
Sink Equilibria and Convergen
eMi
hel Goemans�, Vahab Mirrokniy and Adrian VettazAbstra
t. We introdu
e the 
on
ept of a sink equilibrium. A sink equilibrium is a strongly
onne
ted 
omponent with no out-going ar
s in the strategy pro�le graph asso
iated with a game.The strategy pro�le graph has a vertex set indu
ed by the set of pure strategy pro�les; its ar
 set
orresponds to transitions between strategy pro�les that o

ur with non-zero probability. (Here ourfo
us will just be on the spe
ial 
ase in whi
h the strategy pro�le graph is a
tually a best responsegraph; that is, its ar
 set 
orresponds exa
tly to best response moves that result from myopi
 orgreedy behaviour.) We argue that there is a natural 
onvergen
e pro
ess to sink equilibria in gameswhere agents use pure strategies. This leads to an alternative measure of the so
ial 
ost of a la
k of
oordination, the pri
e of sinking, whi
h measures the worst 
ase ratio between the value of a sinkequilibrium and the value of the so
ially optimal solution. We de�ne the value of a sink equilibriumto be the expe
ted so
ial value of the steady state distribution indu
ed by a random walk on thatsink.We illustrate the value of this measure in three ways. Firstly, we show that it may more a

u-rately re
e
ts the ineÆ
ien
y of un
oordinated solutions in 
ompetitive games when the use of purestrategies is the norm. In parti
ular, we give an example (a valid-utility game) in whi
h the game
onverges to solutions whi
h are a fa
tor n worse than so
ially optimal. The pri
e of sinking isindeed n, but the pri
e of anar
hy is 
lose to 1. Se
ondly, sink equilibria always exist. Thus, even ingames in whi
h pure strategy Nash equilibria (PSNE) do not exist, we 
an still 
al
ulate the pri
eof sinking. Thirdly, we show that bounding the pri
e of sinking 
an have important impli
ations forthe speed of 
onvergen
e to so
ially good solutions in games where the agents make best responsemoves in a random order.We present two examples to illustrate our ideas.(i) Unsplittable Sel�sh Routing (and Weighted Congestion Games): we prove that thepri
e of sinking for the weighted unsplittable 
ow version of the sel�sh routing problem(for bounded-degree polynomial laten
y fun
tions) is at mostO(22dd2d+3). In 
omparison,we give instan
es of these games without any PSNE. Moreover, our proof te
hniqueimplies fast 
onvergen
e to so
ially good (approximate) solutions. This is in 
ontrast tothe negative result of Fabrikant, Papadimitriou, and Talwar [2℄ showing the existen
e ofexponentially long best-response paths.(ii) Valid-Utility Games: we show that for valid-utility games the pri
e of sinking is atmost n+ 1; thus the worst 
ase pri
e of sinking in a valid-utility game is between n andn+1. We use our proof to show fast 
onvergen
e to 
onstant fa
tor approximate solutionsin basi
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2 In addition, we present a hardness result whi
h shows that, in general, there might be states thatare exponentially far from any sink equilibrium in valid-utility games. We prove this by showingthat the problem of �nding a sink equilibrium (or a PSNE) in valid-utility games is PLS-
omplete.1. Introdu
tionA standard approa
h in analysing the performan
e of systems 
ontrolled by non-
ooperative agents isby the examination of Nash equilibria. Of parti
ular interest is the pri
e of anar
hy1 in a game [8℄. Thisgives one measure of the 
ost to so
iety of the inherent la
k of 
oordination in a game. There are, however,several drawba
ks in the use of Nash equilibria. For example, one issue relates to use of non-randomized(pure) and randomized (mixed) strategies. Often pure strategy Nash equilibria may not exist, yet theuse of a randomized (mixed) strategy is unrealisti
 in many games. This ne
essitates the need for analternative solution 
on
ept in evaluating su
h games. Another issue arises from the observation thatNash equilibria represent \stable" points in a system. Therefore (even if pure Nash equilibria exist), theyare a more a

eptable solution 
on
ept if it is likely that the system does 
onverge to su
h stable points.In parti
ular, the use of Nash equilibria seems more valid in games in whi
h Nash equilibria arise whenagents iteratively engage in sel�sh behaviour. However, in many games it is not the 
ase that repeatedsel�sh behaviour always leads to Nash equilibria. In these games it also seems that another measure ofthe 
ost of the la
k of 
oordination would be useful. Observe that these issues are parti
ularly importantin games in whi
h the use of pure strategies and repeated moves are the norm, for example, au
tions. Weremark that for many pra
ti
al games these properties are the rule rather than the ex
eption (and thisobservation motivates mu
h of the work in this paper). For these games, then, it is not suÆ
ient to juststudy the value of the so
ial fun
tion at Nash equilibria.In this paper we introdu
e a new solution 
on
ept in a game, namely sink equilibria. We model thebehaviour of agents using a graph, 
alled the state graph (or strategy pro�le graph) whose vertex set isthe set of strategy states (or strategy pro�les). We assume that evolution of the game over time 
an bedes
ribed by walks on this graph. Here, we also assume that the only ar
s of the state graph are ar
s that
orrespond to moves of the players that may o

ur with non-zero probability. Thus, solutions or stableout
omes will be given by the long-run behaviour of su
h random walks. In parti
ular, eventually thesewalks must lead to a set of states that have the following two properties:� These states form a strongly 
onne
ted 
omponent in the state graph.� The strongly 
onne
ted 
omponent has no outgoing ar
s in the state graph.These strongly 
onne
ted 
omponents are sink equilibria. They are stable in that on
e we rea
h su
ha 
omponent we will never leave it. They in
lude PSNE as a spe
ial 
ase, but unlike PSNE they areguaranteed to exist in all su
h games. As with Nash equilibria, we 
an use sink equilibria to measure the
ost to so
iety of the la
k of 
oordination. In parti
ular, here we will 
onsider an analogue of the pri
e ofanar
hy termed the pri
e of sinking. This is the worst 
ase ratio of the so
ial value of a sink equilibrium
ompared to the optimal so
ial solution. The so
ial value of a sink equilibrium is measured by the expe
tedvalue of the stationary distribution of a random walk on the states in the sink.1The pri
e of anar
hy is the worst 
ase ratio between the so
ial value of an optimal solution and a Nash equilibrium.



3We formally de�ne the pri
e of sinking in Se
tion 2. For any game the ar
 set and their asso
iatedprobabilities in the state pro�le graph may vary dramati
ally. As mentioned, we will fo
us on perhapsthe simplest 
ase: the best response graph asso
iated with myopi
 players. Here, the ar
 set 
onsists onlyof those ar
s that 
orrespond to a best response move of some player. We will also assume that, at agiven state, ea
h player is equally likely to be sele
ted to move. Thus our random walk will be a uniformrandom walk on the best response graph. We 
all sink equilibria in su
h graphs myopi
 sink equilibria,and refer to the pri
e of sinking myopi
ally. We will omit the \myopi
" term when the 
ontext is 
lear.We remark that the assumption of myopi
 behaviour is very restri
tive and unrealisti
 in many situations.Consequently, further investigation into the general 
ase is important. This would allow for an examinationinto alternate behaviours su
h as non-myopi
 behaviour, long-term planning, and simultaneous moves. We
ontent ourselves, here, with 
onsidering the basi
 
