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Abstract. We introduce the concept of a sink equilibrium. A sink equilibrium is a strongly
connected component with no out-going arcs in the strategy profile graph associated with a game.
The strategy profile graph has a vertex set induced by the set of pure strategy profiles; its arc set
corresponds to transitions between strategy profiles that occur with non-zero probability. (Here our
focus will just be on the special case in which the strategy profile graph is actually a best response
graph; that is, its arc set corresponds exactly to best response moves that result from myopic or
greedy behaviour.) We argue that there is a natural convergence process to sink equilibria in games
where agents use pure strategies. This leads to an alternative measure of the social cost of a lack of
coordination, the price of sinking, which measures the worst case ratio between the value of a sink
equilibrium and the value of the socially optimal solution. We define the value of a sink equilibrium
to be the expected social value of the steady state distribution induced by a random walk on that
sink.

We illustrate the value of this measure in three ways. Firstly, we show that it may more accu-
rately reflects the inefficiency of uncoordinated solutions in competitive games when the use of pure
strategies is the norm. In particular, we give an example (a valid-utility game) in which the game
converges to solutions which are a factor n worse than socially optimal. The price of sinking is
indeed n, but the price of anarchy is close to 1. Secondly, sink equilibria always exist. Thus, even in
games in which pure strategy Nash equilibria (PSNE) do not exist, we can still calculate the price
of sinking. Thirdly, we show that bounding the price of sinking can have important implications for
the speed of convergence to socially good solutions in games where the agents make best response
moves in a random order.

We present two examples to illustrate our ideas.

(i) Unsplittable Selfish Routing (and Weighted Congestion Games): we prove that the
price of sinking for the weighted unsplittable flow version of the selfish routing problem
(for bounded-degree polynomial latency functions) is at most O(22¢d?¢+3). In comparison,
we give instances of these games without any PSNE. Moreover, our proof technique
implies fast convergence to socially good (approximate) solutions. This is in contrast to
the negative result of Fabrikant, Papadimitriou, and Talwar [2] showing the existence of
exponentially long best-response paths.

(i1) Valid-Utility Games: we show that for valid-utility games the price of sinking is at
most 1 + 1; thus the worst case price of sinking in a valid-utility game is between n and
n+1. We use our proof to show fast convergence to constant factor approximate solutions

in basic-utility games.

*Massachusetts Institute of Technology. Email: goemans@math.mit.edu
tMassachusetts Institute of Technology. Email: mirrokni@theory.csail.mit.edu

*McGill University. Email: vetta@math.mcgill.ca



In addition, we present a hardness result which shows that, in general, there might be states that
are exponentially far from any sink equilibrium in valid-utility games. We prove this by showing

that the problem of finding a sink equilibrium (or a PSNE) in valid-utility games is PLS-complete.

1. INTRODUCTION

A standard approach in analysing the performance of systems controlled by non-cooperative agents is
by the examination of Nash equilibria. Of particular interest is the price of anarchy' in a game [8]. This
gives one measure of the cost to society of the inherent lack of coordination in a game. There are, however,
several drawbacks in the use of Nash equilibria. For example, one issue relates to use of non-randomized
(pure) and randomized (mixed) strategies. Often pure strategy Nash equilibria may not exist, yet the
use of a randomized (mixed) strategy is unrealistic in many games. This necessitates the need for an
alternative solution concept in evaluating such games. Another issue arises from the observation that
Nash equilibria represent “stable” points in a system. Therefore (even if pure Nash equilibria exist), they
are a more acceptable solution concept if it is likely that the system does converge to such stable points.
In particular, the use of Nash equilibria seems more valid in games in which Nash equilibria arise when
agents iteratively engage in selfish behaviour. However, in many games it is not the case that repeated
selfish behaviour always leads to Nash equilibria. In these games it also seems that another measure of
the cost of the lack of coordination would be useful. Observe that these issues are particularly important
in games in which the use of pure strategies and repeated moves are the norm, for example, auctions. We
remark that for many practical games these properties are the rule rather than the exception (and this
observation motivates much of the work in this paper). For these games, then, it is not sufficient to just
study the value of the social function at Nash equilibria.

