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Causal tree of disease transmission

and the spreading of infectious diseases

Alexei Vázquez

Abstract. We represent an epidemic outbreak by its causal tree of infec-
tion transmission, where nodes represent infected agents and arcs represent
the disease transmission from an agent to another. The tree structure allows
us to calculate different magnitudes quantifying the epidemic outbreak using
iterative approaches. We focus on the expected outbreak size, and analyze
its temporal evolution for different reproductive number and generation time
distributions. We show that when the expected reproductive number is un-
bounded the outbreak size is proportional to agent population size and the
temporal evolution is slower than exponential. The proposed framework can
be used to model epidemic outbreaks using both empirical data obtained from
previous outbreaks or by characterizing the contact process responsible for the
disease transmission.

1. Introduction

A general framework for the mathematical modeling of epidemic spreading
should allow us to understand the main features of the spreading dynamics, as well
as being able to accommodate realistic spreading mechanisms and statistical prop-
erties obtained from empirical data. Mathematical approaches based on the mixed
population hypothesis have been quite successful in this direction, determining the
temporal evolution of the expected number of infected individuals with the estima-
tion of a few parameters [2, 10]. These models have also been extended to include
different transmission rates in a heterogeneous population [21, 23] and realistic
distributions of infectious periods [20].

More recently, the partial mapping of several contact networks underlying the
transmission of biological and computer viruses is making possible the development
of network modeling frameworks. [29, 22, 26, 3, 24, 12, 34]. We can now perform
numerical experiments modeling the possible outbreak scenarios of an infectious
disease in a real environment, such as the spreading of an airborne virus within an
urban settlement [12, 24] or a computer virus via email [3, 34]. Some analytical
frameworks have also been developed to characterize the spreading dynamics on
networks, explaining some features observed in the numerical simulations, such as
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the existence or absence of an epidemic threshold [29, 28, 22, 5], the final outbreak
size [25, 26, 24], and the spreading velocity [4].

Yet, we are still lacking a general network approach that allows us to incor-
porate empirical distributions of disease transmission times and reproductive num-
bers. Some hints in this direction can be obtained from the Belmman-Harris age-
dependent branching process [15]. Further work is, however, required to extend
their results to the case of an unbounded expected reproductive number. This
last point is of particular importance since it has been recently noted that several
graph representations of real systems are characterized by a degree distribution
with a power law tail [1], and in this case the expected reproductive number may
be unbounded [7, 29].

In this work we study the spreading of an infectious diseases within an agent
population. We use the generic term agent to identify the entity that can host and
transmit the disease. In turn we use the generic term disease to identify the entity
that can be hosted by an agent and transmitted from an agent to another. Obvious
examples are the transmission of infectious diseases, such as SARS or AIDS, among
humans. Less obvious examples are the spreading of ideas and rumors (“infections
of the mind”) among humans. Other examples are found within electronic com-
munications, such as the spreading of computer viruses, chain letters and hoaxes
among computer users [14].

We represent the spreading process by the causal tree of disease transmission.
The causal tree is a rooted and weighted tree containing all the disease transmis-
sions instances: agent A infected agent B, and their generation times, the time
elapsed between the infection of B by A. Each individual in the causal tree is char-
acterized by its reproductive number, giving how many other agents it infects, and
the generation times. In Section 2 we characterize the statistical properties of the
reproductive numbers and generation times, focusing on two different scenarios: 1-
the disease spreading on a graph, such as the spreading of a virus on the Internet,
and 2- the disease spreading through a contact process, such as sexual contacts.
We emphasize that in several communication systems the expected reproductive
number is unbounded, meaning that it diverges with increasing the system size.
Next, in Section 3 we characterize the statistical properties of an epidemic out-
break exploiting the recursive iteration of the local spreading properties studied
in Section 2. In particular, we determine the temporal evolution of the expected
number of infected agents, leaving the calculation of higher moments for future
work. For the case of a bounded expected reproductive number we reproduce some
results obtained for the Bellman-Harris age-dependent branching process [15]. We
also characterize the case of an unbounded expected reproductive number, which
exhibit some new features. In this case the outbreak is extensive once it starts,
meaning that the expected number of infected agents is proportional to the agent
population size, while the temporal evolution of the initial epidemic growth is slower
than exponential. The implications of these results to the disease spreading among
humans and computers are discussed.