ase of myopi
 behaviour with non-simultaneous movesfor several reasons though. Firstly, it allows us to introdu
e sink equilibria in a 
lear manner, withouthaving to deal with the 
omplexities (both pra
ti
al and game-theoreti
) of alternative behaviours. Forexample, given a game how do you justify non-uniform moves, realisti
ally in
orporate forward planning, orassign probabilities to simultaneous moves et
. Moreover, even �nding simple, realisti
 examples of gameswith non-myopi
 behaviours is not a straight-forward task. In addition, mathemati
ally there appears tobe no intrinsi
 additional diÆ
ulty in ta
kling the general 
ase, and so the ideas and te
hniques presentedhere should also be useful in examining games with non-myopi
 behaviours.We illustrate the usefulness of our measure in Se
tion 3 where we present an n-agent valid-utility gamewhi
h always 
onverges to states with so
ial value a fa
tor n worse than optimal. Indeed, the pri
e ofsinking for this game is n. However the pri
e of anar
hy is almost 1. Thus, the pri
e of anar
hy gives usa misleading 
on�den
e in the so
ial quality of an out
ome that will result from sel�sh behaviour.As well as being perhaps a more appropriate solution 
on
ept than PSNE in many games, the existen
eof sink equilibria has several ni
e impli
ations. Sin
e sink equilibria always exist, the pri
e of sinking 
analways be 
al
ulated2 even in games without PSNE. Unlike PSNE, sink equilibria also possess natural
onvergen
e properties. In parti
ular, the te
hniques used to bound the pri
e of sinking may often alsogive bounds on the speed of 
onvergen
e of random walks to sink equilibria and/or approximate solutions.We study two examples in Se
tion 4:(1) Unsplittable Sel�sh Routing (and Weighted Congestion Games). We present instan
es of the weightedunsplittable 
ow version of the sel�sh routing problem that possess no PSNE. However, we show that, forpolynomial laten
y fun
tions of degree at most d, the pri
e of sinking is O(22dd2d+3). In addition, ourproof te
hnique implies fast 
onvergen
e to good (approximate) solutions. This may be 
ompared to thenegative result by Fabrikant, Papadimitriou, and Talwar [2℄ showing the existen
e of exponentially longbest-response paths to PSNE. For example, 
onsider the 
ase of linear laten
y fun
tions. Here, it is knownthat PSNE exist [4℄, but it may be the 
ase that the number of best response moves needed for 
onvergen
eto a PSNE is exponential. Our results show that after a small number of random best response moves theso
ial value of the 
ow is within a 
onstant fa
tor of the optimal solution.2Of 
ourse, a
tually doing so may not be easy!



4(2) Valid-Utility Games. Our se
ond example 
on
erns the 
lass of valid-utility games; spe
i�
 examplein this 
lass in
lude marking sharing games [5℄, 
a
hing games [3℄, traÆ
 routing games, fa
ility lo
ationgames, and multiple item au
tions [14℄. Here we show that the pri
e of sinking is at most n+ 1; thus theworst 
ase pri
e of sinking in a valid-utility game is between n and n+1. Again, our methods signify fast
onvergen
e to approximate solutions. In parti
ular, for basi
-utility games, the expe
ted so
ial value ofany state after n logn random best response moves is at least half of optimum.We also present a hardness result 
on
erning sink equilibria. In se
tion 5 we show that in general itis a PLS-
omplete problem to �nd a sink equilibria (or PSNE) in valid-utility games. This implies theexisten
e of exponentially long best response paths to any sink equilibrium in some valid-utility games.We 
on
lude this introdu
tion with a very brief dis
ussion on related work. In order to deal with thestability and 
onvergen
e problems of Nash equilibria, equilibrium 
on
epts other than Nash equilibriahave been studied in the e
onomi
s literature. Among these 
on
epts are stable equilibria [7℄, sto
hasti
adjustment models [6℄, iterative elimination of dominated strategies, the set of undominated strategies et
.Convergen
e and strategi
 stability of equilibria in evolutionary game theory is a also 
entral subje
t ofstudy for many e
onomists. However, in their studies the most important fa
tor is typi
ally the stabilityof equilibria, and not measurements of the so
ial value of equilibria. In [9℄, we began our investigationinto games in whi
h pure strategy moves are the norm.2. Sink EquilibriaA strategi
 game G is de�ned as a tuple G(U; fFiji 2 Ug; f�i()ji 2 Ug) where (i) U is the set of n players oragents, (ii) Fi is a family of feasible (pure) strategies or a
tions for player i and (iii) �i : �i2UFi ! R+[f0gis the (private) payo� or utility fun
tion for agent i, given the set of strategies of all players. Player i'sstrategy is denoted by si 2 Fi, and we let F := �i2UFi be the set of all possible strategy pro�les. In thegames we 
onsider, there will be a so
ial utility fun
tion, usually denoted by 
 : �i2UFi ! R, de�ned onall strategy pro�les in a strategi
 game. The so
ial value of the optimal solution is denoted by opt. Ourmain fo
us is on the so
ial quality of out
omes produ
ed by sel�sh agents.A strategy pro�le or a (strategy) state, denoted by S = (s1; s2; : : : ; sn), is the 
olle
tion of strategies
hosen by the players. We let S � s0i := (s1; : : : ; si�1; s0i; si+1; : : : ; sk), that is, the strategy pro�le obtainedfrom S if agent i 
hanges its strategy from si to s0i. In order to model the sel�sh behavior of players, weuse the underlying strategy pro�le graph or state graph. Ea
h vertex in the state graph represents a stateS = (s1; s2; : : : ; sn). As noted, in this paper the ar
s in the state graph will 
orrespond to best-responsemoves by the players. Hen
e we have, for ea
h player i an ar
 from S to S� ŝi, where ŝi is the best responseof agent i at state S. (This model 
an be justi�ed in extensive games with 
omplete information, and isused in the e
onomi
s literature extensively in the 
ontext of studying 
onvergen
e in games.) In manygames with iterative moves, the evolution of game-play may then be naturally modeled by a path in thestate graph. Su
h a path may or may not 
onverge to a pure strategy Nash equilibrium (PSNE); a PSNE ofa strategi
 game is a strategy pro�le in whi
h ea
h player plays mutual best responses (that is, a vertex inthe state graph for whi
h the best response move of ea
h agent 
orresponds to a self-loop). Clearly it may



5be the 
ase that there are no PSNE. So we may ask what happens in su
h games. Spe
i�
ally, does some
on
ept of stability or equilibrium exist? The answer is yes, and we now des
ribe su
h an \equilibrium".Consider the strongly 
onne
ted 
omponents of the state graph. If we 
ontra
t the strongly 
onne
ted
omponents to singletons then we obtain an a
y
li
 graph. The sink nodes in this graph (nodes without-degree equal to zero) 
orrespond to strongly 
onne
ted 
omponents with no out-going ar
s in the stategraph. We 
all su
h a strongly 
onne
ted 
omponent a (myopi
) sink equilibrium. The reason for thisterminology is 
lear: if a best-response walk ever rea
hes a node in a sink equilibrium then it will neverleave that set of nodes. In addition, a long enough random walk in the state graph will 
onverge to a sinkequilibrium with probability arbitrarily 
lose to 1.We denote by Q the set of sink equilibria in a game. We remark that the union of states in sink equilibria
orrespond to the set of re
urrent states in a Markov 
hain that only has non-zero transitional probabilitieson ar
s in the state graph. In a random sequen
e of best responses of agents, we independently 
hoose anagent uniformly at random at ea
h step and let this agent play its best response (if the agent has morethan one best-response move, we may assume that the agent arbitrarily 
hooses a move from the 
olle
tionof best-response moves). When this walk rea
hes a state in some sink we then follow a random walk overthe states in that sink. For a sink Q 2 Q, let �Q : Q ! R+ [ f0g be the steady state distribution of therandom walk over states in Q. Let 
(S) measure the so
ial value of a state S. The (expe
ted) so
ial valueof a sink equilibrium Q 2 Q, denoted by �(Q), is the expe
ted so
ial value of states given by the steadydistribution of the random walk over the states of Q, i.e., �(Q) = PS2Q �Q(S)
(S) We then de�ne, thepri
e of sinking (myopi
ally) for a maximization so
ial fun
tion asPri
e of Sinking = optminQ2Q�(Q) = optminQ2QPS2Q �Q(S)
(S)In other words, the pri
e of sinking is the worst ratio between the expe
ted so
ial value of a sink equilib-rium and the so
ial value of the optimum. Similarly, the pri
e of sinking for a minimization problem ismaxQ2Q �(Q)=opt. Moreover, we have an analogous de�nitions for the pri
e of sinking for general strategypro�le graphs with alternate ar
 sets. Given that sink equilibria are stable solutions in su
h games, thismay be a more realisti
 measure of the 
ost of the la
k of 
oordination than the pri
e of anar
hy.3. Pri
e of Sinking vs. Pri
e of Anar
hyIn this se
tion, we present an n-agent (valid-utility) game in whi
h the pri
e of sinking and the pri
eof anar
hy give very di�erent pi
tures as to the 
onsequen
es of non-
ooperative behavior. In parti
ular,the pri
e of anar
hy will be 
lose to 1, suggesting that no form of me
hanism design is required to enfor
eso
ially good solutions. However, every possible out
ome of the game will result in a solution whose value isa fa
tor n smaller than that of the optimal so
ial solution. The 
olle
tion of strategies (groundset) availableto of agent i is fyi; x1i ; x2i ; : : : ; xni g, where i = 0; 1; : : : ; n� 1. For motivation, we 
an think of strategy yias a so
ially responsible strategy for agent i. In 
ontrast, all the strategies fx1i ; x2i ; : : : ; xni g 
an be viewedas so
ially irresponsible strategies. Moreover, we will see that in any situation one of these n irresponsiblestrategies provides a better payo� for agent i than a
ting responsibly. Consequently, there is an in
entive