In this paper we introduce a new solution concept in a game, namely sink equilibria. We model the
behaviour of agents using a graph, called the state graph (or strategy profile graph) whose vertex set is
the set of strategy states (or strategy profiles). We assume that evolution of the game over time can be
described by walks on this graph. Here, we also assume that the only arcs of the state graph are arcs that
correspond to moves of the players that may occur with non-zero probability. Thus, solutions or stable
outcomes will be given by the long-run behaviour of such random walks. In particular, eventually these
walks must lead to a set of states that have the following two properties:

e These states form a strongly connected component in the state graph.
e The strongly connected component has no outgoing arcs in the state graph.

These strongly connected components are sink equilibria. They are stable in that once we reach such
a component we will never leave it. They include PSNE as a special case, but unlike PSNE they are
guaranteed to exist in all such games. As with Nash equilibria, we can use sink equilibria to measure the
cost to society of the lack of coordination. In particular, here we will consider an analogue of the price of
anarchy termed the price of sinking. This is the worst case ratio of the social value of a sink equilibrium
compared to the optimal social solution. The social value of a sink equilibrium is measured by the expected

value of the stationary distribution of a random walk on the states in the sink.

IThe price of anarchy is the worst case ratio between the social value of an optimal solution and a Nash equilibrium.
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We formally define the price of sinking in Section 2. For any game the arc set and their associated
probabilities in the state profile graph may vary dramatically. As mentioned, we will focus on perhaps
the simplest case: the best response graph associated with myopic players. Here, the arc set consists only
of those arcs that correspond to a best response move of some player. We will also assume that, at a
given state, each player is equally likely to be selected to move. Thus our random walk will be a uniform
random walk on the best response graph. We call sink equilibria in such graphs myopic sink equilibria,
and refer to the price of sinking myopically. We will omit the “myopic” term when the context is clear.
We remark that the assumption of myopic behaviour is very restrictive and unrealistic in many situations.
Consequently, further investigation into the general case is important. This would allow for an examination
into alternate behaviours such as non-myopic behaviour, long-term planning, and simultaneous moves. We
content ourselves, here, with considering the basic case of myopic behaviour with non-simultaneous moves
for several reasons though. Firstly, it allows us to introduce sink equilibria in a clear manner, without
having to deal with the complexities (both practical and game-theoretic) of alternative behaviours. For
example, given a game how do you justify non-uniform moves, realistically incorporate forward planning, or
assign probabilities to simultaneous moves etc. Moreover, even finding simple, realistic examples of games
with non-myopic behaviours is not a straight-forward task. In addition, mathematically there appears to
be no intrinsic additional difficulty in tackling the general case, and so the ideas and techniques presented
here should also be useful in examining games with non-myopic behaviours.

We illustrate the usefulness of our measure in Section 3 where we present an n-agent valid-utility game
which always converges to states with social value a factor n worse than optimal. Indeed, the price of
sinking for this game is n. However the price of anarchy is almost 1. Thus, the price of anarchy gives us
a misleading confidence in the social quality of an outcome that will result from selfish behaviour.

As well as being perhaps a more appropriate solution concept than PSNE in many games, the existence
of sink equilibria has several nice implications. Since sink equilibria always exist, the price of sinking can
always be calculated? even in games without PSNE. Unlike PSNE, sink equilibria also possess natural
convergence properties. In particular, the techniques used to bound the price of sinking may often also
give bounds on the speed of convergence of random walks to sink equilibria and/or approximate solutions.
We study two examples in Section 4:

(1) Unsplittable Selfish Routing (and Weighted Congestion Games). We present instances of the weighted
unsplittable flow version of the selfish routing problem that possess no PSNE. However, we show that, for
polynomial latency functions of degree at most d, the price of sinking is O(22?d%¢*3). In addition, our
proof technique implies fast convergence to good (approximate) solutions. This may be compared to the
negative result by Fabrikant, Papadimitriou, and Talwar [2] showing the existence of exponentially long
best-response paths to PSNE. For example, consider the case of linear latency functions. Here, it is known
that PSNE exist [4], but it may be the case that the number of best response moves needed for convergence
to a PSNE is exponential. Our results show that after a small number of random best response moves the

social value of the flow is within a constant factor of the optimal solution.