2. Local disease transmission

Consider the spreading of an infectious disease on a population of N0 susceptible
agents and, within that population, consider a probe agent i that became infected
and potentially could transmit the disease to other agents (see inset of Figure 1).
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Figure 1. Causal tree of disease transmission: Schematic
representation of a causal tree of disease transmission. Each node
in the tree represents an infected agent and each arc represents
the disease transmission from one agent to another: primary case
→ secondary case. We explicitly distinguish between patient zero
(big circle) and other infected agents (smaller circles). Within the
dashed square we consider a probe node, its out-degree giving its
reproductive number and the arc’s lengths giving the generation
times.

We make an explicit distinction between the first infected agent (i = 0), or patient
zero, and infected agents other than patient zero (i = 1, . . . , N0 − 1). The infection
of patient zero comes from an exogenous source, such as an animal host in the case
of human diseases or a hacker in the case of computer viruses. The infection of
other agents, however, come from another agent that was infected at some previous
time. Thus, we could imagine patient zero as any patient selected at random, while
the disease transmission introduces some biases in the statistical properties of the
agents being subsequently infected [23, 2, 29].

The probe agent will be characterized by the reproductive number and the
generation time:

Definition 2.1. The reproductive number Ri is the number of secondary in-
fectious generated by agent i, given it is infected.

Definition 2.2. The generation time Gij , is the time elapsed from the infection
of a primary case i to the infection of a secondary case j.

We assume that the agent’s reproductive numbers are independent random variables
prescribed by the probability distributions rk = P{R0 = k} and r̃k = P{Ri =

k|i > 0}, with expected reproductive number R =
∑

k rkk and R̃ =
∑

k r̃kk,
respectively. We also assume that the generation times are independent random
variables with the distribution functions G(τ) = P{G0j ≤ τ |j > 0} and G̃(τ) =
P{Gij ≤ τ |i, j > 0}, with probability density functions (pdf) g(τ) = dG(τ)/dτ and
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g̃(τ) = dG̃(τ)/dτ , respectively. In the following we are going to deduce expressions
for the expected reproductive numbers and the generation time distributions for
two different scenarios. The first one is the disease transmission on an existing
structure, such as the spreading of a computer virus on the Internet. The second
is the disease transmission through a contact process, such as the transmission of
sexually transmitted diseases through sexual contacts.

2.1. Spreading on an existing graph. The statistical properties of the
reproductive number of agents lying on a graph has been studied in [7, 27, 26,

29, 28]. We analyze then here to emphasize the observation of an unbounded
reproductive number.

Consider a population of susceptible agents represented by a simple undirected
graph, where vertices represent agents and edges represent disease transmission
channels. The graph is assumed to be static, meaning that its adjacency matrix
remain invariable during the course of the disease spreading. The degree of a vertex
is given by the number of edges incident to it and represents the potential repro-
ductive number of the corresponding agent. We make the following assumptions:

(i) The graph is a random graph with a given degree distribution ps.
(ii) Given an infected vertex i and one of its neighbors j, the infection is

transmitted from i to j with probability b, independently of the time
when it happens.

(iii) Patient zero is any vertex selected at random.
(iv) The timing of the disease transmission from an infected vertex to its sus-

ceptible neighbors is independent of the graph topology.

Under these approximations we obtain that

Theorem 2.3. If (i)-(iv) are satisfied then

(2.1) R = b
∞
∑

s=1

pss

(2.2) R̃ = b

∑∞

s=1 s(s − 1)ps
∑∞

s=1 sps
.

Proof. If the probe agent is represented by a vertex with degree s then from
(ii) it follows that it infects k, k = 1, . . . , s, of its neighbors with probability

(2.3) vk(s) =

(

s

k

)

bk(1 − b)s−k .

If the probe agent is patient zero then from (iii) it follows that it has degree s with
probability ps, resulting in

(2.4) rk =
∞
∑

s=k

psvk(s) .

