k of 
omplete information orthe la
k of unbounded 
omputational resour
es. For example, the �elds of on-line algorithms andapproximation algorithms were developed in response to these two problems. However, these �eldspresume a single authority (or agent) whose goal is to optimise some obje
tive fun
tion. Whathappens when there is a 
lear so
ial obje
tive fun
tion but no single authority? In parti
ular,what if there are many agents whose goals are to optimise their own private obje
tive fun
tions,rather than to 
olle
tively optimise the so
ial obje
tive fun
tion? Motivated by examples of thistype 
on
erning the internet, Koutsoupias and Papadimitriou [8℄ proposed applying game-theoreti
te
hniques in order to analyse the 
osts resulting from a la
k of 
oordination. Spe
i�
ally, theyproposed the study of non-
ooperative games via the use of Nash equilibria (where the agents'strategies are mutual best responses to ea
h other). Given the non-
ooperative nature of these�S
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2games and the fa
t that su
h games may have many Nash equilibria, they proposed studying su
hequilibria from a worst 
ase perspe
tive. That is, how bad 
an a Nash equilibrium be, with respe
tto the so
ial obje
tive, in 
omparison to the best 
ooperative solution (or solution produ
ed inpresen
e of a single authority).The study of Nash equilibria is espe
ially fruitful for problems in whi
h the a
tions of the agentsmay be 
hanged qui
kly and at little 
ost. This is be
ause it is in su
h 
ir
umstan
es that Nashequilibria are most likely to arise in pra
ti
e. Su
h problems abound in the high-te
h e
onomy.From a theoreti
al viewpoint, notable amongst them is the traÆ
 routing problem whi
h has beenstudied with great su

ess by Roughgarden and Tardos [16℄.In this paper we 
onsider a large 
lass of problems with the following stru
ture. De
isions aremade by a set of non-
ooperative agents whose a
tion spa
es are subsets of an underlying groundset.The a
tions of the agents indu
e some so
ial utility, measured by a set fun
tion. The goal of theagents, though, is not to maximise the overall so
ial utility; rather, they seek to maximise theirown private utility fun
tions. The only assumptions we make are� The so
ial utility and private utility fun
tions are measured in the same standard unit.This standard utility unit may be money, gold, 
ake et
. Clearly, su
h a 
onditionis ne
essary. For example, no guarantees 
an be obtained if the value to so
iety ismeasured in terms of the number of oranges but the agents seek to maximise thenumber of apples.� The so
ial utility fun
tion is submodular.Submodularity 
orresponds to a property that arises frequently in e
onomi
s: de-
reasing marginal utility. Here, the additional value a

ruing from an a
tion de-
reases as the overall level of a
tivity in the so
iety rises. For example, the additionalbene�t to a town of an extra taxi 
ompany is greater if there are 
urrently no taxi�rms in the town rather than if there are already one hundred taxi �rms.� The private utility of an agent is at least the 
hange in so
ial utility that would o

ur if the agentde
lined to parti
ipate in the game.We remark that, equivalently, we require that the private utility of an agent isat least the Vi
krey utility with respe
t to that agent. This 
on
ept is often 
on-sidered in the study of au
tion me
hanisms (see Vi
krey-Clarke-Groves paymentme
hanisms). Moreover, this 
ondition arises in other pra
ti
al situations as wewill see in our examples. (To illustrate why this 
ondition is often satis�ed, supposethat the members of the so
iety are somehow able to negotiate how the total so
ial



3utility is divided up amongst the members. Now, given an out
ome, 
onsider the
hange in the value of the game that o

urs if agent i then de
lines to parti
ipatein the game. Observe that the other agents will be willing to pay agent i up to thisamount just to parti
ipate in the game. Thus, this will be the minimum payo� thatagent i will a

ept.)Problems for whi
h these three assumptions hold are 
alled utility systems. For a utility system,it is possible to provide some strong guarantees 
on
erning the so
ial utility provided by anyNash equilibrium (we will also show that good guarantees arise if we relax the third assumption).Spe
i�
ally, for non-de
reasing, submodular obje
tive fun
tions, any Nash equilibrium will give asolution with expe
ted so
ial utility within a fa
tor 2 of the optimal solution, Hen
e, any Nashequilibrium is always at least half as good as the optimal so
ial solution. For submodular fun
tionsin general, the expe
ted so
ial utility of a Nash equilibrium is within a fa
tor 2 of optimal, subje
t toa fun
tion-based additive term (whi
h, as we will see in our examples, often has a 
lear e
onomi
interpretation). An alternative form of guarantee that has interesting interpretations in 
ertainproblems (for example, the traÆ
 routing problem) is also given. These results are shown to betight.The other main result in the paper is to show that, given a simple 
ondition, utility systemshave the desirable property that they possess pure strategy Nash equilibria. We also dis
uss andprovide performan
e guarantees for instan
es in whi
h the agents apply approximation algorithmsin determining their strategies.An outline of the paper is as follows. In Se
tion 2 we introdu
e the ne
essary ba
kground on gametheory and submodular fun
tions, and give a toy example to illustrate our ideas. In Se
tion 3 weprove our results 
on
erning the so
ial performan
e of Nash equilibria. In Se
tion 4 we dis
uss purestrategy Nash equilibria and mixed strategy Nash equilibria. We then present the simple 
onditionunder whi
h a utility system will have pure strategy Nash equilibria. In Se
tion 5 we relax ourthird assumption and present results for the situation in whi
h the private utility of an agent is
omparable to the Vi
krey utility with respe
t to that agent (loss in so
ial utility that would resultfrom the agent dropping out of the game). Sin
e our three assumptions 
on
erning the utilitysystem are not very restri
tive, the results are widely appli
able. We illustrate this by presentinga range of problems that �t into our framework. Our �rst examples are 
ompetitive versions ofthe fa
ility lo
ation problem and the k-median problem, whi
h we introdu
e in Se
tion 6. Oneimpli
ation of the results in this se
tion is that 
ompetitive markets are less eÆ
ient in industrieswith high �xed 
osts and high marginal pro�ts. Pra
ti
al examples of su
h so
ial ineÆ
ien
iesin
lude the dupli
ation of work, as well as the over-supply of lu
rative markets (and under-supply



4of less valuable markets) by �rms. Our next example, given in Se
tion 7, 
on
erns traÆ
 routingin networks. In Se
tion 8, we 
onsider the issues of polynomial time implementations. Theseissues in
lude the time it takes to obtain Nash equilibria and also the 
onsequen
es of agents usingapproximation algorithms for strategy determination. One example in whi
h speed 
onsiderationsare of great importan
e is au
tions. Thus, our last example, given in Se
tion 9, is that of multiple-item au
tions. We present a simple polynomial time au
tion that �ts into our overall framework.It follows that the allo
ation of items given by the au
tion (in the presen
e of 
ompeting agentswho bid in a greedy manner) is at least half as eÆ
ient as the optimal allo
ation given by a singleauthority. This mat
hes the performan
e guarantee Lehmann, Lehmann and Nisan [9℄ gave for theproblem where a single authority 
hooses an allo
ation.2. Ba
kground and a Simple ExampleIn this se
tion we present the required 
on
epts and terminology. We will illustrate these 
on
eptsusing the following simple stable marriage game. We have a group of men and a group of womenwhi
h a
t as a vertex set in a bipartite graph. There is an edge between man i and women j whosevalue represents the \quality" of resultant relationship should i and j de
ide to marry. We remarkthat the bipartite graph need not be 
omplete. We may assume that we have returned to the 1950sand so
ietal norms only allow men to propose to women. The obje
tive of ea
h man and woman isto maximise the value of any marriage. Thus, on re
eiving a set of propositions, ea
h women willa

ept the proposal of highest value.2.1. some game theory.Suppose we have k agents and disjoint groundsets V1; V2; : : : ; Vk. Ea
h element in Vi represents ana
t that agent i may make, 1 � i � k; let ai � Vi be an a
tion (set of a
ts) available to agent i.We may wish to restri
t the set of a
tions an agent may make; thus we may not allow every subsetof Vi to be a feasible a
tion. Towards this end, we let Ai = fai � Vi : ai is a feasible a
tiong =fa1i ; a2i ; : : : ; anii g be the set of all a
tions available to agent i. We 
all Ai the a
tion spa
e for agent i.In our marriage game the k agents are the men, and the groundset Vi is the set of edges Æ(i) in
identto man i in the graph. An a
tion for man i is either just a 
hoi
e of edge (i; j) 2 Æ(i) (
orrespondingto a proposal to woman j) or the null-
hoi
e (making no proposal). Thus Ai = f;g [ f(i; j) 2 Æ(i).Observe that we 
ould time-warp ba
k further and allow men to propose to and marry multiplewomen (although ea
h woman may still only a

ept one proposal); in su
h a 
ir
umstan
e thea
tion set Ai would 
onsist of all subsets of Æ(i). In our game multiple proposals are not allowed,but this observation is important be
ause it allows us to evaluate non-feasible out
omes, and thiswill be important for the 
lass of valuation fun
tions that we 
onsider.