20f course, actually doing so may not be easy!



4

(2) Valid-Utility Games. Our second example concerns the class of valid-utility games; specific example
in this class include marking sharing games [5], caching games [3], traffic routing games, facility location
games, and multiple item auctions [14]. Here we show that the price of sinking is at most n + 1; thus the
worst case price of sinking in a valid-utility game is between n and n 4+ 1. Again, our methods signify fast
convergence to approximate solutions. In particular, for basic-utility games, the expected social value of
any state after nlogn random best response moves is at least half of optimum.

We also present a hardness result concerning sink equilibria. In section 5 we show that in general it
is a PLS-complete problem to find a sink equilibria (or PSNE) in valid-utility games. This implies the
existence of exponentially long best response paths to any sink equilibrium in some valid-utility games.

We conclude this introduction with a very brief discussion on related work. In order to deal with the
stability and convergence problems of Nash equilibria, equilibrium concepts other than Nash equilibria
have been studied in the economics literature. Among these concepts are stable equilibria [7], stochastic
adjustment models [6], iterative elimination of dominated strategies, the set of undominated strategies etc.
Convergence and strategic stability of equilibria in evolutionary game theory is a also central subject of
study for many economists. However, in their studies the most important factor is typically the stability
of equilibria, and not measurements of the social value of equilibria. In [9], we began our investigation

into games in which pure strategy moves are the norm.

2. SINK EQUILIBRIA

A strategic game G is defined as a tuple G(U, {F;|i € U}, {a;()|7 € U}) where (i) U is the set of n players or
agents, (ii) F; is a family of feasible (pure) strategies or actions for player ¢ and (iii) a; : ;ep F; — RTU{0}
is the (private) payoff or wutility function for agent i, given the set of strategies of all players. Player i’s
strategy is denoted by s; € Fj;, and we let F := Il;cpy F; be the set of all possible strategy profiles. In the
games we consider, there will be a social utility function, usually denoted by v : Il;c7F; — R, defined on
all strategy profiles in a strategic game. The social value of the optimal solution is denoted by opT. Our
main focus is on the social quality of outcomes produced by selfish agents.

A strategy profile or a (strategy) state, denoted by S = (s1,89,...,8,), is the collection of strategies
chosen by the players. We let S @ s := (s1,...,8i-1,8},8i11,...,5k), that is, the strategy profile obtained
from S if agent 7 changes its strategy from s; to s;. In order to model the selfish behavior of players, we
use the underlying strategy profile graph or state graph. Each vertex in the state graph represents a state
S = (81,82,...,8n). As noted, in this paper the arcs in the state graph will correspond to best-response
moves by the players. Hence we have, for each player ¢ an arc from S to S®§;, where §; is the best response
of agent i at state S. (This model can be justified in extensive games with complete information, and is
used in the economics literature extensively in the context of studying convergence in games.) In many
games with iterative moves, the evolution of game-play may then be naturally modeled by a path in the
state graph. Such a path may or may not converge to a pure strategy Nash equilibrium (PSNE); a PSNE of
a strategic game is a strategy profile in which each player plays mutual best responses (that is, a vertex in

the state graph for which the best response move of each agent corresponds to a self-loop). Clearly it may
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be the case that there are no PSNE. So we may ask what happens in such games. Specifically, does some
concept of stability or equilibrium exist? The answer is yes, and we now describe such an “equilibrium”.

Consider the strongly connected components of the state graph. If we contract the strongly connected
components to singletons then we obtain an acyclic graph. The sink nodes in this graph (nodes with
out-degree equal to zero) correspond to strongly connected components with no out-going arcs in the state
graph. We call such a strongly connected component a (myopic) sink equilibrium. The reason for this
terminology is clear: if a best-response walk ever reaches a node in a sink equilibrium then it will never
leave that set of nodes. In addition, a long enough random walk in the state graph will converge to a sink
equilibrium with probability arbitrarily close to 1.