From this equation we obtain the expected reproductive number in (2.1).
If the probe agent is an infected agent other than patient zero, represented by

a vertex with degree s, then it can infect at most s− 1 other agents, the remaining
agent being the one from where it received the infection. Furthermore, this probe
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Figure 2. (a),(b),(c) Degree distribution of three graphs repre-
senting different communication networks. (a) Autonomous sys-
tem representation of the Internet. (b) Router representation of the
Internet. (c) Gnutella peer-to-peer network. For more information
about the statistical properties of these graphs see [33, 30]. The
continuous lines represent power law tails ps ∼ s−γ with γ = 2.1
(a), 2.4 (b) and 2.0 (c). (d) Probability density function u(λ) of
the rate λ at which email users send emails, as obtained from the
dataset reported in [11]. The continuous line represents a power
law tail u(λ) ∼ λ−γ with γ = 2.0.

agent is not a vertex selected at random, but a vertex at the end of an edge selected
at random. In the case of random graphs with a fixed degree distribution the vertex
at the other end has degree s with probability sps/

∑∞

l=1 sps [27], resulting in

(2.5) r̃k =

∞
∑

s=k+1

sps
∑

∞

l=1 lpl
vk(s − 1) .

From this equation we obtain the expected reproductive number in (2.2).
�

The degree distribution of many real graphs has the power law tail ps ∼ s−γ ,
with 2 < γ < 3 [1]. Some representative examples of electronic communication
networks are shown in Figure 2(a),(b),(c). When 2 < γ < 3 from (2.2) we obtain

that R̃ is unbounded, where by unbounded we mean that R̃0 → ∞ when the agent
population size tends to infinity. This fact has dramatic consequences on the global
spreading of the disease (see Section 3).

Example 2.4 (Email based computer worms). An email based computer worm
is a “malicious” code that arrives to an email user (agent) via an infected email
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and, when activated by the email user, self-broadcast to all the email addresses on
its address book. In this case b represents the probability that the infected email is
opened by the email user, and the graph is the address book graph [3]. An email
user receiving an infected email could open it during one email access session. The
duration of an email access session is generally much smaller than the time between
to email access sessions and, therefore, each email access session can be considered
as instantaneous. We model the sequence of l = 1, 2, . . . email access sessions as a
renewal process [13], where the times Al between the l and l + 1 access sessions
are independent random variables with a common distribution A(τ) = P{Al ≤ τ},
with expected value µA. The event of receiving an email is uncorrelated with the
event having an email access session, implying that the time at which an email
is received is any time selected at random. Thus, the generation time, the time
elapsed until its opening, is the time interval till the next email access session. This
time is the residual waiting time in renewal theory, and is distributed according to
[13]

(2.6) G(τ) = G̃(τ) =
1

µA

∫ τ

0

dτ ′ [1 − A(τ ′)] .

Hence, to model the spreading of an email based computer worm we need to collect
empirical data about the email users’ address books and the timing of their email
access sessions.

2.2. Spreading through a contact process. Consider a population of N0

susceptible agents and a contact process among them responsible for the disease
transmission. A typical example is the spread, through sexual contact, of a sexually
transmitted disease on a population of sexually active individuals. To model the
disease spread we assume that:

(i) Given an agent i, i = 1, . . . , N0, the sequence of times when it establishes
a contact is modeled by a renewal process [13], with the inter-contact
time distribution function Ci(τ), pdf ci(τ) = dCi(τ)/dτ , and expected
value Λi.

(ii) Λi are independent random variables with the distribution function U(λ) =
P{Λi ≤ λ}, pdf u(λ) = dU(λ)/dλ and expected value µU .

(iii) On each contact m, m = 1, 2, . . ., other agents are simultaneously con-
tacted with probability qm, with expected value M =

∑

∞

m=1 qmm.
(iv) The agent’s population is homogeneous regarding the disease transmission

probability upon contact, characterized by the probability b(t) that the
disease is transmitted at time t given a contact is established and the
agent became infected at time t = 0.

(v) Patient zero is any agent selected at random.