5A pure strategy is one in whi
h the agent de
ides to 
arry out a spe
i�
 a
tion. [For example,in the marriage game a pure strategy for man i 
orresponds to making a proposal to woman j.℄A mixed strategy is one in whi
h the agent de
ides upon an a
tion a

ording to some probabilitydistribution. The strategy spa
e Si of agent i is the set of mixed strategies. Thus we may representSi as Si = fsi 2 Rni : niXj=1 sji = 1; sji � 0gThus si 2 Si 
orresponds to the mixed strategy in whi
h a
tion a1i is implemented with probabilitys1i , a
tion a2i is implemented with probability s2i , et
. Hen
e, a pure strategy 
orresponds to (0; 1)-ve
tor in Si. Now let A = A1 �A2 � � � � � Ak and let S = S1 � S2 � � � � � Sk. In addition, we letV = V1 [ V2 [ � � � [ Vk. Then for a fun
tion f : 2V ! R, we de�ne �f : S ! R as follows�f(S) = XA2A f(A) Pr(AjS)where Pr(AjS) is the probability that a
tion set A = fa1; a2; : : : ; akg is implemented given thatthe agents are using the strategy set S = fs1; s2; : : : ; skg. Thus �f(S) is just the expe
ted value off on the strategy set S.Given an a
tion set A = fa1; a2; : : : ; akg 2 A, let A�a0i denote the a
tion set obtained if agent i
hanges its a
tion from ai to a0i. Formally, A�a0i = fa1; : : : ; ai�1; a0i; ai+1; : : : ; akg. Similarly, givena strategy set S = fs1; s2; : : : ; skg 2 S, let S � s0i = fs1; : : : ; si�1; s0i; si+1; : : : ; skg, i.e. the strategyset obtained if agent i 
hanges its strategy from si to s0i.In this paper we will denote by 
 : 2V ! R the so
ial utility fun
tion. In addition, for ea
hagent 1 � i � k, there is a private utility fun
tion �i : 2V ! R. [For the marriage game the so
ialutility fun
tion will be the sum of the the values of ea
h marriage. The private utility of ea
h agent(man) will be the value of the marriage he is in (or sum of value of his marriages in the multipleproposal version).℄ The goal of ea
h agent is, therefore, to sele
t a strategy in order to maximiseits private utility. Clearly, though, su
h strategies may not produ
e a good solution with respe
tto so
ial utility 
. We say that set of strategies S 2 S is a Nash equilibrium if no agent has anin
entive to 
hange strategy. That is, for any agent i,��i(S) � ��i(S � s0i) 8s0i 2 SiEquivalently, given the other agents strategies, si is the best response of agent i. We say that aNash equilibrium fs1; s2; : : : ; skg is a pure strategy Nash equilibrium if, for ea
h agent i, si is a purestrategy. Otherwise we say that the Nash equilibrium is a mixed strategy Nash equilibrium. Thefollowing result is due to Nash [10℄.



6Theorem 2.1. Any �nite, k-person, non-
ooperative game has at least one Nash equilibrium. �Therefore, the task of 
omparing the performan
e of Nash equilibria against a so
ially optimalsolution is feasible.2.2. submodular fun
tions.A fun
tion with the form f : 2V ! R is 
alled a set fun
tion. A set fun
tion f is submodular iff(X) + f(Y ) � f(X \ Y ) + f(X [ Y ) 8X;Y � VIt is supermodular if this inequality is reversed. A set fun
tion f is non-de
reasing if f(X) � f(Y ),8X � Y � V . For a set fun
tion f , the dis
rete derivative at X � V in the dire
tion D � V �Xis de�ned as f 0D(X) = f(X [D)� f(X)The following result is standard. Condition (III) shows that, in e
onomi
 terms, submodularity
orresponds to the property of de
reasing marginal utility, that is, the additional value a

ruingfrom an a
tion de
reases as the overall level of a
tivity in the so
iety rises.Lemma 2.2. The following are equivalent:(I) f is submodular.(II) A � B implies f 0D(A) � f 0D(B), 8D � V �B.(III) A � B implies f 0i(A) � f 0i(B), 8i 2 V �B.Proof. First, we show that (III) implies (II). So assume that f 0i(A) � f 0i(B) when A � B andi 2 V �B. Let D = fi1; i2; : : : ; irg � V �B. Thenf(A [ fi1g)� f(A) � f(B [ fi1g)� f(B)f(A [ fi1; i2g)� f(A [ fi1g) � f(B [ fi1; i2g)� f(B [ fi1g)...f(A [ fi1; : : : ; irg)� f(A [ fi1; : : : ; ir�1g) � f(B [ fi1; : : : ; irg)� f(B [ fi1; : : : ; ir�1g)Summing, we obtain f(A [D)� f(A) � f(B [D)� f(B)f 0D(A) � f 0D(B)



7Next, we show that (II) implies (I). Assume that f 0D(A) � f 0D(B) when A � B and D � V � B.Take sets X and Y . Set A = X \ Y , B = Y and D = X � Y . Thenf 0D(A) � f 0D(B)f(D [A)� f(A) � f(D [B)� f(B)f(X)� f(X \ Y ) � f(X [ Y )� f(Y )Finally, we show that (I) implies (III). Assume f is submodular. Thus, f(X) + f(Y ) � f(X \Y ) + f(X [ Y ), 8X;Y � V . Let A � B and take i 2 V �B. Set X = A [ fig and Y = B. Thenf(A [ fig) + f(B) � f(A) + f(B [ fig). Hen
e, f(A [ fig) � f(A) � f(B [ fig) � f(B). �Observe that the obje
tive fun
tion in the marriage game is submodular. To see this 
onsider twosets of proposals P1 and P2, where the edge set 
orresponding to P1 is a subset of that 
orrespondingto P2. Now it is easy to see that the in
rease in the total value of marriages resulting from addingan additional proposal (edge) to P1 and P2 is greater (or equal) in the former 
ase.2.3. utility systems.Given our 
ompetitive game, let the optimal so
ial solution be 
 = f�1; �2; : : : ; �kg, with op-timal value opt = 
(
). Here we 
onsider the private utilities of the agents in a solutionS = fs1; s2; : : : ; skg. First, we introdu
e some more notation. We denote by ;i, the null strat-egy (a
tion) for agent i; su
h a strategy 
orresponds to agent i de
lining to take part in the game.We denote by ; = f;1; ;2; : : : ; ;kg the strategy set in whi
h ea
h player has a null strategy. Forsimpli
ity, we will assume that 
(;) = 0.Now take an arbitrary ordering of the agents. Without loss of generality, we may assume thatthe ordering is f1; 2; : : : ; kg. Now given A 2 A we set Ai = fa1; a2; : : : ; ai; ;i+1; : : : ; ;kg. Similarlygiven S 2 S we set Si = fs1; s2; : : : ; si; ;i+1; : : : ; ;kg. Then, by 
onstru
tion, it follows thatLemma 2.3. For an a
tion set A 2 A and set fun
tion 
, we have 
(A) =Pki=1 
0ai(Ai�1). �Corollary 2.4. For any strategy set S 2 S and set fun
tion 
, we have �
(S) =Pki=1 �
0si(Si�1). �Now take our submodular, so
ial utility fun
tion 
 : 2V ! R (we remark that �
 is also submod-ular) and our 
olle
tion of private utility fun
tions �i : 2V ! R, 1 � i � k. Re
all that our thirdassumption regarding the utility fun
tions states that the private utility to an agent is at least asgreat as the loss in so
ial utility resulting from the agent dropping out of the game. That is, thesystem (
;[i�i) has the property��i(S) � �
0si(S � ;i) 8S 2 S(1)



8Given 
ondition (1), we say that the system (
;[i�i) is a utility system. Note that for the marriagegame this 
ondition holds, if a player drops out of the game the overall value of the game fallsby at most the value of his marriage (in fa
t, possibly less as then his wife may be able to marryanother man). The utility system (
;[i�i) is said to be basi
 if we have equality in 
ondition (1),that is ��i(S) = �
0si(S � ;i). Observe that, sin
e we are assuming that utilities are measured in thesame units, we may view the game in the following manner. The fun
tion 
 represents the valueof the game (or size of the 
ake), and �i represents the return to the agent i (i.e. the size of agenti's pie
e of the 
ake). Therefore we also require that the sum of the sizes of the pie
es must besmaller than the total size of the 
ake. That is we require that the sum of the private utilities ofthe agents is at most the so
ial utilityXi ��i(S) � �
(S) 8S 2 S(2)In su
h a 
ir
umstan
e we say that the utility system (
;[i�i) is valid. Note that the utilitysystem for the marriage game is valid. Note, we do not require that Pi ��i(S) = �
(S). In fa
t, aswe shall see the value �
(S) �Pi ��i(S) often has a 
lear meaning. For the moment we may view�
(S)�Pi ��i(S) as the utility of some non-agent, say the utility of the general publi
.Observe that 
onditions (1) and (2) must hold if the following two 
onditions hold�i(A) � 
0ai(A� ;i)(3) Xi �i(A) � 
(A)(4)We now show that valid utility systems do exist.Theorem 2.5. For any submodular fun
tion 
, there exist fun
tions �i, 1 � i � k su
h that(
;[i�i) is a valid utility system. In parti
ular, the basi
 utility system is valid.Proof. So we need to show that, for the basi
 utility system, Condition (2) holds. Now�
(S) = kXi=1 �
0si(Si�1) [by Lemma 2.3℄= kXi=1 �
0si(Si � ;i)� kXi=1 �
0si(S � ;i) [by Lemma 2.2℄= kXi=1 ��i(S) [sin
e (
;[i�i) is basi
℄ �



93. Main ResultsIn this se
tion we present our guarantees 
on
erning the so
ial value of a Nash equilibrium. Inparti
ular, for a valid utility system with a non-de
reasing, submodular, so
ial utility fun
tion wewill show that any Nash equilibrium has an expe
ted so
ial value of at least half that of an optimalso
ial solution. In fa
t, following an approa
h of Conforti and Cornu�ejols [2℄, we obtain a tighterbound (although it provides the same guarantee in the worst 
ase) with respe
t to a parameterbased upon the dis
rete 
urvature of the non-de
reasing, submodular fun
tion. For a valid utilitysystem with a submodular, so
ial utility fun
tion it is not possible to obtain a simple multipli
ativeguarantee. However, the expe
ted so
ial value of the Nash equilibrium is at least half the so
ialoptimal subje
t to an additive term. This additive term is fun
tion-dependent and often has a 
leanso
ial/e
onomi
 interpretation; for example, we will see in the Se
tion 6 that, for the 
ompetitivefa
ility lo
ation problem, it is bounded by the �xed investment 
osts.Given S 2 S, suppose that player j uses a mixed strategy sj that plays the pure strategiesa1j ; : : : ; atj with probabilities p1; : : : ; pt. Then in 
 [ S, player j uses a mixed strategy that playsthe pure strategies �j [ a1j ; : : : ; �j [ atj with probabilities p1; : : : ; pt, where �j is the pure stragtegyused in 
. We then obtain the following result, 
on
erning any strategy set S 2 S.Lemma 3.1. Let 
 be a submodular set fun
tion. Then for any S 2 S�
(
) � �
(S) + Xi:�i 6=si �
0�i(S � ;i)� Xi:si 6=�i �
0si(
 [ Si�1)Proof. Observe that, by Lemma 2.2,�
(
 [ S) � �
(S) + Xi:�i 6=si �
0�i(S [ 
i�1)� �
(S) + Xi:�i 6=si �
0�i(S � ;i)In addition, �
(
 [ S) = �
(
) + Xi:si 6=�i �
0si(
 [ Si�1)Thus, �
(
) � �
(S) + Xi:�i 6=si �
0�i(S � ;i)� Xi:si 6=�i �
0si(
 [ Si�1) �Now let us fo
us spe
i�
ally on the 
ase of Nash equilibria. We then obtain the followingguarantee 
on
erning the so
ial value of a Nash equilibrium.



10Theorem 3.2. Let 
 be a submodular set fun
tion. If (
;[i�i) is a valid utility system then forany Nash equilibrium S 2 S we haveopt � 2 �
(S)� Xi:si=�i �
0si(S � ;i)� Xi:si 6=�i �
0si(
 [ Si�1)Proof. Observe thatXi:�i 6=si �
0�i(S � ;i) � Xi:�i 6=si maxti2Si �
0ti(S � ;i)� Xi:�i 6=si ��i(S) [sin
e S is a Nash equilibrium℄� �
(S)� Xi:si=�i �
0si(S � ;i) [by (1) and (2)℄Note that 
 is a strategy set 
onsisting of pure strategies. Therefore opt = 
(
) = �
(
). So wehave opt � �
(S) + Xi:�i 6=si �
0�i(S � ;i)� Xi:si 6=�i �
0si(
 [ Si�1) [by Lemma 3.1℄� 2�
(S)� Xi:si=�i �
0si(S � ;i)� Xi:si 6=�i �
0si(
 [ Si�1) �Observe that, for a general submodular fun
tion 
, the term Pi:si=�i �
0si(S � ;i) and/or thethe term Pi:si 6=�i �
0si(
 [ Si�1) may be negative. Thus, the so
ial value of the Nash equilibriumis at least half the so
ial optimal subje
t to a fun
tion-dependent additive term. As mentioned,this additive term often has a e
onomi
/so
ial meaning. An alternative type of guarantee is alsoavailable. This result has 
lean impli
ations in 
ertain problems, for example, in the traÆ
 routingproblem of Se
tion 7.Theorem 3.3. Let 
 be a submodular set fun
tion. If (
;[i�i) is a valid utility system then forany Nash equilibrium S 2 S we have2�
(S) � �
(
 [ S) + Xi:si=�i �
0�i(S � ;i)Proof. 2�
(S) � 
(
) + Xi:si 6=�i �
0si(
 [ Si�1) + Xi:si=�i �
0si(S � ;i)= �
(
 [ S) + Xi:si=�i �
0si(S � ;i)= �
(
 [ S) + Xi:si=�i �
0�i(S � ;i) �



11Theorem 3.4. Let 
 be a non-de
reasing submodular set fun
tion. If (
;[i�i) is a valid utilitysystem then for any Nash equilibrium S 2 S we haveopt � 2 �
(S)Proof. For non-de
reasing, submodular fun
tions the additive term in Theorem 3.2 is positiveand, hen
e, we obtain a fa
tor 2 guarantee. �We remark that in some 
ases (depending upon the value of a measure of 
urvature of the non-de
reasing submodular set fun
tion) Theorem 3.4 
an be strengthened slightly; we omit the details.Note also that the so
ial obje
tive fun
tion in the marriage game is non-de
reasing (the value ofthe game 
an not de
rease with additional proposals) so we obtain a fa
tor 2 guarantee for Nashequilibria in this game. Theorems 3.2 and 3.4 are both tight. We will give an example to show thisin Se
tion 6 when we dis
uss the 
ompetitive k-median problem.4. Pure Strategy Nash EquilibriaRe
all Theorem 2.1 whi
h states that �nite, non-
ooperative, k-agent games have a Nash equi-librium. Unfortunately this is just an existen
e result and o�ers no help in a
tually �nding Nashequilibria. In addition, the result just guarantees the existen
e of a mixed strategy Nash equilib-rium. It is not the 
ase that there need be pure strategy Nash equilibria; in fa
t, generally 
omplexgames (and many simple games) will not have a pure strategy Nash equilibria. The existen
e ofpure strategy Nash equilibria is of interest for several reasons. In many pra
ti
al situations, e.g.de
isions 
on
erning the lo
ation of fa
ilities, agents are likely to adopt pure strategies. They areunlikely to 
hose one a
tion amongst many on the basis of a 
oin toss. Furthermore, the strategyspa
e of pure strategies is mu
h smaller than the strategy spa
e of mixed strategies. Thus, the dis-
overy of pure strategy Nash equilibria may be
ome a feasible. Moreover, given this smaller spa
e,it is more reasonable to imagine that the agents 
an and will a
t in su
h a way as to generate apure strategy Nash equilibria. In this se
tion, we will show that any basi
 utility system has purestrategy Nash equilibria. We will also dis
uss how su
h equilibria may be realised in pra
ti
e.Theorem 4.1. Take a valid utility system (
;[i�i). If the utility system is basi
 then there arepure strategy Nash equilibria.Proof. Consider a dire
ted graph D, ea
h node of whi
h 
orresponds to one of the possiblepure strategy sets (i.e. a
tion sets). There is an ar
 from node fa1; a2; : : : ; ai; : : : ; akg to nodefa1; a2; : : : ; a0i; : : : ; akg if �i(fa1; a2; : : : ; ai; : : : ; akg) < �i(fa1; a2; : : : ; a0i; : : : ; akg), for some agenti. It follows that a node fa1; a2; : : : ; akg in D 
orresponds to a pure strategy Nash equilibrium