We denote by Q the set of sink equilibria in a game. We remark that the union of states in sink equilibria
correspond to the set of recurrent states in a Markov chain that only has non-zero transitional probabilities
on arcs in the state graph. In a random sequence of best responses of agents, we independently choose an
agent uniformly at random at each step and let this agent play its best response (if the agent has more
than one best-response move, we may assume that the agent arbitrarily chooses a move from the collection
of best-response moves). When this walk reaches a state in some sink we then follow a random walk over
the states in that sink. For a sink Q € Q, let mg : @ — RT U {0} be the steady state distribution of the
random walk over states in (). Let y(S) measure the social value of a state S. The (expected) social value
of a sink equilibrium @ € Q, denoted by I'(Q), is the expected social value of states given by the steady
distribution of the random walk over the states of Q, i.e., I'(Q) = > 5. m@(5)7(S) We then define, the

price of sinking (myopically) for a maximization social function as

Pri £ Sinki OPT OPT
rice o mKing = " = .
T S)(S
minl(Q)  min3 geqm(S)v(5)

In other words, the price of sinking is the worst ratio between the expected social value of a sink equilib-
rium and the social value of the optimum. Similarly, the price of sinking for a minimization problem is
glélgf‘(@) /OPT. Moreover, we have an analogous definitions for the price of sinking for general strategy
profile graphs with alternate arc sets. Given that sink equilibria are stable solutions in such games, this

may be a more realistic measure of the cost of the lack of coordination than the price of anarchy.

3. PRICE OF SINKING VS. PRICE OF ANARCHY

In this section, we present an m-agent (valid-utility) game in which the price of sinking and the price
of anarchy give very different pictures as to the consequences of non-cooperative behavior. In particular,
the price of anarchy will be close to 1, suggesting that no form of mechanism design is required to enforce
socially good solutions. However, every possible outcome of the game will result in a solution whose value is
a factor n smaller than that of the optimal social solution. The collection of strategies (groundset) available
to of agent i is {y;, =), 22,...,2%}, where i = 0,1,...,n — 1. For motivation, we can think of strategy v;
as a socially responsible strategy for agent 7. In contrast, all the strategies {zll, m?, ...,x?} can be viewed
as socially irresponsible strategies. Moreover, we will see that in any situation one of these n irresponsible

strategies provides a better payoff for agent ¢ than acting responsibly. Consequently, there is an incentive
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for every agent to act anti-socially with extreme consequences for the social outcome. In contrast, the price
of anarchy is oblivious to this incentive for anti-social behavior. The reason being that the payoffs to each
agent are intrinsically linked to the behavior of the other agents. Any specific irresponsible strategy may
be beneficial in certain circumstances but typically (given the other agents responses) that specific strategy
has smaller payoff than the responsible strategy. Consequently, under randomized strategies, playing an
irresponsible strategy is likely to lead to low private returns. Thus mixed strategy Nash equilibria will
require that most agents behave responsibly, blissfully ignoring the fact that in every possible situation
each agent has an incentive to behave irresponsible.

The family of feasible strategies F; for each agent ¢ is the set of singletons of his ground set and the empty
set, i.e., F; = {s CV;:|s] <1}. Let X; = {x},m?,,xf} and X = U;X;. Let S = (s1,82,...,5n) be a
collection of subsets s; C V; for alli = 0,1,...,n— 1. For a collection S = (s1,...,5,), we let SY = U;crrs;.
We construct a non-decreasing, submodular social utility function v on Il;c7V; in the following manner.