The agent distinction in (i) and (ii) allows us to consider heterogeneous populations
where different agents may establish contacts with different rates [21, 23, 2]. The
fact that more than one agent can be contacted simultaneously (iii) allows us to
consider contact processes with concurrency. This is the case of sexually transmit-
ted diseases, where a sexually active individual may maintain sexual relations with
more than one sexually active individual during a certain period of time [2], and
of email contacts, where an email may be sent to more than one recipient. Under
these approximations we obtain
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Theorem 2.5. If (i)-(v) are satisfied then

(2.7) R =

∫

∞

0

dtβ(t)

(2.8) G(τ) =
1

R

∫ τ

0

dtβ(t) ,

where

(2.9) β(t) = Mb(t)
1

N0

N0
∑

i=1

∞
∑

l=1

cl?
i (t) ;

and

(2.10) R̃ =

∫

∞

0

dtβ̃(t)

(2.11) G̃(τ) =
1

R̃

∫ τ

0

dtβ̃(t) ,

where

(2.12) β̃(t) = Mb(t)
1

N0µU

N0
∑

i=1

Λi

∞
∑

l=1

cl?
i (t) .

where ? denotes the convolution operation: f ? g(t) =
∫∞

0
df(τ)g(t − τ) and f l?(t)

is the l-th order convolution of f(t).

Proof. Consider a probe agent i that became infected at t = 0. This agent
establishes contacts at later times ti1, ti2, . . . potentially infecting the contacted
agents. Following (i) the contacting times are given by

(2.13) til =

l
∑

n=1

τin ,

where τin are independent random variables with the identical distribution Ci(τ).
Let Ril be the number agents it actually infects on the l-th contact, resulting in
the reproductive number

(2.14) Ri =

∞
∑

l=1

Ril .

The number of agents infected on each contact is determined by qm and b(t), and
therefore it is independent of i. Thus, in the following we drop the subscript i when
writing Ril. We obtain that

(2.15) P{Rl = s}(t) =

∞
∑

m=s

qm

(

m

s

)

b(t)l[1 − b(t)]m−s .
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If the probe agent is patient zero then from (v), (2.14) and (2.15) it follows that

(2.16) rk =
1

N0

N0
∑

i=1

∞
∏

n=1

∫ ∞

0

dCi(τn)

∞
∑

sl=0

δk,
P

∞

l=1
sl

∞
∏

l=0

P{Rl = sl}

(

l
∑

n=1

τn

)

,

where δij is the delta Kronecker symbol (δii = 1 and δij = 0 for all i 6= j).
From (2.16) we obtain the expected reproductive number in (2.7), where β(t) is
the expected number of agents that patient zero infects between time t and t + dt.
Finally, by definition G(τ) =

∫ τ

0
dtβ(t)/

∫

∞

0
dtβ(t) resulting in (2.8).

If the probe agent is an infected agent other than patient zero then it is not an
agent selected at random, but an agent that has already established a contact with
an infected agent. In this case we take into account that agents with frequent con-
tacts are more susceptible to become infected, and subsequently will transmit the
disease at higher rates. To be more precise, the probability that agent i establishes
a contact between time t and t + dt is given by Λi. In turn the total number of
agents establishing a contact between time t and t + dt is given by N0µUdt. Thus,
if an infected agent establishes a contact between time t and t + dt with another
agent then this other agent is i with probability Λi/N0µU . The rest of the proof is
similar to that for patient zero after replacing (N0)

−1
∑

i by (N0µU )−1
∑

i Λi.
�

Example 2.6 (Poisson contact process). If agent i establishes contacts at a
constant rate Λi then Ci(τ) = 1 − eΛiτ [13]. In this case from (2.7)-(2.11) we
obtain

(2.17) R = µUM

∫

∞

0

b(t) ,

(2.18) R̃ =
µ2U

µU
M

∫ ∞

0

b(t) ,

(2.19) G(τ) = G̃(τ) =

∫ τ

0 b(t)
∫

∞

0
b(t)

,

where µ2U =
∫

∞

0
dU(λ)λ2 is the second moment of the contact rate distribution.

Note that the generation time distributions are only determined by the transmission
probability b(t). Indeed, when the contacts are established at a constant rate the
distribution of the time when an actual disease transmission takes place will only
depend on b(t). It is also worth noticing that in the long time limit a renewal
process with renewal time distribution Ci(τ) can be approximated by a Poisson
process with rate [13]

(2.20) Λi =
1

∫∞

0 dCi(τ)τ
.