6for every agent to a
t anti-so
ially with extreme 
onsequen
es for the so
ial out
ome. In 
ontrast, the pri
eof anar
hy is oblivious to this in
entive for anti-so
ial behavior. The reason being that the payo�s to ea
hagent are intrinsi
ally linked to the behavior of the other agents. Any spe
i�
 irresponsible strategy maybe bene�
ial in 
ertain 
ir
umstan
es but typi
ally (given the other agents responses) that spe
i�
 strategyhas smaller payo� than the responsible strategy. Consequently, under randomized strategies, playing anirresponsible strategy is likely to lead to low private returns. Thus mixed strategy Nash equilibria willrequire that most agents behave responsibly, blissfully ignoring the fa
t that in every possible situationea
h agent has an in
entive to behave irresponsible.The family of feasible strategies Fi for ea
h agent i is the set of singletons of his ground set and the emptyset, i.e., Fi = fs � Vi : jsj � 1g. Let Xi = fx1i ; x2i ; : : : ; xni g and X = [iXi. Let S = (s1; s2; : : : ; sn) be a
olle
tion of subsets si � Vi for all i = 0; 1; : : : ; n�1. For a 
olle
tion S = (s1; : : : ; sn), we let SU = [i2Usi.We 
onstru
t a non-de
reasing, submodular so
ial utility fun
tion 
 on �i2UVi in the following manner.
(S) = ( jSUnXj if SU \X = ;jSUnXj+ 2 otherwiseWe now need to spe
ify the private utilities of ea
h agent at any state. In order to de�ne the payo�fun
tions, we de�ne a fun
tion i�(S) for ea
h strategy pro�le S. We set i�(S) = null for any strategypro�le S in whi
h no player plays an irresponsible strategy. If in a strategy pro�le S, some players playirresponsibly, i�(S) is the index of one of the players who plays irresponsibly. In addition, we would likei�(S) to satisfy the following property: given the strategies of the other agents, any agent i 
an always
hoose some irresponsible strategy whi
h for
es i�(S) = i. Clearly, this will give agents an in
entive toa
t irresponsibly when using pure strategies. In order to 
omplete the des
ription of the fun
tion i�, let�ij(S) be the indi
ator variable for the event that agent i plays the irresponsible strategy xji . That is�ij(S) = ( 1 if xji 2 SU0 otherwise.Next let i�(S) = 8><>: null if SU \X = ; (No-one plays irresponsibly)il if [i (SU \Xi) 6= ; andl = [Pi2U (Pnj=1 j � �ij(S)) mod k℄Observe that if i�(S) = null then i 
an play the irresponsible strategy s0i = fxiig, thus for
ing i�(S�s0i) = i.Moreover, there always exists a strategy s0i = fxpi g su
h that if i plays s0i = fxpi g then i�(S � s0i) = i. Weare now ready to give a payo� fun
tion �i for ea
h agent i.�i(S) = 8>>>><>>>>: 0 if yi =2 si and i 6= i�(S)1 if yi 2 si and i 6= i�(S)2 if yi =2 si and i = i�(S)3 if yi 2 si and i = i�(S):So agent i gets utility 1 for playing the responsible strategy and another 2 units of utility if i = i�(S). Wewill see in Se
tion 4.2 that this is a valid-utility game with a non-de
reasing so
ial utility fun
tion. Thuswe may apply the following result from [14℄.



7Theorem 3.1. A valid-utility game with a non-de
reasing so
ial utility fun
tion has a pri
e of anar
hy atmost 2. �If fa
t, it is easy to see that the pri
e of anar
hy in this game a
tually tends to 1 as the number ofagents in
reases. In parti
ular, a so
ially optimal solution has n�1 of the agents playing their responsiblestrategies and exa
tly one of the agents plays an irresponsible strategy. Su
h an out
ome has value n+ 1.Moreover, note that by playing responsibly an agent 
an guarantee that they re
eive 1 unit of utility.Thus, it must be the 
ase that in a Nash equilibrium3 every agent has an expe
ted payo� of at least 1.Sin
e 
(S) �Pi2U �i(S) for any state S, we have that the expe
ted so
ial value of a Nash equilibrium isat least n. Thus the pri
e of anar
hy is at most 1 + 1n .Now we 
onsider the pri
e of sinking in this game. Given any strategy pro�le S, the best response ofea
h agent is to play the spe
i�
 irresponsible strategy that gives it a payo� of 2. To see this, note thatagent i always has a move that sets i�(S0) = i. Thus a responsible strategy yi is never a best-responsestrategy. In fa
t, the best response of ea
h player is to play an irresponsible strategy to get the payo� of2, thus for
ing to the payo�s of the other players using irresponsible strategies to 0. It follows that thereis a unique sink equilibrium 
onsisting of every strategy pro�le in whi
h ea
h agent plays an irresponsiblestrategy. Thus, every state in the sink has so
ial value exa
tly two. Hen
e the pri
e of sinking is exa
tlyn+12 . We remark that even if we start at an optimal solution and then allow ea
h agent to make just onesingle best-response move in turn then we end up with a solution of value 2! Moreover, we 
an then neverleave this sink if players play their myopi
 best responses.Noti
e also that we 
ould alter the payo�s in the game slightly so that the payo� resulting from the�rst irresponsible move is 1 + Æ rather than 2. Clearly the pri
e of sinking is then n+Æ1+Æ whilst the pri
e ofanar
hy is 1 + Æn . Thus we haveLemma 3.2. There are valid-utility games, with non-de
reasing so
ial utility fun
tions, having a pri
e ofsinking of almost n and a pri
e of anar
hy of almost 1. �Consequently the pri
e of anar
hy underestimates the so
ial 
ost of the la
k of 
oordination by a fa
torn. The reason for this is that the good strategy always gives a good return. Any bad strategy 
an givea high return but only in a small number of situations, thus any bad strategy performs badly againstrandomized strategies and players tend to play their good strategies in a mixed Nash equilibria. This typeof issue often arises in games, and explains why the pri
e of anar
hy may often signi�
antly under-estimatethe so
ial 
ost of the la
k of 
oordination in su
h games.Finally, note that this game has no PSNE so fo
using here upon sink equilibria is essential. Surprisingly,Lemma 3.2 is also almost tight; we will show in Se
tion 4 that the pri
e of sinking in a valid-utility gameis at most n+ 1.3One Nash equilibrium is the following. Ea
h agent i plays strategy yi with probability p and ea
h bad strategy withprobability 1�pn . It is easy to 
he
k that letting p = n�1q 12 (1� 1n�1 ) gives a Nash equilibrium.