12if and only if the node has out-degree zero. In parti
ular, the system has a pure strategy Nashequilibrium if D is a
y
li
. We will show that for basi
 utility systems this is indeed the 
ase.Suppose D is not a
y
li
. Then take a dire
ted 
y
le C in D. Suppose the 
y
le 
ontainsnodes 
orresponding to the a
tion sets A0 = fa01; a02; : : : ; a0kg; A1 = fa11; a12; : : : ; a1kg; : : : ; At =fat1; at2; : : : ; atkg where A0 = At. It follows that the a
tion sets Ar and Ar+1 di�er in only thea
tion of one agent, say agent ir. Thus ari = ar+1i if i 6= ir, and �ir(Ar) < �ir(Ar+1), that is�ir(far1; ar2; : : : ; arkg) < �ir(far+11 = ar1; : : : ; ar+1ir�1 = arir�1 ; ar+1ir ; ar+1ir+1 = arir+1 ; : : : ; ar+1k = arkg)In parti
ular, it must be the 
ase thatPt�1r=0 �ir(Ar+1)��ir(Ar) > 0. We will obtain a 
ontradi
tionby showing that, in fa
t, Pt�1r=0 �ir(Ar+1)� �ir(Ar) = 0. Now �ir(Ar+1) = 
0ar+1ir (Ar+1 � ;ir ) and�ir(Ar) = 
0arir (Ar � ;ir). Thus�ir(Ar+1)� �ir(Ar) = 
0ar+1ir (Ar+1 � ;ir)� 
0arir (Ar � ;ir)= (
(Ar+1)� 
(Ar+1 � ;ir))� (
(Ar)� 
(Ar � ;ir))= (
(Ar+1)� 
(Ar)) + (
(Ar � ;ir)� 
(Ar+1 � ;ir))= 
(Ar+1)� 
(Ar)Here the last equality follows from the observation that ari = ar+1i if i 6= ir. Then, sin
e A0 = At,we obtain t�1Xr=0 �ir(Ar+1)� �ir(Ar) = tXr=0 
(Ar+1)� 
(Ar)= 
(At)� 
(A0)= 0 �Observe that Theorem 4.1 states not only that a pure strategy Nash equilibrium exists, but theproof also shows how one may be obtained. Spe
i�
ally, if we start with any pure strategy set S (forexample, S = f;1; ;2; : : : ;kg) and the agents sequentially alter their a
tions in order to maximisetheir own pro�ts then we will automati
ally 
onverge to a pure strategy Nash equilibrium. Inaddition, this is true even if the agents do not 
hose an optimal response at ea
h step, but ratherjust 
hose any a
tion that leads to an improvement in their private utility. So suppose that agents
an qui
kly adapt their a
tions. Then pure strategy Nash equilibria 
an be generated just by theagents a
ting in any greedy fashion.We note that for Theorem 4.1 we do require that the utility system be basi
. For example,suppose we have a utility system (
;[i�i) in whi
h 
(A) =M , for some large 
onstant M . Hen
e



13g is a 
onstant fun
tion and is, therefore, submodular. Consequently, we have 
0ai(A � ;i) = 0.It follows that, if the system is not basi
, the only 
onstraints on the private utility fun
tions arethat Pi �i(A) �M , 8A 2 A and that �i(A) � 0, 8i. However, this presents no real restri
tion onthe game, other than that the private payo�s must be non-negative. It is, therefore, easy to giveexamples with no pure strategy Nash equilibria.5. A Broader FrameworkIn this se
tion we relax our third assumption, that is ��i(S) � �
0si(S � ;i). Instead we will
onsider the situation in whi
h the private utility of an agent is 
omparable to the Vi
krey utilitywith respe
t to that agent (loss in so
ial utility that would result from the agent withdrawing fromthe game).We say that (
;[i�i) is a (P,Q)-utility system if, for some 
onstants P;Q > 0,��i(S) � 1P �
0si(S � ;i)�Q(5)A (P,Q)-utility system is (P,Q)-basi
 if we have equality in 
ondition (5): ��i(S) = 1P �
0si(S�;i)�Q.The system is valid if Pi ��i(S) � �
(S). Then we easily obtain the following results.Theorem 5.1. Let 
 be a submodular set fun
tion. If (
;[i�i) is a valid (P,Q)-utility system thenfor any Nash equilibrium S 2 S we have opt � (1 + P ) �
(S) + (kQ�Pi �
0si(S [
� si)). �Theorem 5.2. Let 
 be a non-de
reasing, submodular set fun
tion. If (
;[i�i) is a valid (P,Q)-utility system then for any Nash equilibrium S 2 S we have opt � (P + Æ(
)) �
(S) + kQ. �Theorem 5.3. Take a valid (P,Q)-utility system. If the system is (P,Q)-basi
 then there are purestrategy Nash equilibria. �6. The Competitive Fa
ility Lo
ation and k-Median ProblemsIn this se
tion we 
onsider the fa
ility lo
ation and k-median problems. First we will des
ribethe problems and then introdu
e 
ompetitive versions of the problems. We will then show thatthese 
ompetitive problems �t into the framework given in the previous se
tions.6.1. the base problems.Both these fa
ility lo
ation problems have the following form. We are given a bipartite graphG = (W [U;E) with vertex partition W and U . The set W 
onsists of lo
ations at whi
h fa
ilitiesmay be built. The set U 
onsists of lo
ations at whi
h 
onsumers are found. For 
larity, we willrefer to verti
es inW as lo
ations and the verti
es in U as markets. In the base problems we have asingle agent or monopolisti
 �rm. The monopolist wishes to 
onstru
t fa
ilities at various lo
ationsin W in order to maximise its pro�ts.



14 Ea
h market u in U has an asso
iated value �u. A fa
ility may be built at a lo
ation v for a�xed 
ost 
v . A fa
ility at lo
ation v is able to servi
e a market lo
ated at u for the marginal 
ost�vu. The marginal pro�t of the �rm is its revenue minus its marginal 
osts. The pro�t of the �rmis its marginal pro�t minus its �xed 
osts (i.e. revenue minus total 
osts). The 
onsumer surplusis de�ned to be the total value minus total pri
e. The so
ial surplus is de�ned to be pro�ts plus
onsumer surplus or, equivalently, total value minus total 
osts.Let us examine these terms in more detail. Consider the revenue of the �rm. This is just thesum of the pri
es it 
harges ea
h market for servi
ing it. What will this pri
e be, though, in themonopolisti
 
ase? Observe that 
onsumers in market u have no 
hoi
e but to be servi
ed by themonopolist. Their only 
onstraint is that they will not pay more that �u; thus, the �rm will 
hargeu a pri
e pu = �u. It follows that 
onsumer surplus is zero in the monopolist 
ase. Thus a �rmmaximising pro�ts is also, inadvertently, maximising the so
ial surplus.Observe that the �rm will refuse to servi
e a market u from a fa
ility v if �vu > �u. Thus a�rm 
an always obtain a marginal revenue of zero with respe
t to ea
h market. Thus our obje
tivefun
tion will not be a�e
ted if we assume that our bipartite graph is 
omplete and we have �vu � �ufor ea
h edge vu (that is setting �vu = �u where �vu > �u will not a�e
t the out
ome).For the fa
ility lo
ation problem, the �rm may open whi
hever fa
ilities it desires. So, formally,the fa
ility lo
ation problem ismaxA�W �(A) = maxA�W  Xu maxv2A (�u � �vu) � Xv2A 
v!In the k-median problem the �rm fa
es an additional 
onstraint in that it 
an open at most kfa
ilities. Formally, the k-median problem ismaxA�W;jAj�k �(A) = maxA�W;jAj�k  Xu maxv2A (�u � �vu) � Xv2A 
v!The performan
e of algorithms for these problems has been widely studied, (see, for example,[3℄,[11℄,[2℄,[5℄ and [1℄). Note, it is often assumed that for the k-median problem there are no �xed
osts i.e. 
v = 0;8v.We also remark that, re
ently, the minimisation versions of both these problems have also re-
eived widespread attention (see, for example, [4℄ and [7℄). The minimisation problems 
orrespondto minimising the total 
osts of servi
ing all the markets. The broader e
onomi
 viewpoint impliedby the traditional maximisation problem, though, allows for very 
lean 
ompetitive formulations.It is these formulations that we will now introdu
e.



156.2. the 
ompetitive problems.The base problems 
orrespond to the monopolisti
 situation. The 
orresponding 
ompetitive prob-lem is as follows. Instead of a single monopoly, suppose we have k 
ompeting �rms (or agents). Inthe 
ompetitive fa
ility lo
ation problem the number of fa
ilities ea
h �rm may open is unrestri
ted;whereas in the 
ompetitive k-median problem ea
h �rm may build at most one fa
ility (in fa
t, ourresults hold for a more general problem in whi
h �rm i 
an open at most mi fa
ilities). We allow�rms to build at the same lo
ation, but assume, however, that the 
osts di�er for ea
h �rm. Thus�rm i, 1 � i � k, may build a fa
ility at lo
ation v for a �xed 
ost 
iv. In addition, the marginal
ost of �rm i servi
ing a market u from a fa
ility at lo
ation v is �ivu. Again, the value of marketu is �u.The 
ompetitive situation di�ers markedly from the monopolisti
 
ase. Consider, for example,the pri
ing strategies of �rms in non-
ompetitive and 
ompetitive markets. We have seen that inthe monopolisti
 
ase there is no 
onsumer surplus; the monopoly gets all of the so
ial surplus foritself. In a 
ompetitive market, though, �rms have to 
ompete for the market u. Let �1u; �2u; : : : ; �kube the lowest marginal 
osts with whi
h the �rms 
an supply market u, i.e.�iu = min(�iv;u : �rm i has an open fa
ility at v)and let �u = mini �iu. What will happen in su
h a situation? Let I�u = fj : j = argmini �iug bethe 
olle
tion of most 
ompetitive �rms with respe
t to market u. Then, not surprisingly, a �rmi�u 2 I�u will 
ompete most eÆ
iently and will thus servi
e market u. However, the �rm will notbe able to 
harge �u; instead, it will only be able to 
harge the marginal 
ost of the se
ond mosteÆ
ient �rm. Thus u will pay a pri
e of pu = mini6=i�u �iu in order to be servi
ed. If the �rm i�utries to 
harge more than this it will be under-
ut by another �rm. Sin
e the pri
e pu may be lessthan �u, positive 
onsumer surpluses may now arise. Hen
e, the so
ial surplus is indeed sharedbetween the individual �rms and the 
onsumers; market u 
ontributes �u � pu to the 
onsumersurplus and pu � �u to the marginal pro�ts of the �rm that servi
es it. (It may be the 
ase thatmultiple �rms all have the lowest marginal 
osts with respe
t to a market u, that is jI�uj � 2. Insu
h 
ir
umstan
es we will assume that 
ustomers in u randomly allo
ate their 
ustom betweenthese �rms. The marginal pro�ts for these �rms will, though, be zero with respe
t to a market u,sin
e they will 
ompete away ea
h others pro�ts.)Let �i = fu : i 2 I�ug and nu = jI�uj. Then, given a set of a
tions A = A1 � A2 � � � � � Ak wehave:



16The pro�t of ea
h �rm i is !i(A) = Xu2�i (pu � �iu)nu �Xv2ai 
iv= Xu2�i(pu � �iu)�Xv2ai 
ivThe 
onsumer surplus is �(A) = Xu (�u � pu)= Xi Xu2�i (�u � pu)nuThe so
ial surplus is �(A) = Xu (�u � �i�uu )�Xi Xv2ai 
iv= Xi Xu2�i (�u � �iu)nu �Xi Xv2ai 
ivSo from a so
ial viewpoint it would be best for a single authority to dire
t where ea
h �rm shouldlo
ate in order to maximise the so
ial surplus (utility). However, the �rms themselves will 
hoosestrategies a

ording to their own private pro�t (utility) fun
tions. We next show, however, thatthese 
ompetitive formulations �t into the framework we have developed and, thus, we are able toobtain guarantees 
on
erning the so
ial performan
e on Nash equilibria in these fa
ility lo
ationproblems.Before doing so we remark that it is 
ommon pra
ti
e to present the fa
ility lo
ation problem,as we have done, in terms of building fa
ilities at spe
i�
 lo
ations in order to servi
e markets.This, though, appears to be at odds with the statement that, from a pra
ti
al point of view,our game-theoreti
 analysis is best suited to problems in whi
h strategies are easy to 
hange.Note, though, that we 
an view the problem in the following manner. Instead of fa
ility lo
ationde
isions we have �xed investment de
isions. These �xed investments enable the �rms to servi
evarious markets at spe
i�
 marginal 
osts. Thus, from this wider perspe
tive, the problem is thatof making �xed investments in order to allow a

ess to markets. From this perspe
tive these fa
ilitylo
ation problems are very suitable for a game-theoreti
 analysis, as it is quite plausible that theseinvestment de
isions 
an be easily adapted.6.3. the so
ial performan
e of nash equilibria in the fa
ility lo
ation problems.First we need to show that we 
an formulate both the 
ompetitive fa
ility lo
ation problem andthe 
ompetitive k-median problem appropriately for our purposes.



17Lemma 6.1. The 
ompetitive fa
ility lo
ation and k-median problems 
an be formulated in thea
tion set framework.Proof. Consider �rst the 
ompetitive fa
ility lo
ation problem. Re
all that for our base problemswe have a bipartite graph G = (W [ U;E). It follows that ea
h agent i has a groundset Vi = W .Now, sin
e a �rm may open fa
ilities at any set of lo
ations, we have Ai = fX : X � Vig. Next
onsider the 
ompetitive k-median problem. Again, ea
h agent i has a groundset Vi = W . Now,sin
e ea
h �rm may open at most one fa
ility we have Ai = ; [ fv : v 2 Vig. �Next we need to show that our so
ial utility (surplus) fun
tion is submodular.Lemma 6.2. The so
ial surplus fun
tion � is submodular.Proof. So �(A) =Xu (�u � �i�uu )�Xi Xv2ai 
iv = h(A) � g(A)Now, 
learly, g(A) + g(B) = g(A \ B) + g(A [ B), for A;B � V = [iVi. So it suÆ
es to showthat h is submodular i.e. Pu �i�uu is supermodular. In what follows, we add an a
tion set des
riptorto distinguish between the four types of a
tion set (A;B;A \ B and A [ B). Let i 2 Nu(A [ B).Without loss of generality, assume that �u(A[B) = �ivi;u where vi 2 A. Then �u(A[B) = �u(A).Clearly, however, �u(A \B) � �u(B). It follows that h(A) + h(B) � h(A \B) + h(A [B). �As mentioned, traditionally, the k-median problem is usually presented in the absen
e of �xed
osts i.e. 
iv = 0, 8i8v. Su
h a formulation gives the following property.Corollary 6.3. In the absen
e of �xed 
osts, the so
ial surplus fun
tion � is non-de
reasing.Proof. In the absen
e of �xed 
osts we have g(A) = 0, 8A � V . Clearly h is a non-de
reasingfun
tion, and hen
e � is also non-de
reasing. �Lemma 6.4. The system (�;[i!i) is a valid utility system. In parti
ular, the utility system isbasi
.Proof. Re
all that our private utility (pro�t) fun
tions are!i(A) = Xu2�i(pu � �iu)�Xv2ai 
ivWe now show that (�;[i!i) is a basi
 utility system, that is�0ai(A� ;i) = �(A)� �(A� ;i) = Xu2�i(pu � �iu)�Xv2ai 
ivThe 
hange in the so
ial utility is the in
rease in the total marginal pro�ts minus the in
rease inthe total �xed 
ost, when agent i 
hanges its a
tion from the null a
tion to a
tion ai. The in
rease



18in total marginal pro�ts, though, is just the sum over all markets of the extra eÆ
ien
y gained byi having a
tion ai. This, in turn, is the di�eren
e between the marginal 
osts of i, in those marketswhere it is the most eÆ
ient �rm, and the marginal 
osts of the next most eÆ
ient �rm. This isjust Pu2�i(pu � �iu). Clearly the total 
hange in the �xed 
osts is Pv2ai 
iv, as required. Hen
e,the system (�;[i!i) is a basi
 utility system. By Theorem 2.5, the utility system is also valid. �We are now in the position to apply Theorems 3.2 and 3.4. If we denote by FC(S) and MP (S)the expe
ted �xed 
osts and expe
ted marginal pro�ts, respe
tively, asso
iated with a solutionS 2 S, thenTheorem 6.5. For the 
ompetitive k-median and fa
ility lo
ations problems, any Nash equilibriumS 2 S satis�es opt � 2 ��(S) + FC(S) = ��(S) +MP(S) + ��(S)Proof. From Theorem 3.2 we have ��(
) � 2��(S) �Pi:si=�i ��0si(S � ;i)�Pi:si 6=�i ��0si(
 [ Si�1).On the addition of an extra �rm to the game, the so
ial surplus 
an deteriorate by at most the�xed 
osts in
urred by the new �rm. Thus the additive term is upper bounded by FC(S). Theresult then follows from the observation that MP (S)� FC(S) + ��(S) = ��(S). �We will see that Theorem 6.5 is tight. Let us �rst 
omment brie
y upon its impli
ations. Thetheorem tell us that our guarantee is good when either the �xed 
osts or the marginal pro�ts plus
onsumer surplus indu
ed by the solution S are small 
ompared to opt. Conversely, if the �xed
osts and marginal pro�ts plus 
onsumer surplus are both large then the overall so
ial performan
emay be very poor. Su
h a situation may arise in industries in whi
h there are high start-up 
osts
ombined with markets that 
ontain a 
olle
tion of highly valuable 
ustomers. As a result, �rmsmay over-supply the valuable 
ustomers (at the expense of less valuable 
ustomers) leading to awasteful dupli
ation of servi
es. Su
h examples are 
ommon in the high-te
h industry where theo

urren
e of high initial 
osts often allows a �rm a

ess to lu
rative markets. A less obviousexample is the health industry. Here there are very high �xed and initial 
osts in the a
tualprovision of health 
are, and also in the asso
iated revenue 
olle
tion system (e.g. insuran
e
ompanies, HMOs, �nan
e departments in hospitals, et
). In addition, the market also 
ontainsmany highly valuable 
ustomers from both the private se
tor (
ompanies with large workfor
es)and the publi
 se
tor (government supported Medi
are patients). In 
ontrast, there is a large 
lassof less valuable 
ustomers. The resulting so
ial ineÆ
ien
ies are illustrated by the large number ofuninsured 
itizens, as well as the dupli
ation of servi
es.In the absen
e of �xed 
osts, we obtain, from Theorem 3.4