Hence, (2.17)-(2.19) may be a good approximation even when the contact process
underlying the disease transmission is not a Poisson process.
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When analyzing sexually transmitted diseases u(λ) represents the pdf of the
rate λ at which sexually active individuals acquires new sexual partners. Empirical
data collected for several countries reveals that u(λ) is characterized by a power
law tail u(λ) ∼ λ−γ [18, 17, 31]. The exponent γ resulting from the fit to the
empirical data has values close to but larger than three. These observations should
be considered with caution since γ is close to three and further refined measurements
may reveal that γ is smaller than three, resulting in an unbounded R̃0 in (2.18).

As sexually transmitted diseases spread via sexual contacts email viruses spread
via email contacts, requiring us to investigate the contact rate distribution for the
case of email contacts. The contact rate of an email user is given by the inverse
of the average time between two consecutive email sent by that user. We have
computed the distribution of this magnitude using a dataset containing the email
history of 3180 email users within an university environment [11]. In Figure 2 we
show that the distribution of email contact rate has also a power law tail, with
exponent γ ≈ 2, indicating that R̃ (2.18) is unbounded.

3. Global disease transmission

The recursive disease transmission, from one infected agent to some susceptible
agents, from the new infected agents to other susceptible agents, and so on, may
result in an outbreak with several infected agents (see Figure 1). We assume that
to each infected agent, other than patient zero, we can assign one and only one
infected agent from who he received the infection. In this case, we can represent
an epidemic outbreak by an oriented weighted tree, where the root node i = 0
represents patient zero, nodes i > 0 represents infected agents other than patient
zero, and each arc (i, j) represents the transmission of the disease from i to j. The
number of arcs emanating from a node gives its out-degree and in turn the agent’s
reproductive number Ri. Furthermore, to each arc (i, j) we assign a nonnegative
real number Gij giving the length of the time interval from the infection of i to the
infection of j, i.e. the generation time. Since the out-degrees and arc’s weights are
random variables we thus obtain a set of random oriented weighted trees. More
precisely:

Definition 3.1. A random causal tree is a rooted and weighted tree where:

(1) The node’s out-degrees are independent random variables prescribed by
the probability distributions rk = P{R0 = k} and r̃k = P{Ri = k|i > 0}.

(2) The arc’s weights are independent random variables with the distribution

functions G(τ) = P{G0j ≤ τ |j > 0} and G̃(τ) = P{Gij ≤ τ |i, j > 0}.
(3) The tree has a diameter D.

The last hypothesis is introduced to take into account that the agent population is
finite and, therefore, the causal tree diameter could be at most equal to the total
number of agents. Furthermore, for the case of a disease spreading on a graph (2.1)
D is given by the graph diameter.

Consider a random causal tree and one of its nodes i. There is one and only
one path from the root to i. We say that node i belongs to generation d if there
are d arcs in the path from the root to i, and we denote by Γd the set of all nodes
in the d-th generation. In turn, focusing on the tree branch rooted at i, there is
only and only one path from i to nodes j in that branch. The sum of the arc’s
weights in the path from i to j gives the infection time tij of j given i was infected
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at time tii = 0. We then say that a node j is infected at time t if tij ≤ t. Let
Ni(t) be the number of infected nodes at time t in the branch rooted at i and

P
(d)
N (t) = P{Ni(t) = N |i ∈ Γd} be the probability distribution of Ni(t) given

i ∈ Gd. We introduce the generating functions

(3.1) F (d)(x, t) =
∞
∑

N=0

P
(d)
N (t)xN

(3.2) H(x) =
∞
∑

k=0

rkxk

(3.3) H̃(x) =

∞
∑

k=0

r̃kxk .

We can exploit the recursive structure of a random causal tree to derive recursive
relations for the generating function F (d)(x, t). More precisely

Theorem 3.2. F (d)(x, t) satisfies the recursive relations:

(3.4) F (d)(x, t) =















xH
(

∫ t

0 dG(τ)F (d+1)(x, t − τ) + 1 − G(t)
)

, d = 0

xH̃
(

∫ t

0
dG̃(τ)F (d+1)(x, t − τ) + 1 − G̃(t)

)

, 1 < d < D

x , d = D .