8 4. Pri
e of Sinking and Convergen
eRe
all that PSNE are spe
ial 
ases of sink equilibria. We have already seen that games in whi
h agentsrepeatedly rea
t to the other agent's strategies via the use of pure strategy best responses will 
onvergeto sink equilibria and not ne
essarily to PSNE. Moreover, many 
lasses of games have instan
es for whi
hno PSNE exists. In these games, we 
an still measure the 
ost to so
iety of the la
k of 
oordination usingthe pri
e of sinking. Moreover, in bounding the pri
e of sinking for sink equilibria we may obtain boundson the expe
ted so
ial value of states after a random sequen
e of best responses.4.1. Unsplittable Sel�sh Routing and Weighted Congestion Games. Consider the \unsplittable
ow" version of the sel�sh routing game. We have a dire
ted network G = (V;E) with a 
ow dependentlaten
y fun
tion �e : R ! R+ [f0g on ea
h ar
 e 2 E. There is a set U of n agents; agent i wishes to route
ow at a rate ri from a sour
e si to a sink ti. Ea
h agent aims to in
ur as small a laten
y as possible. Inthe unsplittable 
ow version, an agent may not split its 
ow. Hen
e ea
h agent pi
ks a unique si� ti pathand routes all its 
ow along the path. The laten
y of an agent is equal to its traÆ
 size multiplied by thesum of the laten
ies of ar
s along the path that it 
hooses. The laten
y of an ar
 e is a non-de
reasing andnon-negative fun
tion of the total load on ar
 e. In this paper, we 
onsider bounded-degree polynomiallaten
y fun
tions. In parti
ular, for an ar
 e, we let �e(x) = P0�j�d ae;jxj be a non-negative and non-de
reasing delay fun
tion for ar
 e. For a strategy pro�le P = (P1; P2; : : : ; Pn) where Pi is a si � ti path,let the load of ar
 e be fe = Pi:e2Pi ri. Then, the laten
y of agent i is li(f) = riPe2Pi �e(fe) and thetotal laten
y of 
ow f is l(f) =Pi2U li(f) =Pe2E(G) �e(fe)fe.Re
ently Awerbu
h, Azar, and Epstein [1℄ proved that the pri
e of anar
hy in su
h games is exa
tly2:618 for linear laten
y fun
tions and is at most O(2ddd+1) for polynomial laten
y fun
tions of degree atmost d. They extended their results to mixed Nash equilibria, sin
e the existen
e of pure Nash equilibriafor these games with polynomial laten
y fun
tions was not known. For linear laten
y fun
tion Fotakis,Kontogiannis, and Spirakis [4℄ proved that the game is a potential game. Here, we exhibit an instan
eof this game with quadrati
 laten
y fun
tions that does not possess any PSNE. This, in turn, providesadditional motivation for analyzing the pri
e of sinking in these games. Our example is shown in Figure1. It depi
ts a network with 4 verti
es and 6 ar
s. Ar
s are labeled from 1 to 6. The laten
y fun
tionsof ar
s are �1(x) = x + 33, �2(x) = 13x, �3(x) = 3x2, �4(x) = 6x2, �5(x) = x2 + 44, and �6(x) = 47x.There are two agents with traÆ
 r1 = 1 and r2 = 2. The sour
e of both agents is vertex 1 (s1 = s2 = 1)and the destination of both agents is vertex 4 (t1 = t2 = 4). There are four sour
e-destination paths:P1 = (6), P2 = (3; 5), P3 = (3; 4; 2), and P4 = (1; 2) where the numbers within the parentheses arethe labels of ar
s on the path. It is not hard to 
he
k that the weighted unsplittable sel�sh routinggame on this network has no PSNE. There is one sink equilibrium, namely the set of strategy pro�lesf(P1; P2); (P3; P2); (P3; P4); (P1; P4)g.The key to obtaining bounds on the pri
e of sinking is that any agent making a best-response move
annot 
ause too mu
h 
umulative harm to the other agents. Consequently, if an agent 
an make a movethat signi�
antly in
reases its private welfare, then the overall so
ial welfare must rise. This will be animportant fa
tor in allowing us to prove that we have a low pri
e of sinking in these routing games.
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Figure 1. A routing game without PSNE.
Theorem 4.1. The pri
e of sinking for a weighted unsplittable sel�sh routing game (or a weighted 
on-gestion game) is at most O(22dd2d+3).Proof. We need the following three lemmas for the proof.Lemma 4.2. Let f be the 
ow 
orresponding to the 
urrent strategy pro�le P = (P1; : : : ; Pn). Supposeagent i 
hanges its 
ow path from Pi to P 0i , to give a new 
ow f 0i. Then l(f 0i) � l(f)+ (d+1)li(f 0i)� li(f).In parti
ular, if agent i de
reases its laten
y by 
hanging to P 0i , then l(f 0i) � l(f) + dli(f) � (d+ 1)l(f).Proof. The laten
y in
urred by agent i is then

li(f 0i) = ri Xe2P 0i X0�j�d ae;j(f 0i;e)j = ri0� Xe2P 0i\Pi X0�j�d ae;jf je + Xe2P 0i�Pi X0�j�d ae;j(fe + ri)j1A :
Note that for e 2 P 0i � Pi, we have f 0i;e = fe + ri. Moreover, we know that

l(f 0i) � l(f) + (li(f 0i)� li(f)) + Xe2P 0i�Pi0� X0�j�d(ae;jf 0i;ej)� (ae;jf je )1A (f 0i;e � ri);



10the last term 
orresponding to the in
rease in laten
y for agents other than i due to the rerouting of agenti. We 
an get an upper bound on the in
rease in laten
ies fa
ed by the other agents by noting thatXe2P 0i�Pi0� X0�j�d(ae;jf 0i;ej)� (ae;jf je )1A (f 0i;e � ri)= Xe2P 0i�Pi X0�j�d(ae;j(f 0i;ej � f je )fe)= Xe2P 0i�Pi0� X0�j�d ae;j(f 0i;e � fe)0� X1�t�j f 0i;ej�tf t�1e 1A fe1A< Xe2P 0i�Pi0� X0�j�d ae;jri0� X1�t�j(fe + ri)j�11A (fe + ri)1A� ri Xe2P 0i�Pi0� X0�j�d jae;j(fe + ri)j1A� dli(f 0i):Thus, the total laten
y after agent i 
hanges its strategy is at most l(f) + (d + 1)li(f 0i) � li(f). Sin
e,li(f 0i) � li(f), this shows that l(f 0i) � l(f) + dli(f) � (d+ 1)l(f). �Lemma 4.3. Let f be the 
ow 
orresponding to the 
urrent strategy pro�le. Consider the following randompro
ess: 
hoose an agent i at random and let it play its best response. If f 0 is the new 
ow after this 
hange,then E[l(f 0)jf ℄ � (1 + dn)l(f).Proof. Let f 0i be the 
ow after agent i plays its best response to f . Then, using Lemma 4.2, we have:E[l(f 0)jf ℄ = 1nXi2U l(f 0i)� 1nXi2U(l(f) + dli(f))= 1n(nl(f) + dl(f))= (1 + dn)l(f): �The third lemma we need is below. Its proof is inspired by the work of Azar et al. [1℄.Lemma 4.4. Let f be the 
ow 
orresponding to the 
urrent strategy pro�le. Consider the following randompro
ess: 
hoose an agent i at random and let it play its best response. If f 0 is the new 
ow after this 
hange,then either E[l(f 0)jf ℄ � (1� 12n)l(f), or l(f) � O(22d(d+ 1)2d+2)opt.Proof. Assume that the best response of agent i is to swit
h from path Pi to P 0i resulting in the 
ow f 0i .Thus, E[l(f 0)jf ℄ = 1nPi2U l(f 0i). We 
onsider the following two 
ases:



11Case 1: Pi2U 2(d+ 1)li(f 0i) �Pi2U li(f). In this 
ase, by Lemma 4.2,
E[l(f 0)jf ℄ = 1nXi2U l(f 0i)� 1nXi2U �l(f) + (d+ 1)li(f 0i)� li(f)�� 1n  Xi2U l(f) +Xi2U 12 li(f)�Xi2U li(f)!= 1n(nl(f)� 12 l(f))= (1� 12n)l(f):

Thus, we obtain E[l(f 0)jf ℄ � (1� 12n)l(f).Case 2: Pi2U 2(d + 1)li(f 0i) >Pi2U li(f). Let P� = (P �1 ; : : : ; P �n) be the optimal solution and let f� bethe 
ow 
orresponding to P�. Set J�(e) = fi : e 2 P �i g. Let f�i be the 
ow resulting from the swit
hof agent i from Pi to P �i . Sin
e P 0i is i's best response, we have li(f�i ) � li(f 0i). Thus, in this 
ase,Pi2U 2(d+ 1)li(f�i ) �Pi2U li(f) = l(f). Consequently,
l(f) � Xi2U 2(d+ 1)li(f�i )� (2d + 2)Xi2U ri Xe2P �i �e(fe + ri)= (2d + 2)Xi2U ri Xe2P �i dXj=0 ae;j(fe + ri)j= (2d + 2)Xe dXj=0 Xi2J�(e) ae;j(fe + ri)jri:



12 The rest of the proof of this 
ase is based on the proof of Lemmas A1, A2, and A3 in [1℄. First, we usethe following inequality from [1℄: (x+ y)d � 
xd + (y( dln 
 + 1))d for any 
 > 1. Thus, we get:
l(f) � (2d + 2)Xe dXj=0 Xi2J�(e) ae;j(fe + ri)jri� (2d + 2)Xe dXj=0 ae;j Xi2J�(e) 
f je ri +� jln 
 + 1�j rj+1i !

� (2d + 2)Xe dXj=0 ae;j  
f jef�e +� dln 
 + 1�d f�e j+1!= 
(2d + 2)Xe dXj=0 ae;jf jef�e + (2d+ 2)� dln 
 + 1�dXe dXj=0 ae;jf�e j+1= 
(2d + 2)Xe dXj=0 ae;jf jef�e + (2d+ 2)� dln 
 + 1�dXe �e(f�e )f�e
where the se
ond inequality 
omes from the fa
t thatPi2J�(e) rdi � f�e d and the fun
tion f(x) = ( xln 
 +1)xis an in
reasing fun
tion for x � 0. Holder's inequality states:

Xj a�j b1��j � 0�Xj aj1A�0�Xj bj1A1�� :



13Applying this, with aj = ae;jf j+1e , bj = ae;jf�e j+1, � = jj+1 , yieldsl(f) � 
(2d + 2)Xe dXj=0 ae;jf jef�e + (2d + 2)� dln 
 + 1�dXe �e(f�e )f�e� 2
(d + 1) dXj=0 Xe ae;jf j+1e !j=(j+1) Xe ae;jf�e j+1!1=(j+1)+2(d+ 1)� dln 
 + 1�dXe �e(f�e )f�e� 2
(d + 1) dXj=0 Xe �e(fe)fe!j=(j+1) Xe �e(f�e )f�e!1=(j+1)+2(d+ 1)� dln 
 + 1�dXe �e(f�e )f�e� 2
(d + 1) dXj=0 Xe �e(fe)fe!d=(d+1) Xe �e(f�e )f�e!1=(d+1)+2(d+ 1)� dln 
 + 1�dXe �e(f�e )f�e� 2
(d + 1)2 Xe �e(fe)fe!d=(d+1) Xe �e(f�e )f�e!1=(d+1)+2(d+ 1)� dln 
 + 1�dXe �e(f�e )f�ewhere the fourth inequality is from the inequality x�y1�� � x�0y1��0 for x � y > 0 and 1 � � � �0 � 0with x =Pe �e(fe)fe and y =Pe �e(f�e )f�e . By lettingx = l(f) 1d+1opt 1d+1 ;we get xd+1 � 2
(d + 1)2xd + 2(d+ 1)� dln 
 + 1�d :After dividing both sides by xd, we get:x � 2
(d + 1)2 + 2(d+ 1) dln 
 + 1x !d :We 
laim that if we set 
 = 2 � � for � = 1d+1 � 12(d+1)�d, then we have x � 4(d + 1)2. Assume for
ontradi
tion that x > 4(d+ 1)2. Then,4(d + 1)2 < x � 4(d+ 1)2 � 2�(d+ 1)2 + 2(d + 1) dln 
 + 1x !d :



14Thus, (d+ 1)� <  dln 
 + 1x !d� �2d+ 1x �d [sin
e ln 
 > 0:5℄< � 2d+ 14(d+ 1)2�d< � 12(d+ 1)�d= (d+ 1)�whi
h is a 
ontradi
tion. Therefore, by setting 
 = 2� �, we get x � 4(d+ 1)2. Hen
e, l(f) = xd+1opt �O(22d(d+ 1)2d+2)opt. �From Lemma 4.4, we 
an bound the pri
e of sinking as follows. Consider a sink Q. Let f0 be a 
owin Q. Consider a random walk starting from f0 in whi
h we let a random agent play his best responseat ea
h step. Let f0; f1; f2; : : : ; fN be a sequen
e of observed 
ows in Q. Re
all that the value forsink Q is equal to �(Q) = PS2Q �Q(S)l(fS) where fS is the 
ow 
orresponding to the state S and �Qis the steady distribution for the random walk on Q. Sin
e Q is strongly 
onne
ted, this is equal to�(Q) = limN!1 P0�j�N E[l(fj)℄N . In order to upper bound this value, it is suÆ
ient to upper bound E[l(fj)℄for ea
h 0 � j � N . Lemma 4.4 shows that there exists a state in any sink Q with total laten
y less thanO(22d(d + 1)2d+2)opt. Note that, as Q is strongly 
onne
ted the value of the sink is independent of the
hoi
e of f0. Therefore, we 
an set f0 su
h that l(f0) � 
022d(d + 1)2d+2opt. Let 
i be the 
oin toss ofstep i in the random walk. More pre
isely, we want to upper bound aj = E
1;
2;:::;
j [l(fj)℄. By Lemma 4.4and Lemma 4.3, we have� Either E
j+1 [l(fj+1)jfj℄ � (1� 12n)l(fj) or l(fj) � 
022d(d+ 1)2d+2opt.� E
j+1 [l(fj+1)jfj ℄ � (1 + dn)l(fj)Let E1 be the event that l(fj) � 
022d(d + 1)2d+2 and E2 be the event that l(fj) > 
022d(d + 1)2d+2)opt.Let p be the probability that event E2 happens. Furthermore, let Y = E[l(fj)jE1℄ � 
022d(d+ 1)2d+2 andX = E[l(fj)jE2℄. Thus, aj = E[l(fj)℄ = pX + (1� p)Y . Now,aj+1 = E[l(fj+1)℄� p�1� 12n�X + (1� p)�1 + dn�Y� �1� 12n� (pX + (1� p)Y ) + 2d+ 12n Y� �1� 12n� aj + 2d+ 12n Y� �1� 12n� aj + 2d+ 12n 
022d(d+ 1)2d+2opt:



15Combining the above re
urren
e relation and a0 � l(f0) � 2
022d(d + 1)2d+3opt, we 
an prove aj+1 �2
022d(d + 1)2d+3opt by indu
tion. Thus, E
1;
2;:::;
j [l(fj)℄ � O(22d(d + 1)2d+3opt). Hen
e, the pri
e ofsinking is at most O(22d(d + 1)2d+3) by the linearity of expe
tation. As (d + 1)2d+3 = O(d2d+3), we havethe desired bound. �We 
an also use the lemmas used in the proof of Theorem 4.1 to bound the rate of 
onvergen
e tostates with good so
ial value in unsplittable (weighted) sel�sh routing games. We 
an prove that startingfrom a 
ow of laten
y C, after O(n log Copt) random best responses, the expe
ted so
ial value is less than70 opt for linear laten
y fun
tions, and is less than O(22dd2d+3)opt for polynomial laten
y fun
tions ofdegree at most d. This is in 
ontrast with the negative 
onvergen
e result of Fabrikant, Papadimitriou,and Talwar [2℄, in whi
h they exhibit exponentially long best-response paths to PSNE (or sink equilibria)in these games. Our bounds show that, even though 
onvergen
e to PSNE (or sink equilibria) may beexponential, a random sequen
e of best responses of agents 
onverges to a state with good so
ial valueafter polynomial number of best responses. Here, we prove a tighter bound for 
onvergen
e in the weightedunsplittable sel�sh routing game with linear laten
y fun
tions. We assume that the laten
y fun
tion ofar
 e is a linear fun
tion. In parti
ular, we let the laten
y fun
tion for ar
 e 2 E(G) be �e(x) = aex+ bewith ae; be � 0.Theorem 4.5. In the weighted unsplittable sel�sh routing game with linear laten
y fun
tions, starting fromany state with total laten
y C the expe
ted laten
y of the 
ow after O(n log Copt) random best responses isat most 70 opt for any � > 0.Proof. Let f be the 
urrent 
ow, and suppose agent i 
hanges its 
ow path from Pi to P 0i , to give a new
ow f 0i . From Lemma 4.2, l(f 0i) � l(f)+2li(f 0i)� li(f). We will use the following re�nement to Lemma 4.4.Lemma 4.6. Let f be the 
ow 
orresponding to the 
urrent strategy pro�le. Consider the following randompro
ess: 
hoose an agent i at random and let it play its best response. If f 0 is the new 
ow after this 
hange,then either E[l(f 0)jf ℄ � (1� 12n)l(f), or l(f) � 23:32 opt.Proof. Assume that the best response of agent i is to swit
h from path Pi to P 0i resulting in the 
ow f 0i .Thus, E[l(f 0)jf ℄ = 1nPi2U l(f 0i). We 
onsider the following two 
ases:Case 1: Pi2U 4li(f 0i) �Pi2U li(f). In this 
ase, similar to Case 1 of the proof of Lemma 4.4, it followsthat E[l(f 0)jf ℄ � (1� 12n)l(f).Case 2: Pi2U 4li(f 0i) >Pi2U li(f). Let P� = (P �1 ; : : : ; P �n) be the optimal solution and let f� be the 
ow
orresponding to P�. Set J�(e) = fi : e 2 P �i g. Let f�i be the 
ow resulting from the swit
h of agent ifrom Pi to P �i . Sin
e P 0i is i's best response, we have li(f�i ) � li(f 0i). In this 
ase, we 
an apply the method



16of Azar et al. [1℄ as follows:l(f) = Xi (ri Xe2Pi(aefe + be))� Xi2U 4li(f 0i)� Xi2U 4li(f�i ) [sin
e player i play his best response to f 0i ℄� Xi2U 4ri Xe2P �i (ae(fe + ri) + be)= 4Xi2U Xe2P �i �(aefe + be)ri + aer2i �� 4Xe Xi:e2P �i �(aefe + be)ri + aer2i � :It follows thatl(f) � 4Xe f�e (aefe + be) + 4Xe aef�e 2= 4Xe f�e aefe + 4Xe (aef�e + be)f�e= 4Xe f�e aefe + 4 opt� 4vuut Xe (paefe)2! Xe (paef�e )2!+ 4 opt[Cau
hy-S
hwartz inequality℄= 4vuut Xe aef2e! Xe aef�e 2!+ 4 opt� 4sXe (aefe + be)feXe (aef�e + be)f�e + 4 opt= 4pl(f)opt+ 4 opt:By setting x = l(f)opt , we have x � 4(px+1). This gives x � 23:32. Hen
e, in this 
ase, l(f) � 23:32 opt. �Proof of Theorem 4.5. Let a0 = C be the so
ial value of the initial 
ow. Assume that at ea
h step we
hoose an agent at random and let it play its best response. Let aj be the expe
ted laten
y of the 
owafter j's step. From Lemma 4.6, we have for any j � 0, aj � 23:32 opt or aj+1 � aj(1 � 12n). Moreover,from Lemma 4.3, aj+1 � aj(1 + 1n) for any j � 0. Now, let p be the probability that aj > 23:32 opt. LetX be the expe
ted value of aj given that aj > 23:32opt and Y be the expe
ted value of aj given that



17aj � 23:32opt. Thus, aj+1 � p�1� 12n�X + (1� p)(1 + 1n)Y� �1� 12n� (pX + (1� p)Y ) + 32nY� �1� 12n� aj + 69:962n opt:It follows that aj � aj�i�1� 12n�i + 69:962n opt�1� �1� 12n�i�12nfor i � j. As a result, aj � a0 �1� 12n�j + 69:96 �1� �1� 12n�j�opt � C �1� 12n�j + 69:96 opt. Thus,for j � n log 1� log Copt , we get aj � (69:96 + �) opt. Therefore, after O(n log Copt) steps the expe
ted valueof aj is at most 70 opt. �Finally, we note that all our results on the pri
e of sinking and 
onvergen
e for weighted unsplittablesel�sh routing games extend to weighted 
ongestion games. Weighted 
ongestion games are the general-ization of weighted unsplittable sel�sh routing game in whi
h the family of feasible strategies of playersare an arbitrary family of subsets of ar
s (and not ne
essarily paths from a sour
e to a destination). Ourproofs do not rely on the fa
t that the feasible strategy is a path. Therefore, all our results hold for generalweighted 
ongestion games.4.2. Valid-Utility Games.Here we de�ne the 
lass of valid-utility games; see [14℄ for more details. A fun
tion f of the form 2V !R+ [ f0g is 
alled a set fun
tion on the ground set V . A set fun
tion f : 2V ! R+ [ f0g is submodular iffor any two sets A;B � V , f(A) + f(B) � f(A \ B) + f(A [ B). A set fun
tion f , is non-de
reasing iff(X) � f(Y ) for any X � Y � V . In valid-utility games, for ea
h player i, there exists a ground set Vi.We denote by V the union of ground sets of all players, i.e., V = [i2UVi. The feasible strategy set Fi ofplayer i is a subset of the power set, 2Vi , of Vi. Thus, the strategy si of player i is a subset of Vi (si � Vi).The empty set, denoted ;i for player i, 
orresponds to player i taking no a
tion.Given a 
olle
tion of strategies S = (s1; : : : ; sn), where si is a subset of the ground set Vi (si � Vi), theset HS = f(i; j) : i 2 U; j 2 sig is 
alled the pair set for the 
olle
tion S. Note that S may or may not be afeasible strategy pro�le. Given a fun
tion f : �i2U2V ! R+ [ f0g, the 
orresponding set fun
tion f s of fis a set fun
tion of the form 2H ! R+ [f0g where H = f(i; j) : i 2 U; j 2 V g and f s(HS) = f(S). In otherwords, for a set A � H, f s(A) = f((a1; a2; : : : ; an)) if ai = fj : (i; j) 2 Ag. Here, we also assume that theso
ial fun
tion 
 is of the form �i2U2V ! R+ [ f0g rather than just of the form �i2UFi ! R+ [ f0g.Let G(U; fFiji 2 Ug; f�i()ji 2 Ug) be a non-
ooperative strategi
 game where Fi � 2Vi is a family offeasible strategies for player i. Let V = [i2UVi and let the so
ial fun
tion be 
 : �i2U2V ! R+ [ f0g.Then G is a valid-utility game if it satis�es the following properties:(1) Submodular and Non-de
reasing So
ial Fun
tion: The 
orresponding set fun
tion, 
s, of 
 over the setH = f(i; j) : i 2 U; j 2 V g, is submodular and non-de
reasing.