19Theorem 6.6. Consider the 
ompetitive k-median problem in the absen
e of �xed 
osts. Then anyNash equilibrium S 2 S satis�esopt � (1 + Æ(�)) ��(S) � 2 ��(S) �6.4. pure strategy nash equilibria and fa
ility lo
ation.Observe that both fa
ility lo
ation problems have the desirable property that they possess purestrategy Nash equilibria. This follows from Theorem 4.1 and Lemma 6.4.Theorem 6.7. For the 
ompetitive fa
ility lo
ation and k-median problems there exist pure strategyNash equilibria. �6.5. tight examples.We previously 
laimed that Theorems 3.2 and 3.4 were both tight. We will now prove this usingthe following example 
on
erning the 
ompetitive 2-median problem shown in Figure 1. Let therebe two agents with two possible lo
ations, v1 and v2, at whi
h to lo
ate; we use the supers
ripts1 and 2 to distinguish between the respe
tive 
opies of vi, i 2 f1; 2g. In addition, there are fourmarkets u1; u2; u3 and u4. The value of ea
h market is one. All marginal 
osts are 1, ex
ept forthe six (represented by labelled edges) shown in the �gure. In addition, there are no �xed 
osts.Thus the so
ial surplus fun
tion is non-de
reasing and submodular.
u 1 u 2 u 4u 3

v 1
1 v 1

2 v 2
1 v 2

2

0 0 00 0

c v = 0

πu = 1

i

0

Figure 1. A tight example.The optimal strategy set is 
 = fv12 ; v21g, i.e. �rm 1 should use the pure strategy (a
tion) oflo
ating at v2, whilst �rm 2 should use the pure strategy of lo
ating at v1. Su
h a strategy pairingwill give a so
ial surplus of 4.We remark that the strategy set 
 is also a Nash equilibrium. However, there are other Nashequilibria. Consider though the pure strategy set S = fv11 ; v22g. It is easy to verify that this is alsoNash equilibrium. Ea
h �rm has a private pro�t of 1 under S, and if they 
hange their strategy(whilst the other sti
ks with its strategy) they still re
eive a pro�t of 1. The so
ial surplus of thisstrategy set is 2. Thus, the so
ial value of this Nash equilibrium is a fa
tor 2 o� that of the optimalsolution.



20 Next we show that Theorem 3.2 is also tight. To do this we, again, use an example from the2-median problem, see Figure 2. There are still two possible lo
ations, v1 and v2. However, wehave the following �xed 
osts. Firm 1 
an lo
ate at v11 for a 
ost 1, but 
an lo
ate at v12 for nothing;�rm 2 
an lo
ate at v22 for a 
ost 1, but 
an lo
ate at v21 for nothing. These �xed 
osts are shownboxed in Figure 2. We have two markets u1 and u2, both of whi
h have a value 1. All marginal
ost are also 1 ex
ept for the four shown, whi
h are zero.
v 1

1 v 1
2 v 2

1 v 2
2

u 2u 1

0 01 1

0 0 0 0

Figure 2. A tight example.The optimal strategy set is 
 = fv12 ; v21g, i.e. �rm 1 should use the pure strategy (a
tion) oflo
ating at v2, whilst �rm 2 should use the pure strategy of lo
ating at v1. Su
h a strategy pairingwill give a so
ial surplus of 2 (and private pro�ts of one ea
h).Again, the strategy set 
 is also a Nash equilibrium. However is is easy to 
he
k that the purestrategy set S = fv11 ; v22g is also Nash equilibrium. This Nash equilibrium has a so
ial surplus of0. The �xed 
osts of the solution, though, are 2. Similarly, the marginal pro�ts of the solution arealso 2. So Theorem 6.5 and, hen
e, Theorem 3.2 are tight.7. The Selfish Traffi
 Routing ProblemIn this se
tion we 
onsider the problem of routing traÆ
 in a network. Congestion in the network
auses delays and is 
ostly for individual agents and so
iety as a whole. It would help, therefore,if the traÆ
 
ould be dire
ted by a single authority. However, it is individual agents who maketheir own routing de
isions. Thus the problem appears suitable for analysis via our te
hniques. Inparti
ular, here we sket
h how a maximisation version of the sel�sh routing problem of Roughgardenand Tardos [16℄ �ts into our framework. They 
onsidered the following network routing problem.There is a dire
ted network G = (V;A) and k sour
e-destination vertex pairs, fs1; t1g; : : : ; fsk; tkg(note that we do not require k to be large). The 
olle
tion of paths from si to ti is denoted by Piwith P = [iPi. A 
ow is a fun
tion f : P ! R+ ; for a �xed 
ow f , we have fa = PP2P:a2P fP .Now f = [ifi where fi is a 
ow from si to ti. We will abuse our notation slightly and also denoteby fi the value of the 
ow fi; given the 
ontext this should not 
ause any 
onfusion.



21Ea
h ar
 a 2 A has a load-dependent laten
y fun
tion, denoted by la(f). The laten
y of a pathP with respe
t to a 
ow f is de�ned as the sum of the laten
ies of the edges in the path, denotedby lP (f) = Pa2A la(fa). The laten
y with respe
t to an agent i is li(f) =PPi2Pi lPi(f)fPi . Thelaten
y l(f) of a 
ow f is the total laten
y in
urred by f i.e.l(f) = Xa2A la(fa) fa = XP2P lP (f) fP = Xi li(f)In [16℄ the so
ial obje
tive is to minimise the total laten
y, given that a 
ow of value ri must berouted from si to ti. The private obje
tive of an agent i is to minimise its own laten
y i.e. li(f).We 
onsider a maximisation version of this problem. Ea
h agent may route a 
ow of weight atmost ri from si to ti. Asso
iated with ea
h sour
e-destination fsi; tig pairing is a value �i thatsigni�es the revenue (utility) from routing one unit of 
ow from si to ti. However, we still asso
iatewith a routing the laten
y-based 
ost. Thus, a 
ow f that su

essfully routes fi units of 
ow fromsi to ti will indu
e a pro�t to agent i of �i(f) = �i fi � li(f). Hen
e, the so
ial obje
tive is tomaximise the fun
tion �(f) = Xi �i(f) = Xi �i fi � li(f)and agent i seeks to maximise the private obje
tive fun
tion �i. We will now show that this problemalso �ts into our framework. To do this we will dis
retise the problem by assuming that 
ow maybe sent only in whole unit in
rements; for this problem it is not diÆ
ult to generalise the resultsto 
ontinuous spa
e.Lemma 7.1. The routing problem 
an be formulated in the a
tion set framework.Proof. The a
tion spa
e Ai of agent i 
onsists of any 
ow fi of value at most ri from si to ti. Wenow show how this �ts into our framework. For ea
h agent i we have a 
olle
tion of paths Pi fromsi to ti. The agent assigns a weight to ea
h path pi 2 Pi. Let the groundset Vi 
onsist of ri 
opiesof ea
h path pi i.e. p1i ; : : : ; prii . Here the 
hoi
e of ptr 
orrespond to the routing of t units of 
ow onpath pi.We may allow an agent to sele
t multiple 
opies of a path. In su
h a 
ir
umstan
e only thea
tion 
orresponding to the 
opy with the greatest amount of 
ow is implemented. (Alternatively,we may restri
t the a
tion spa
e of agent i to allow for the 
hoi
e of at most one 
opy of ea
h pathpi). Note that if no 
opy of pi is 
hosen then no 
ow is sent along that path. �Now 
onsider that laten
y fun
tions la(f). We will assume that these fun
tions are non-negative,non-de
reasing and 
onvex. Note that these assumptions 
orrespond to some natural properties oftraÆ
 systems. The non-de
reasing property implies that the 
osts in
urred in
rease as the volumeof the traÆ
 in
reases; the 
onvexity property implies that the additional 
osts in
urred (by adding



22an additional unit of traÆ
) in
rease as the volume of the traÆ
 in
reases. Observe that 
onvexityimplies that the laten
y fun
tions are supermodular when restri
ted to our dis
retised spa
e. Itfollows easily thatLemma 7.2. For the sel�sh routing problem, the so
ial obje
tive fun
tion � is submodular. �Lemma 7.3. For the sel�sh routing problem, the system (�; �i) is a valid utility system.Proof. We will show, for ea
h agent i, that �i(f) � �0fi(f � ;i). Now�0fi(f � ;i) = �(f)� �(f � fi)= Xj (fj �j � lj(f))� Xj:j 6=i (fj �j � lj(f � fi))= fi �i � li(f) + Xj:j 6=i (lj(f � fi)� lj(f))� fi �i � li(f)= �i(f)Thus (�; �i) is a utility system. We have already seen that �(f) = Pi �i(f) and, thus, the utilitysystem is valid. �So we then obtain the following guarantees.Theorem 7.4. For the sel�sh routing problem, any Nash equilibrium S 2 S satis�esopt � 2 ��(S)� Xi:si=�i ��0si(S � ;i)� Xi:si 6=�i ��0si(
 [ Si�1) �Thus we obtain a fa
tor 2 guarantee if, for example, ��0si(S � ;i); ��0si(
 [ Si�1) � 0, 8i. Analternative guarantee follows from Theorem 3.3. This 
ompares the value of a Nash equilibrium Sagainst the so
ial value of a parti
ular solution, S +
, that routes twi
e as mu
h traÆ
.Theorem 7.5. For any Nash equilibrium S 2 S, we have2��(S) � ��(
 [ S) + Xi:si=�i ��0�i(S � ;i) � ��(S +
) �A result of this 
avour also follows from the work of [16℄; the so
ial value of a Nash equilibriumis at least the so
ial value of the optimal solution that routes twi
e as mu
h traÆ
 when the allthe rewards �i are halved.If � is non-de
reasing (hen
e, it is always in the interest of agent i to route all ri units of 
ow),then from Theorem 3.4 we obtainTheorem 7.6. If � is non-de
reasing then, for the sel�sh routing problem, any Nash equilibriumS 2 S satis�es opt � 2 ��(S) �



238. Polynomial Time ConsiderationsOur dis
ussion regarding pure strategy Nash equilibria tou
hed upon the importan
e of speed
onsiderations in the strategy determination. We dis
uss this in more detail in this se
tion. Let usmeasure the size of the problem input in terms of the size of the groundsets Vi, 1 � i � k. It wouldbe useful if we obtained a Nash equilibria in polynomial time in the problem size. Two fa
tors areimportant here:(i) Bounding the number of times an agent 
hanges strategy before a Nash equilibria is obtained.(ii) Bounding the time an agent takes to de
ide upon a strategy.How to bound the number of iterations required before 
onvergen
e to a Nash equilibria is animportant open question. In the presen
e of pure Nash equilibria, as we have seen, the overallsize of the state spa
e gives one upper bound. We note, however, that good guarantees may beobtained within a 
onstant number of iterations (we only need ea
h agent to 
hange strategies a
onstant number of times). That is, solutions that arise long before we rea
h a Nash equilibriaalso provide good guarantees. Thus, although these solutions may not be stable, they do give goodperforman
e. We omit the details here.Regarding the se
ond fa
tor, if the size of the a
tion spa
e Ai of agent i is polynomial in jVij, thenthe agent 
an easily �nd its best strategy in polynomial time. However, the a
tion spa
e Ai maybe as large as 2jVij. Thus in some 
ir
umstan
es it may not be possible to �nd an optimal strategyqui
kly. It may, though, be possible to obtain approximately optimal strategies in polynomialtime. We will show that the use of approximation algorithms by the agents in their strategydetermination does lead to guarantees on the so
ial performan
e of Nash equilibria. We have onediÆ
ulty to over
ome though. The use of approximately optimal strategies is not 
onsistent withthe 
on
ept of a Nash equilibria. That is, approximately optimal strategies are not the optimalbest response strategies required by Nash equilibria. Thus, we are really using approximate Nashequilibria. They are equilibria in the sense that no agent 
an �nd (by whatever methods they areusing) a better alternative strategy in polynomial time.So suppose that ea
h agent has a

ess to an approximation algorithm at ea
h stage. Let thesealgorithms have an approximation guarantee of �, say. Then, Theorem 3.2, Theorem 3.3 andTheorem 3.4 apply (with slightly weaker guarantees) to approximate Nash equilibria. For example,if our so
ial utility fun
tion is non-de
reasing, we have the following theorem.Theorem 8.1. Let 
 be a non-de
reasing, submodular set fun
tion, and (
;[i�i) be a valid util-ity system. If the agents 
an generate �-approximate solutions, then for any approximate Nash



24equilibrium S 2 S we haveopt � (� + Æ(
)) �
(S) � (� + 1) �
(S) �For an example 
onsider the 
ase of matroids. A matroid T is a family of subsets of V su
h that(i) ; 2 T .(ii) If Y 2 T and X � Y , then X 2 T .(iii) If X;Y 2 T and jXj < jY j, then 9y 2 Y �X su
h that X [ fyg 2 T .Fisher, Nemhauser and Wolsey [6℄ gave a simple 2-approximation algorithm for the problem ofmaximising a non-de
reasing, submodular fun
tion over a matroid. Thus, if ea
h a
tion set Ai isa matroid then we haveCorollary 8.2. Let 
 be a non-de
reasing, submodular set fun
tion, and (
;[i�i) be a valid utilitysystem. If ea
h Ai is a matroid, then we obtain an approximate Nash equilibrium S 2 S withopt � (2 + Æ(
)) �
(S) � 3 �
(S) �9. Multiple-Item Au
tionsConsider the following 
lass of au
tion: there is one seller (au
tioneer) with a set J of n di�erentitems, and a set of k potential buyers (agents) who have a private valuation for ea
h subset ofitems. One form of au
tion within this 
lass is 
ombinatorial au
tions. These are au
tions in whi
hagents may make bids on subsets of items (
ombinatorial bids), rather than just bids on individualitems. There is a very large literature on 
ombinatorial au
tions; see de Vries and Vohra [17℄ for asurvey. The following are fa
tors whi
h the seller may wish to 
onsider when designing an au
tionstru
ture in whi
h to sell the items.(1) Simpli
ity: the rules of the au
tion should be easily understood.(2) Fairness: agents need to believe that the rules of the au
tion are fair.(3) Speed: the au
tion should not take too long to 
omplete.(4) EÆ
ien
y: the seller may wish to allo
ate the items to maximise the so
ial value.(5) Revenue: the seller wants to maximise the total revenue it re
eives from the au
tion.Note that goals 4) and 5) may not be 
ompatible. Hen
e, in this se
tion we will fo
us on goals1) to 4). We will also be 
on
erned with the 
ase in whi
h the private valuation fun
tion vi, forea
h buyer i, is submodular i.e. the marginal valuations are non-in
reasing. Re
ently, Lehmann,Lehmann and Nisan [9℄ 
onsidered the allo
ation problem indu
ed by this framework. There, asingle authority wishes to �nd an allo
ation of optimal eÆ
ien
y (so
ial value). They present apolynomial time algorithm that produ
es an allo
ation with so
ial value at least one half that ofthe optimal solution, provided that the agents valuations are submodular. Their approa
h is as



25follows. The authority knows (or has a

ess to) ea
h agents valuation fun
tion. The authoritythen greedily assigns one item at a time, say in the order 1; 2; : : : ; n. Let V (j) the be value of theallo
ation after the jth item is assign. Item j + 1 is then assigned to the agent so as to maximiseV (j + 1) � V (j). That is, item j + 1 is assigned to the agent with the highest marginal valuationfor the item, given the allo
ation of items 1; 2; : : : ; j. It 
an be shown that the allo
ation produ
edby su
h a pro
ess is, indeed, at least half optimal.Again, our interest is in the 
ompetitive situation in whi
h the seller and buyers all seek tomaximise their own utility. We present a simple 
lass of multi-round au
tion that is guaranteed toprodu
e an allo
ation within a fa
tor 2 of optimal, despite the valuation fun
tions being privateknowledge and with the sellers and buyers a
ting in a sel�sh manner. Moreover, the allo
ationpro
edure of [9℄ 
an easily be implemented within this 
lass of au
tion.9.1. the rules of the au
tion.We now give the rules of the au
tion. In the �rst round, the seller sets a pri
e pj for ea
h itemj in the au
tion. Ea
h buyer then states whi
h items it is willing to pur
hase at these pri
es.If more than one agent a

epts the pri
e pj then in the next round the au
tioneer will raise thepri
e (by any amount it 
hooses) of item j. If no agent a

epts the pri
e pi then in the nextround the au
tioneer will lower the pri
e (by any amount it 
hooses) of item j. After ea
h roundthe au
tioneer announ
es provisional winners for ea
h item. The provisional winner of an itemwill be randomly sele
ted from amongst those agents that have the highest bid for the item. Theannoun
ement of provisional winners tells the agents who will win the items if the au
tion wereto terminate at that time. This information allows the agents to make bids with the knowledgeof whether their bids from previous rounds have been \a

epted". Provisionally winning bids are
onsidered binding and 
annot be withdrawn. A provisionally winning bid for an item only 
easesto be of interest after a higher bid for that item has been made. However, in future rounds, agentsmay ignore any bids they made that were not provisionally winning. The au
tion terminates whenthere is exa
tly one bidder for ea
h every item, and no agent wishes to 
hange its bid (that is, bidfor a set of items that is a superset of its 
urrent set of winning items).[We remark that it is important that provisionally winning bids 
annot be withdrawn; if bids
an be withdrawn then the results (that will follow) regarding polynomial time 
onvergen
e arelost. It should be noted, however, if this au
tion did allow the withdrawal of bids then we woulda
tually 
onverge to an optimal allo
ation. To see this, suppose that fT1; T2; : : : ; Tkg is an optimalallo
ation but fS1; S2; : : : ; Skg is the solution produ
ed by the au
tion, with termination item pri
esfp1; p2; : : : ; png. Now for ea
h agent, vi(Si)�Pj2Si pj � vi(Ti)�Pj2Ti pj otherwise agent i would