7(5)2{ 1SU\X]| it SUNX =0
ISU\X| +2 otherwise
We now need to specify the private utilities of each agent at any state. In order to define the payoff
functions, we define a function 7*(S) for each strategy profile S. We set i*(S) = null for any strategy
profile S in which no player plays an irresponsible strategy. If in a strategy profile S, some players play
irresponsibly, i*(S) is the index of one of the players who plays irresponsibly. In addition, we would like
i*(S) to satisfy the following property: given the strategies of the other agents, any agent i can always
choose some irresponsible strategy which forces i*(S) = i. Clearly, this will give agents an incentive to
act irresponsibly when using pure strategies. In order to complete the description of the function ¢*, let
Xij(S) be the indicator variable for the event that agent ¢ plays the irresponsible strategy xf . That is
xij(S):{l if 21 € 5Y

0 otherwise.

Next let
null if SYN X = (No-one plays irresponsibly)

i*(S) = i if U; (SYNX;)#0and
b= v (Xj=17 - Xi(S))  mod k]
Observe that if i*(S) = null then i can play the irresponsible strategy s, = {z¢}, thus forcing i*(S®s}) = i.
Moreover, there always exists a strategy s; = {2z} such that if i plays s} = {z?} then i*(S @ s}) = i. We

are now ready to give a payoff function «; for each agent 1.

ify, ¢ s andz;éz (S)
if y; € s; and 7 # i*(S)
if y; ¢ s; and i = 7*(S)
if y; € s; and 1 = *(95).

a;(S) =

W N = O

So agent i gets utility 1 for playing the responsible strategy and another 2 units of utility if i = i*(S). We
will see in Section 4.2 that this is a valid-utility game with a non-decreasing social utility function. Thus

we may apply the following result from [14].
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Theorem 3.1. A wvalid-utility game with a non-decreasing social utility function has a price of anarchy at
most 2. 0

If fact, it is easy to see that the price of anarchy in this game actually tends to 1 as the number of
agents increases. In particular, a socially optimal solution has n — 1 of the agents playing their responsible
strategies and exactly one of the agents plays an irresponsible strategy. Such an outcome has value n + 1.
Moreover, note that by playing responsibly an agent can guarantee that they receive 1 unit of utility.

Thus, it must be the case that in a Nash equilibrium?

every agent has an expected payoff of at least 1.
Since y(S) > >y @i(S) for any state S, we have that the expected social value of a Nash equilibrium is
at least m. Thus the price of anarchy is at most 1 + %

Now we consider the price of sinking in this game. Given any strategy profile S, the best response of
each agent is to play the specific irresponsible strategy that gives it a payoff of 2. To see this, note that
agent 7 always has a move that sets *(S’) = i. Thus a responsible strategy y; is never a best-response
strategy. In fact, the best response of each player is to play an irresponsible strategy to get the payoff of
2, thus forcing to the payoffs of the other players using irresponsible strategies to 0. It follows that there
is a unique sink equilibrium consisting of every strategy profile in which each agent plays an irresponsible
strategy. Thus, every state in the sink has social value exactly two. Hence the price of sinking is exactly
”T"'l. We remark that even if we start at an optimal solution and then allow each agent to make just one
single best-response move in turn then we end up with a solution of value 2! Moreover, we can then never
leave this sink if players play their myopic best responses.

Notice also that we could alter the payoffs in the game slightly so that the payoff resulting from the
first irresponsible move is 1 + § rather than 2. Clearly the price of sinking is then ?TJ“g whilst the price of

anarchy is 1 + %. Thus we have

Lemma 3.2. There are valid-utility games, with non-decreasing social utility functions, having a price of

sinking of almost n and a price of anarchy of almost 1. O

Consequently the price of anarchy underestimates the social cost of the lack of coordination by a factor
n. The reason for this is that the good strategy always gives a good return. Any bad strategy can give
a high return but only in a small number of situations, thus any bad strategy performs badly against
randomized strategies and players tend to play their good strategies in a mixed Nash equilibria. This type
of issue often arises in games, and explains why the price of anarchy may often significantly under-estimate
the social cost of the lack of coordination in such games.

Finally, note that this game has no PSNE so focusing here upon sink equilibria is essential. Surprisingly,
Lemma 3.2 is also almost tight; we will show in Section 4 that the price of sinking in a valid-utility game

is at most n + 1.