18(2) Vi
krey Condition: The payo� of a player is at least the di�eren
e in the so
ial fun
tion when theplayer parti
ipates versus when it does not parti
ipate, i.e., �i(S) � 
0si(S � ;i). In basi
-utility games wealways have �i(S) = 
0si(S � ;i).(3) Cake Condition: For any strategy pro�le, the sum of the payo�s of players should be less than or equalto the so
ial fun
tion for that strategy pro�le, i.e., for any strategy pro�le S, Pi2U �i(S) � 
(S).This framework en
ompasses a wide range of games in
luding the fa
ility lo
ation games, traÆ
 routinggames, au
tions [14℄, market sharing games [5℄, and distributed 
a
hing games [3℄. In [14℄ it was shownthat the pri
e of anar
hy (for mixed Nash equilibria) in valid-utility games is at most 2. While provingtheorems about valid-utility and basi
-utility games, we use the following notation: given S = (s1; : : : ; sn)and S0 = (s01; : : : ; s0n), we de�ne S[S0 := (s1[s01; : : : ; sn[s0n). Also we de�ne S[s0i := (s1; s2; : : : ; si�1; si[s0i; si+1; : : : ; sn).Here we prove bounds on the worst-
ase pri
e of sinking in valid-utility games. First, we show that ourbad example in Se
tion 3 is a valid-utility game. Thus the pri
e of sinking in valid-utility games 
an be asbad as n. Then, we will prove that this lower bound for valid-utility games is almost tight. In parti
ular,we will show that the pri
e of sinking in a valid-utility game is at most n+ 1.In order to prove that the bad example in Se
tion 3 is a valid-utility game, we need to verify three
onditions:1) Non-de
reasing and Submodular So
ial Fun
tion:: First, it is 
lear that the 
orrespondingset fun
tion of the so
ial fun
tion 
s is non-de
reasing. To show its submodularity, we use anequivalent de�nition of submodular fun
tions: A set fun
tion f is submodular if for any two subsetsA and B su
h that A � B and for any element i =2 B, f(A[fig)�f(A) � f(B[fig)�f(B). Thus,in order to prove that 
s is submodular, it is enough to prove that for two (possibly infeasible)strategy pro�les S = (s1; : : : ; sn) and S0 = (s01; : : : ; s0n) su
h that si � s0i for all i 2 U , by adding anew element j to the strategy of any player i the in
rease in 
s for S is not less than the in
rease forS0. First, we 
onsider the 
ase that j = xti. If S0U\X = ; then SU\X = ;, and thus 
0xti(S0�;i) = 2and 
0xti(S�;i) = 2. If S0U\X 6= ; then 
0xti(S0�;i) = 0 � 
0xti(S�;i). Hen
e if j = xti, the desired
ondition for submodularity holds. Also, if j = yi it is implied that 
0yi(S0 � ;i) = 1 if and only ifS0U \ fyig = ;, otherwise 
0yi(S0 � ;i) = 0. It follows that 
0yi(S0 � ;i) � 
0yi(S � ;). Therefore, 
sis submodular.2) Vi
krey Condition:: If player i plays yi then she gets 1 and the so
ial value 
hanges by 1. Ifplayer i plays an element of Xi and in
reases the so
ial value by 2, then she is the only playerwho plays an irresponsible strategy. Thus, i = i�(S) and so she re
eives those two utility units.Otherwise the playing of an element of Xi has no e�e
t on the so
ial value. Thus, the Vi
krey
ondition is trivially satis�ed.3) Cake Condition:: It is straightforward to 
he
k thatPi2U �i(S) = 
(S) and the 
ake 
onditionholds.Now, we prove that this bound is almost tight.



19Lemma 4.7. Given a strategy pro�le T = (t1; : : : ; tn) in a valid-utility game, let the best response of agenti be si. Set T i = (t1; : : : ; ti�1; si; ti+1; : : : ; tn). Then Pi2U �i(T i) � opt� 
(T ).Proof. Let 
 = (�1; : : : ; �n) be the optimum state. Let
i = (�1; �2; : : : ; �i; ;i+1; ;i+2; : : : ; ;n):Given that si is a best-response strategy, we have �i(T i) � 
0�i(T �;i). Combining this with the submod-ularity of 
, we obtain Xi2U �i(T i) � Xi2U 
0�i(T � ;i)= Xi2U(
(T � �i)� 
(T � ;i))� Xi2U(
(T [ �i)� 
(T ))� Xi2U(
(T [ 
i)� 
(T [
i�1))= 
(T [ 
)� 
(T ):Sin
e 
 is non-de
reasing, it follows that Pi2U �i(T i) � opt� 
(T ). �Theorem 4.8. The pri
e of sinking in a valid-utility game is at most n+ 1.Proof. Consider a sink equilibrium Q. Let T = (t1; : : : ; tn) be a state in Q. Let the best response ofagent i be si at state T , and set T i = (t1; : : : ; ti�1; si; ti+1; : : : ; tn). Let Y be the expe
ted so
ial value ofthe state after a random best-response move from T . By the 
ake property and Lemma 4.7, we haveY = 1nXi2U 
(T i)� 1nXi2U �i(T i)� 1n(opt� 
(T )):Observe that the pri
e of sinking is equal to the expe
ted so
ial value on a suÆ
iently long random walk.Now take a long random walk T0; T1; : : : ; Tk. Let ei be the expe
ted value of 
(Ti) where the expe
tationis over the random 
oin tosses of the random walk. We know that as i tends to 1, �(Q) = ei. We need toprove that ei � 1n+1opt as i tends to1. Let pi;y be the probability that 
(Ti) = y. Thus, ei =Py pi;yy andei+1 =Py pi;yE[
(Ti+1)j
(Ti) = y℄. The above inequality shows that E[
(Ti+1)j
(Ti) = y℄ � 1n(opt� y).Therefore, ei+1 � 1nXy pi;y(opt� y)= 1n(opt�Xy pi;yy)= 1n(opt� ei):