Proof. Consider a node i ∈ Γd, with reproductive number Ri, and let us
denote by j, j ∈ {1, 2, . . . ,Ri}, its neighbors in the d + 1 generation. Thus

(3.5) Ni(t) = 1 +

Ri
∑

j=1

Nj(t − Gij) .

Nj(t − Gij) are independent random variables with the distribution

(3.6) P{Nj(t − Gij) = N |j ∈ Γ1} =

∫ t

0

dG(τ)P
(1)
N (t − τ) + δN,0 (1 − G(t))

for d = 0, and

(3.7) P{Nj(t − Gij) = N |j ∈ Γd+1} =

∫ t

0

dG̃(τ)P
(d+1)
N (t − τ) + δN,0

(

1 − G̃(t)
)

for d > 0. From (3.5)- (3.7) we obtain

P
(0)
N (t) =

∞
∑

k=0

rk

∞
∑

N1=0

. . .

∞
∑

Nk=0

δP

k
j=1

Nj+1,N(3.8)

×
k
∏

j=1

[
∫ t

0

dG(τ)P
(1)
Nj

(t − τ) + δNj,0 (1 − G(t))

]

for d = 0, and
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P
(d)
N (t) =

∞
∑

k=0

r̃k

∞
∑

N1=0

. . .

∞
∑

Nk=0

δP

k
j=1

Nj+1,N(3.9)

×
k
∏

j=1

[
∫ t

0

dG̃(τ)P
(d+1)
Nj

(t − τ) + δNj,0

(

1 − G̃(t)
)

]

for 0 < d < D − 1. Since the causal tree ends at generation D we obtain the
boundary condition.

(3.10) P
(D)
N (t) = δN,1

for d = D. Finally, substituting (3.8), (3.9) and (3.10) into the generating function
(3.1) we obtain the recursive equations in (3.4).

�

This is a good point to mention the differences between our formalism and
the Bellman-Harris age-dependent branching process [15]. First, in the Bellman-
Harris process all the secondary cases are generated simultaneously, while in a
random causal tree each secondary case has its own generation time. Second, in
the Bellman-Harris process the number of generations is unbounded (D → ∞) while
we explicitly assume that there is a maximum number of generations D. Third,
and final, Bellman and Harris obtain a self-consistent equation for the generating
function of the number of new descendants generated between time t and t + dt,
while we obtain recursive relations for the generating function of the total number
of descendants up to time t.

3.1. Expected outbreak size. From the recursive relations (3.4) we can
obtain recursive relations for the moments of P d

N (t). We focus our attention in the
first moment (the expected outbreak size) leaving the calculation of higher moments
for later work. Let N(t) be the expected total number of infected nodes up to time,
and n(t) the expected number of nodes that are infected between time t and t+ dt,
which in turn satisfy

(3.11) n(t) =
dN(t)

dt
.

We obtain the following result

Theorem 3.3.

(3.12) n(t) =

D
∑

d=1

RR̃d−1g ? g̃(d−1)?(t) .

Proof. The expected number of infected agents in the branch rooted at i ∈ Γd,
given that i became infected at t = 0, is given by

(3.13) N (d)(t) =
∂F (d)(1, t)

∂x
.

Making use of the recursive relations (3.4) we obtain
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(3.14) N (d)(t) =







1 + R
∫ t

0 dG(τ)N (1)(t − τ) , d = 0

1 + R̃
∫ t

0 dG̃(τ)N (d+1)(t − τ) , 1 < d < D
1 , d = D .

Iterating these recursive relations from d = D to d = 0 we obtain an expression for
N(t) = N (0)(t). Finally, substituting this expression in (3.11) we obtain (3.12).

�

3.2. Large population size. A fundamental concern in epidemiology is to
determine whether an outbreak can result in an epidemic, infecting a significant
number of susceptible agents in a short time. The final size of the outbreak is given
by the expected value of the total number of infected agents, denoted by N0. From
(3.12) we obtain

(3.15) N0 = 1 +

∫

∞

0

dtn(t) = 1 + R
R̃D−1 − 1

R̃ − 1
.