30ne Nash equilibrium is the following. Each agent i plays strategy y; with probability p and each bad strategy with

1

probability kTp. It is easy to check that letting p = "~{/5

(1 — —L5) gives a Nash equilibrium.



4. PRICE OF SINKING AND CONVERGENCE

Recall that PSNE are special cases of sink equilibria. We have already seen that games in which agents
repeatedly react to the other agent’s strategies via the use of pure strategy best responses will converge
to sink equilibria and not necessarily to PSNE. Moreover, many classes of games have instances for which
no PSNE exists. In these games, we can still measure the cost to society of the lack of coordination using
the price of sinking. Moreover, in bounding the price of sinking for sink equilibria we may obtain bounds

on the expected social value of states after a random sequence of best responses.

4.1. Unsplittable Selfish Routing and Weighted Congestion Games. Consider the “unsplittable
flow” version of the selfish routing game. We have a directed network G = (V, E') with a flow dependent
latency function A, : R — RT U{0} on each arc e € E. There is a set U of n agents; agent i wishes to route
flow at a rate r; from a source s; to a sink ¢;. Each agent aims to incur as small a latency as possible. In
the unsplittable flow version, an agent may not split its flow. Hence each agent picks a unique s; — t; path
and routes all its flow along the path. The latency of an agent is equal to its traffic size multiplied by the
sum of the latencies of arcs along the path that it chooses. The latency of an arc e is a non-decreasing and
non-negative function of the total load on arc e. In this paper, we consider bounded-degree polynomial
latency functions. In particular, for an arc e, we let A\.(z) = Zogjgd ae,jz’ be a non-negative and non-
decreasing delay function for arc e. For a strategy profile P = (Py, P, ..., P,) where P; is a s; — t; path,
let the load of arc e be fo = >, .cp ri. Then, the latency of agent i is li(f) = i Y _.cp Ae(fe) and the
total latency of flow f is I(f) = 3 ;e Li(f) = Dcep(a) Ae(fe) fe-

Recently Awerbuch, Azar, and Epstein [1] proved that the price of anarchy in such games is exactly
2.618 for linear latency functions and is at most O(2¢d%*1) for polynomial latency functions of degree at
most d. They extended their results to mixed Nash equilibria, since the existence of pure Nash equilibria
for these games with polynomial latency functions was not known. For linear latency function Fotakis,
Kontogiannis, and Spirakis [4] proved that the game is a potential game. Here, we exhibit an instance
of this game with quadratic latency functions that does not possess any PSNE. This, in turn, provides
additional motivation for analyzing the price of sinking in these games. Our example is shown in Figure
1. Tt depicts a network with 4 vertices and 6 arcs. Arcs are labeled from 1 to 6. The latency functions
of arcs are A\ (z) = x + 33, \a(z) = 13z, A\3(z) = 322, M\i(z) = 622, A\s5(x) = 22 4 44, and \g(z) = 47z.
There are two agents with traffic r; = 1 and 7o = 2. The source of both agents is vertex 1 (s;1 = s9 = 1)
and the destination of both agents is vertex 4 (t; = to = 4). There are four source-destination paths:
P = (6), B = (3,5), Ps = (3,4,2), and Py = (1,2) where the numbers within the parentheses are
the labels of arcs on the path. It is not hard to check that the weighted unsplittable selfish routing
game on this network has no PSNE. There is one sink equilibrium, namely the set of strategy profiles
{(P1, P2), (P53, ), (P3, Pa), (P1, P4) }.

The key to obtaining bounds on the price of sinking is that any agent making a best-response move
cannot cause too much cumulative harm to the other agents. Consequently, if an agent can make a move
that significantly increases its private welfare, then the overall social welfare must rise. This will be an

important factor in allowing us to prove that we have a low price of sinking in these routing games.



FIGURE 1. A routing game without PSNE.

Theorem 4.1. The price of sinking for a weighted unsplittable selfish routing game (or a weighted con-

gestion game) is at most O(224q%4+3),
Proof. We need the following three lemmas for the proof.