26have 
hanged its bid to Ti. Summing over all agents we haveXi vi(Si)�Xi Xj2Si pj � Xi vi(Ti)�Xi Xj2Ti pjXi vi(Si)�Xj2J pj � Xi vi(Ti)�Xj2J pjXi vi(Si) � Xi vi(Ti)Thus, fS1; S2; : : : ; Skg is an optimal allo
ation.℄9.2. performan
e guarantees.It is 
lear that this au
tion does satis�es the goal of simpli
ity. It also satis�es the goal of fairnesssin
e the highest bidder for an item wins it (with possibly a random 
hoi
e in the 
ase of a tie). In
ontrast, note that in 
ombinatorially au
tions it is not always 
lear to the agents that items areallo
ated in a \fair" manner. Next, we 
onsider the issue of eÆ
ien
y. In order to do this we needto examine the a
tions of agents in su
h an au
tion. Fa
ed with a set of pri
es how do the agentsrea
t. To begin with we will assume that the agents a
t in a myopi
ally rational manner, see [13℄,that is, they make a best response to the 
urrent pri
es and allo
ation. Hen
e an agent \bids" onall the items in a subset that maximise its utility given the stated pri
es (this in
ludes all it bidsthat are 
urrently provisionally winning bids). Later we will show that our performan
e guaranteesstill hold even when the agents are allowed to make lo
ally myopi
ally optimal bids (to be de�ned).This generalisation is useful as it is easy for the agents to �nd lo
ally myopi
ally optimal bids,whereas obtaining the myopi
ally optimal bid may take exponential time.Note that the valuation fun
tions of an agent are submodular. Thus, sin
e we have a �xedpri
e per item, the private utility fun
tions (i.e. private valuation minus au
tion pri
e) are alsosubmodular. Now, at a given stage in the au
tion, suppose that agent i has provisionally winningbids for a set Si of the items at the 
urrent pri
es. Then, sin
e bids 
annot be withdrawn, in thenext stage the agents must optimise with respe
t to the groundset J �Si. That is, the agent mustlook to bid on other items given that it has already bid for Si. For example, when 
onsidering aset X � J � Si, the agent must evaluate the set by 
onsidering vi(X [ Si) not vi(X), sin
e theagent is already 
ontra
ted to buy Si (the agent stops being 
onta
ted to buy an item j in Si onlyif the pri
e pj rises in a later phase and another agent a

epts the new pri
e but agent i does not).Let us 
onsider the utility to agent i if it is allo
ated the set Si in the au
tion. The agentpays a pri
e p(Si) = Pj2Si pj for the set of items and, thus, re
eives a private utility of ui(Si) =vi(Si) � p(Si). So the goal of the ea
h agent is to maximise its private utility. The so
ial utilitydenoted by �(S) is just the sum of the values of the sets in the allo
ation produ
ed by the bidding



27strategies S = fS1; : : : ; Skg. Observe that �(S) also equals the sum of the private utilities plus therevenue from the au
tion (that is, the utility of the au
tioneer).Lemma 9.1. Take a Nash equilibrium S, then for any agent i, we haveui(S) = �(S)� �(S � ;i)� p(Si)Proof. Note that a Nash equilibrium 
orresponds to a 
ompleted au
tion. Thus, ea
h agent i issold the subset Si of items it bid for. Re
all that we may view only the provisional winning bidsas being binding and hen
e we may assume that no other agent has a binding bid on any of theseitems. Therefore �(S)� �(S �;i) = vi(Si). To see this, note that if agent i were able to withdrawits bids then the so
ial value of the au
tion would fall by vi(Si) sin
e no other bidders has a bindingfor those items at the 
urrent pri
es. Now ui(S) = vi(Si)� p(Si) and the lemma follows. �In order to apply our results we must ensure that our au
tion 
an be implemented in ourframework. This, though, is easy. Assume that the au
tioneer has set the pri
es, then an a
tion ofagent i is just a subset of the groundset i.e. whi
h item pri
es the agent a

epts. For the purposesof analysis we may \pretend" that there are multiple 
opies of ea
h item, and that ea
h agentre
eives a 
opy of an item if the agent a

epts an item pri
e. This allows us to assign a so
ial valueto out
omes like �(
 [ S) whi
h were used in the previous proofs (the so
ial value is just the sumof the values of the set of items assigned to ea
h agent). Note that for any real au
tion solutionsthough, for example S and 
, there must be exa
tly one winning bid for ea
h item.So the au
tion does �t into our framework, but it is not immediately obvious that we 
an nowapply Theorem 3.2. This is be
ause we have ui(S) = ��0si(S) � p(Si) rather than ui(S) = ��0si(S).Fortunately, however, we also have �(S) = Pi ui(S) +Pi p(Si) rather than �(S) = Pi ui(S). Itis easy to 
he
k that these di�eren
es 
an
el ea
h other out in the proof, and so it follows thatTheorem 3.2 does indeed hold in this au
tion problem.We will make the standard assumption that there are zero disposable 
osts. Thus, the privatevaluation fun
tions vi are non-de
reasing. Sin
e we evaluate (possibly non-feasible) solutions fromthe \multiple-
opies" viewpoint that all bids are a

epted, it follows that � is a non-de
reasingfun
tion. Hen
e by Theorem 3.4 we obtainTheorem 9.2. The so
ial value of any au
tion solution S satis�esopt � (1 + Æ(�)) ��(S) � 2 ��(S) �It is also easy to 
he
k that Theorem 5.3 still applies given Lemma 9.1. Thus we haveTheorem 9.3. The au
tion has pure strategy Nash equilibria. �



28 So given that the agents bid in a myopi
ally rational manner, the au
tion produ
es an allo
ationwith eÆ
ien
y within a fa
tor 2 of the most eÆ
ient allo
ation.
9.3. fast implementations.As mentioned, in the 
ase of au
tions fast implementation is very important. In pra
ti
e, thismeans take the time required for the au
tion should be polynomial in the number of items. Herewe will outline some of the issues involved. Firstly, how long does ea
h round take? Until nowwe have assumed that ea
h agent bids in a myopi
ally rational manner and, thus, maximises asubmodular obje
tive fun
tion at ea
h round. This may be too time 
onsuming for our purposes.However, the performan
e guarantees hold even when the agents bid in a simple lo
ally optimal(greedy) manner at ea
h stage. Agent i when fa
ed with a set of pri
es fp1; p2; : : : ; png greedily
hooses a subset Si as follows. Initially Si = ;. Add to Si an item j su
h that ui(Si[fjg) > ui(Si),that is vi(Si [ fjg) > vi(Si) + pj, then repeat. If no su
h item exists then stop.We now dis
uss why su
h a strategy is lo
ally myopi
ally optimal. First note that su
h abidding strategy restri
ts agent i to bid for a set of items Si with the property that ui(Ti) � 0, forall Ti � Si. We 
all this the risk-free property; we say that a bidding strategy that is not risk-freeis risky. To see why the agents (without any information regarding the private valuations of theother bidders) will wish to adopt a risk-free bidding strategy, suppose instead that an agent adoptsa risky strategy. It is then easy to provide the other agents with private valuations that ensurethat the agent re
eives a set X that indu
es a negative utility. Thus, without any informationregarding the private valuations of the other bidders, the agents will wish to restri
t their attentionto risk-free bidding strategies. In addition, the bidding strategy given above, also ensures that anagent bids for a maximal risk-free sets. These maximal sets are lo
ally myopi
ally optimal; to seethis, suppose we have a risk-free set Si that is not maximal, then there is an item j su
h thatui(Ti [ fjg) > ui(Ti), for all Ti � Si.It 
an easily be shown that if the agents make maximal risk-free bids then a fa
tor two approxima-tion guarantee is also obtained. We sket
h a proof. Su
h bids ensures that ea
h agent has positiveutility; thus, �(S) � rev, where rev is the revenue the au
tioneer re
eives from the au
tion. More-over, it 
an also easily be shown that �(S) � opt�rev. To see this, suppose that fT1; T2; : : : ; Tkgis an optimal allo
ation but fS1; S2; : : : ; Skg is the solution produ
ed by the au
tion, with termina-tion item pri
es fp1; p2; : : : ; png. Now for ea
h agent, vi(Si)�Pj2Si pj � vi(Si [ Ti)�Pj2Si[Ti pjotherwise there is an item j 2 Ti � Si su
h that ui(Si [ fjg) > ui(Si) and agent i would not have



29bid for Si. Summing over all agents we haveXi vi(Si)�Xi Xj2Si pj � Xi vi(Si [ Ti)�Xi Xj2Si[Ti pjXi vi(Si) � Xi vi(Si [ Ti)�Xi Xj2Ti pjXi vi(Si) � Xi vi(Ti)�Xi Xj2Ti pj�(S) � opt� revThe result then follows.We 
an polynomially bound, using standard bise
tion method te
hniques, the number of roundsrequired to 
omplete the au
tion easily. For example, we now show how the allo
ation pro
edureof [9℄ 
an be implemented by su
h an au
tion. The au
tioneer initially announ
es a set of pri
esfp1; p2; : : : ; png = fV; V; : : : ; V g (where V is an upper bound on the value any bidder atta
hes toany single item) and then 
hanges the pri
es of ea
h item, in turn, until there is exa
tly one bidderfor the item. Note that, when an item is 
onsidered the items that still have pri
e V will have nobidders. It follows that the agent that has the greatest marginal valuation for that item (given the
urrent allo
ation indu
ed by the items that have already been 
onsidered) will be the agent thatmakes the highest bid on the item. Note that, by submodularity, no agent will want to bid for anitem in a later round after it has been 
onsidered (even though su
h bids are allowed). Thus weobtain assignment pro
edure of [9℄, and the implementation time is polynomial in the number ofitems. To see this observe that, by bise
tion te
hniques, the number of rounds required to 
ompletethe au
tion is at most O(n log V ).Remark An obvious question here is whether better performan
e guarantees 
an be obtained inau
tions whi
h allow 
ombinatorial bidding.A
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