If D, R and R̃ are finite then N0 is finite. Yet, if one of these magnitudes becomes
infinitely large then N0 may also become infinitely large. We consider two possible
scenarios:

3.2.1. R < ∞, R̃ < ∞ and D → ∞: First we focus in the case where it takes a
large number of generations before the outbreak reaches all the susceptible agents.
In this case we obtain the following series representation for the expected outbreak
size:

Corollary 3.4. If R < ∞, R̃ < ∞ and D → ∞ then

(3.16) n(t) =

∞
∑

d=1

RR̃d−1g ? g̃(d−1)?(t) .

Proof. Setting D → ∞ in (3.12) we obtain (3.16). The question is whether this
series converges and, therefore, it is a series representation of n(t). Let n̂(ω) =
∫∞

0 dte−ωtn(t) be the Laplace transform of n(t). In turn we denote by ĝ(ω) and
ˆ̃g(ω) the Laplace transforms of g(τ) and g̃(τ). From (3.16) we obtain

(3.17) n̂(ω) =
Rĝ(ω)

1 − R̃ˆ̃g(ω)
.

Since g(τ) and g̃(τ) are probability densities then ĝ(ω) and ˆ̃g(ω) are defined and
continuous for all ω ≥ 0. Yet, if the denominator in the r.h.s. of (3.17) equals
zero then n̂(ω) is not defined. Let α be the positive solution, if there is any, of the
equation

(3.18) R̃ˆ̃g(α) = 1 .

If R̃ < 1 then (3.18) has no positive solution and, therefore, n̂(ω) in (3.17) is defined

for all ω ≥ 0. If R̃ > 1 then (3.18) has a positive solution and, therefore, n̂(ω) in
(3.17) is defined for all ω > α. In either case we can compute the inverse Laplace
transform
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Figure 3. Gamma distribution of generation times: Num-
ber of secondary cases generated by a primary case for a SARS
outbreak in Singapore, as reported in [19] (bars). The solid line is
the best fit to the gamma pdf (3.20) times a pre-factor, resulting
in θ ≈ 4.3.

(3.19) n(t) =
1

2πı

∫ ω0+ı∞

ω0−ı∞

eωtn̂(ω) ,

where ω0 > 0 for R̃ < 1 and ω0 > α for R̃ > 1. Since (3.19) is defined for all t > 0
then (3.16) converges for all t > 0 and it is a series representation of n(t).

�

Remark 3.5. (3.12) has two different long time asymptotic behaviors depend-

ing on the value of R̃:

• When R̃ < 1 the Laplace transform of n(t) is defined for all ω ≥ 0. Hence,
∫∞

0 dtn(t) < ∞ and, therefore, n(t) = O(1/t) when t → ∞. This means
that the epidemic outbreak will die out before a significant number of
susceptible agents become infected.

• When R̃ > 1 the Laplace transform of n(t) is defined for ω > α and,
therefore, n(t) ∼ eαt when t → ∞.

These two different asymptotic behaviors has already been obtained for the Hellman-
Harris process [15].

Example 3.6 (Gamma distribution of generation times). The empirical data
often support the hypothesis of a gamma distribution of generation times [19, 16].
An example is shown in Figure 3 for a SARS outbreak in Singapore. Let us assume
that g(τ) = g̃(τ) and they are given by the gamma pdf



174 ALEXEI VÁZQUEZ

(3.20) g(τ) = g̃(τ) =
θ

µGΓ(θ)
exp

(

−
θτ

µG

)(

θτ

µG

)θ−1

,

where µG is the expected generation time and θ ≥ 1. Substituting (3.20) into (3.16)
we obtain

(3.21) n(t) =
θR0

µGR̃
1−1/θ
0

exp

(

−
θt

µG

) ∞
∑

d=1

1

Γ(θd)

(

R̃
1/θ
0 θt

µG

)θd−1

.

In particular,

(3.22) n(t) =
R

µG
exp

(

(R̃ − 1)t

µG

)

for θ = 1 and

(3.23) n(t) =
2R

µGR̃1/2
exp

(

−
2t

µG

)

sinh

(

R̃1/22t

µG

)

.

for θ = 2. This example illustrate how, in some cases, we can express n(t) in terms
of elementary functions. Whenever this is not possible, the series representation
can be used to compute n(t) numerically.