20Hen
e, ei+1 � 1nopt� ein . Sin
e as i goes to 1, �(Q) = ei = ei+1, we get �(Q) � 1nopt� �(Q)n . Therefore,�(Q) � 1n+1opt as desired. �Thus the worst 
ase pri
e of sinking in a valid-utility game is between n and n+ 1.4.3. Basi
 Utility Games.For basi
 utility games (examples in
lude servi
e provider and fa
ility lo
ation games [14℄) the situation ismu
h better. These games are potential games, thus, the only sink equilibria are PSNE. Hen
e, the pri
eof sinking in a basi
-utility game is equal to the pri
e of anar
hy for PSNE whi
h is at most 2. Usingsimilar te
hniques to those of Theorem 4.8, we 
an prove that in basi
-utility games, the expe
ted so
ialvalue of a state after O(n log 1� ) random best responses is at least 12 � � of the optimal so
ial value, for any� > 0.Theorem 4.9. In basi
-utility games, for any 
onstant � > 0, there exists a 
onstant 
 su
h that theexpe
ted so
ial value of a state after 
n log 1� random best responses is at least 12 � � of the optimum.Moreover, for any 
onstant �0 > 0, there exist 
onstants �; 
0 > 0 su
h that after 
0n logn log 1� random bestresponses, the so
ial value is at least 12 � �0 of the optimum with high probability.Proof. Let 
 = (�1; : : : ; �n) denote an optimal state, and T = (t1; t2; : : : ; tn) be a strategy pro�le ofagents. Let T i be the strategy pro�le resulting from T after agent i plays its best response in T and let
i = (�1; : : : ; �i; ;i+1; : : : ; ;n). Let Y = 1nPi2U 
(T i) be the expe
ted so
ial value of the state after arandom agent plays its best response. Our goal is to lower bound Y .To do so, using submodularity, basi
ness and the 
ake 
ondition we get:nY � n
(T ) = Xi2U(
(T i)� 
(T ))= Xi2U(
(T i)� 
(T � ;i))�Xi2U(
(T )� 
(T � ;i))= Xi2U �i(T i)�Xi2U �i(T ) [by basi
ness℄� Xi2U �i(T i)� 
(T ) [by 
ake 
ondition℄� Xi2U �i(T i � �i)� 
(T ) [sin
e i plays his best response in T i℄= Xi2U 
0�i(T � ;i)� 
(T ) [by basi
ness℄� Xi2U(
(T � �i)� 
(T � ;i))� 
(T )� Xi2U(
(T [ 
i)� 
(T [
i�1))� 
(T ) [by submodularity℄= 
(T [ 
)� 
(T )� 
(T ) [sin
e it is a teles
opi
 summation℄� opt� 2
(T ) [sin
e 
 is non-de
reasing℄:



21The above inequalities show that Y � n�2n 
(T ) + 1nopt. Let Y0 be the a
tual so
ial value of the initialstate. At ea
h step, a random agent is pi
ked and plays its best response. Thus, if Yi is the so
ial valueof the state after step i, then E[YijYi�1 = y℄ � (n�2n )y + 1nopt. Let pyy0 be the probability that Yi�1 = y0given that Yi�2 = y. Thus, E[Yi�1jYi�2 = y℄ =Py0 pyy0y0. Therefore,E[YijYi�2 = y℄ = Xy0 pyy0E[YijYi�2 = y; Yi�1 = y0℄� Xy0 pyy0((n� 2n )y0 + 1nopt)= (n� 2n )E[Yi�1jYi�2 = y℄ + 1nopt� (n� 2n )((n� 2n )y + 1nopt) + 1nopt= (n� 2n )2y + 1nopt(1 + (n� 2n )):Thus, E[YijYi�2 = y℄ � (n�2n )2y + 1nopt(1 + (n�2n )). Similarly, we 
an prove that E[YijY0 = y0℄ �(n�2n )iy0 + 1nopt(1 + (n�2n ) + : : :+ (n�2n )i�1). Sin
e y0 � 0, E[Yi℄ � opt2 (1� (1� 2n)i).This proves that for a suÆ
iently large 
onstant 
 and by setting i = 
n log 1� , the expe
ted so
ialvalue after 
n log 1� best responses is at least 12 � � of the optimum. Moreover, sin
e in basi
-utility gamesthe so
ial value is non-de
reasing as agents play their best responses, we 
laim that for a suÆ
iently large
0 = 

00 > 0 and a suÆ
iently small � > 0, after 
0n logn log 1� random best responses, with high probabilitythe so
ial value is at least 12 � �0 of the optimum. The reason is that we 
an partition the best responsewalk of length 
0n logn log 1� into 
00 log n best-response walks of length 
n log 1� , and after ea
h of thesesubwalks, the expe
ted so
ial value is at least 12 � � of the optimum. Thus, by Markov inequality, witha 
onstant probability after ea
h of the subwalks of length 
n log 1� , the expe
ted so
ial value is at least(12 � �0) of the optimum. Hen
e, after 
0n logn log 1� best responses, the so
ial value is at least 12 � �0 of theoptimum with high probability. �5. A Hardness ResultIn this se
tion, we prove that �nding a sink equilibrium (or a PSNE if it exists) in some instan
es ofvalid-utility games is PLS-
omplete. We prove this using a tight PLS redu
tion from the Max-Cut problem.This, in turn, has some impli
ations on the 
onvergen
e to sink equilibria of these games.Theorem 5.1. Finding a sink equilibrium is PLS-
omplete for some instan
es of valid-utility games.Proof. We give a redu
tion from the Max-Cut lo
al sear
h problem. Consider an instan
e G = (V;E),with edge weights, of the Max-Cut problem. Suppose our lo
al sear
h operation is the moving of a vertexfrom one side of the bipartition to the other; this operation is 
alled swapping.We 
reate a game 
orresponding to this instan
e as follows. There is an agent v for ea
h vertex v inthe graph. The groundset of agent v is Vv = feL; eR : e 2 Æ(v)g. Thus the size of the groundset of agentv is twi
e the degree of v. A strategy for agent v is then just a subset of this groundset. Now, given thestrategy pro�le (Tv : v 2 V ), what is the payo� to ea
h agent?



22 Take an edge e = (u; v). Agent v re
eives a payo� of value we if it plays eL but agent u does not, andvi
e versa. If both agents play eL then they ea
h re
eive a payo� of value 12we. If neither agents plays eLthen they both re
eive nothing. The same payo� s
heme arises with the element eR. Hen
e the payo� toagent v is the sum of the payo�s he re
eives from ea
h of the elements in its groundset. The so
ial fun
tionis just the sum of payo�s of agents. We 
laim that this game is a valid-utility game. Submodularity followsfrom the 
onstru
tion. By de�nitionPi �i(S) = 
(S), so the 
ake 
ondition holds. Finally, if agent i playsa subset Si � Vi then the in
rease in the so
ial value is exa
tly the sum of the values of those elements inSi that have not been played by another agent. The payo� to agent i is the value of these elements plushalf the value of the other elements in Si. So the Vi
krey 
ondition holds.In order for the game to model the Max-Cut problem we just need to restri
t the set of feasible strategiesfor ea
h agent. In fa
t, we will only allow two feasible strategies (in addition to the null strategy) peragent. Agent v has the feasible strategies Lv = feL : e 2 Æ(v)g and Rv = feR : e 2 Æ(v)g. The motivationfor this is 
lear; the former strategy 
orresponds to pla
ing v on the left side of the partition, the latterstrategy 
orresponds to pla
ing v on the right side of the partition. Sin
e it is never in an agents interest toplay the null strategy, a best response move for agent v is either staying in its 
urrent side of the partitionor swapping to the other side of the partition.Let W = Pe2E we, and suppose that the strategy pro�le T = (Tv : v 2 V ) indu
es a 
ut (A;B)in the graph. Then the so
ial fun
tion is 
(T ) = W + Pe2Æ(A) we, and private utility of agent v isav(T ) = 12Pe2Æ(v);e=2Æ(A) we +Pe2Æ(v);e2Æ(A) we. Evidently, the so
ial obje
tive is to maximize the 
ut.Moreover, this redu
tion equates lo
al improvements in the Max-Cut lo
al sear
h problem with bestresponses of the valid-utility game. If the lo
al improvement 
orresponds to node v swapping sides, thenthe in
rease in the value of a 
ut equals the in
rease in the so
ial fun
tion. This, in turn, is exa
tly twi
ethe in
rease in the private payo� of node v arising from the swap. The theorem follows. �Using the above redu
tion from the Max-Cut problem to a valid-utility game, we 
an prove the following:Corollary 5.2. In some instan
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