3.2.2. R < ∞, D < ∞ and R̃ → ∞: When R̃ → ∞ it may take just a few
generations such that all the susceptible agents become infected. In this case, the
temporal evolution of the expected number of new infected agents will be dominated
by those terms in (3.12) with higher powers of R̃. More precisely

Corollary 3.7. If R < ∞, D < ∞, R̃ → ∞, and g(τ) > 0 and g̃(τ) > 0 for
all τ > 0 then

(3.24) n(t) ∼ N0g ? g̃(D−1)?(t)

[

1 + O

(

1

R̃

)]

.

Proof. If g(τ) > 0 and g̃(τ) > 0 for all τ > 0 then g ? g̃(d−1)?(t) > 0 for t > 0
and d ≥ 1. From (3.12) and this fact it follows that

(3.25)
n(t) − RR̃D−1g ? g̃(D−1)?(t)

RR̃D−1g ? g̃(D−1)?(t)
= O

(

1

R̃

)

.

Furthermore, from (3.15) we obtain

(3.26) N0 ∼ RR̃D−1

[

1 + O

(

1

R̃

)]

.

Finally, from (3.25) and (3.26) we obtain (3.24).
�
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Remark 3.8. In this case the expected number of new infected agents is of
the order of N0 for t > 0, indicating that the outbreak can be considered as an
epidemic from its starting time. In such a case it is more appropriate to work with
the expected number of new infected agents relative to the population size. Thus,
we define the pdf of the new infections between time t and t + dt

(3.27) ρ(t) =
n(t)

N0
= g ? g̃(D−1)?(t) ,

where the second equality follows from (3.24) and it holds in the R̃ → ∞ limit.

Remark 3.9. There may be cases where both R̃ and D diverges. An example
is the spreading of a disease on a random graph with a given degree distribution,
where the degree distribution has a power law tail ps ∼ s−γ with 2 < γ < 3 and
a maximum degree kmax = N δ

0 , where N0 is the graph size. From (2.2) we obtain

that R̃ ∼ N
δ(3−γ)
0 when N0 → ∞, while D scale at most as log N0 [8, 9]. In this

case (3.24) and (3.27) are still valid up to some logarithmic corrections to D.

Example 3.10 (Gamma distribution of generation times). If the generation
times are distributed according to the gamma distribution (3.20), then from (3.27)
we obtain the gamma pdf

(3.28) ρ(t) =
θ

µGΓ(θD)
exp

(

−
θt

µG

)(

θt

µG

)θD−1

,

which is characterized by a polynomial growth of order θD − 1 followed by an
exponential decay. This result completely departures from the exponential growth
predicted by current mathematical approaches to the spreading dynamics [35].

4. Conclusions

The causal tree of infection transmission is a suitable object to characterize the
spreading dynamics of infectious diseases. Its flexibility allow us to consider dif-
ferent generation time distributions, such as the gamma distribution of generation
times that is often used to fit empirical data. It also allow us to extend previous
studies of the Bellman-Harris age-dependent branching process to include the case
when the expected reproductive number is unbounded. In this last case we ob-
tain that the spreading dynamics is extensive from its very starting time, meaning
that number of infected agents is proportional to the population size. Furthermore,
the initial epidemic growth is not necessarily exponential as predicted by previ-
ous mathematical approaches, but depends on the shape of the generation time
distribution. For instance, the initial epidemic growth is polynomial for a gamma
distribution of generation times.

We find out contradictory evidence regarding the AIDS epidemics. While sex-
ual network measurements suggest that R̃ is bounded, there is empirical evidence
indicating that the AIDS epidemics exhibits a polynomial growth in certain coun-
tries [23, 6, 32]. Further work is required to determine whether this polynomial
growth has a different origin or the sexual network data is incomplete. On the other
hand, the empirical evidence indicates that R̃ is unbounded for several communi-
cation networks. Therefore, our predictions can be tested using empirical data for
computer virus outbreaks.
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While we have limited the analysis to the expected outbreak size, we can cal-
culate higher order moments as well, and in principle the outbreak size probability
distribution as a function of time. This point is extremely important to under-
stand the initial phase of the outbreak were just a few agents are infected and the
fluctuations around the expected outbreak size are significant.
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