Lemma 4.2. Let f be the flow corresponding to the current strategy profile P = (Py,..., P,). Suppose
agent i changes its flow path from P; to P}, to give a new flow f!. Then I(f!) <I(f)+ (d+ 1)L(f]) —Li(f).
In particular, if agent i decreases its latency by changing to P!, then I(f]) < I(f) + dli(f) < (d+ 1)I(f).

Proof. The latency incurred by agent ¢ is then

LU =ri >, Y aci(fley =ri| Y Y acifl+ D> Y aci(fetri)

ecP! 0<j<d e€P/NP; 0<j<d e€P!—P; 0<j<d

Note that for e € P/ — P;, we have f! = f. + r;. Moreover, we know that

U <UN+ WU =6+ Y | D (@eifle) = (aeifd) | (fle—mo),

ecP/—P; \0<j<d
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the last term corresponding to the increase in latency for agents other than ¢ due to the rerouting of agent

1. We can get an upper bound on the increase in latencies faced by the other agents by noting that

ST S @egfl) = (aeif) | (fle =)

ecP!—P; \0<j<d

- Z Z (a€,j( z‘l,ej - fg)fe)

ecP/—P; 0<j<d

= Y S asfie-f) | DD RS fe

ecP/—P; \0<j<d 1<t<j
< Z Z Qe,jTi Z (fe + Ti)Jil (fe + Ti)
ecP/—P; \0<j5<d 1<t<j

< 7 Z Z jae,j(fe‘f'ri)j

ecP/—P; \0<j<d

< dli(f;)-
Thus, the total latency after agent i changes its strategy is at most [(f) + (d + 1)I;(f!) — li(f). Since,
Li(f]) < 1i(f), this shows that I(fj) <I(f) + dli(f) < (d+ 1)I(f). O

Lemma 4.3. Let f be the flow corresponding to the current strategy profile. Consider the following random

process: choose an agent i at random and let it play its best response. If f' is the new flow after this change,

then E[L(f')|f] < (L+ I(f).

Proof. Let f! be the flow after agent i plays its best response to f. Then, using Lemma 4.2, we have:

BI = - S

ieU

IA

LS + i)
€U
= () + ()

=+ 5.

The third lemma we need is below. Its proof is inspired by the work of Azar et al. [1].

Lemma 4.4. Let f be the flow corresponding to the current strategy profile. Consider the following random
process: choose an agent i at random and let it play its best response. If f' is the new flow after this change,
then either B[L(f')|f] < (1 — 2=)I(f), or I(f) < O(22(d + 1)>*2)opr.

Proof. Assume that the best response of agent i is to switch from path P; to P/ resulting in the flow f/.
Thus, E[[(f)|f] = 1 3,cu L(f]). We consider the following two cases:
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Case 1: > .., 2(d+ 1)l;(f]) < Y icpyli(f)- In this case, by Lemma 4.2,

IN
|
—~
=~
~h
=
+
—_
SN—
=~
~—
—~
)
~—
SN—

VAN
Y
Pﬁ
+
N
N~
Pﬁ
=
~_

€U zEU ceU
- l(nl(f)—ll(f))

1
= (- ).

Thus, we obtain E[I(f')|f] < (1 — £)I(f).

Case 2: Y, ;2(d+ 1)l;(f]) > X ic li(f). Let P* = (Py,..., P;) be the optimal solution and let f* be
the flow corresponding to P*. Set J*(e) = {i : e € P}. Let f be the flow resulting from the switch
of agent i from P; to P*. Since P/ is i’s best response, we have [;(f) > [;(f!/). Thus, in this case,
Sicw 20d+ DLF7) > Siey blf) = (). Consequently,

o~
)
N

> 2(d+ DEL(f)

1ceU

(2d + 2) Zri Z Ae(fe + 1)

iU ecP;

d
= (2d+2)> 1 Y. Y ac(fet+ri)

i€U  eeP; j=0

d
= 2d+222 Z Qe fe—i—rZ 4.

e j=04eJ*(e)

IN
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The rest of the proof of this case is based on the proof of Lemmas Al, A2, and A3 in [1]. First, we use

the following inequality from [1]: (z 4+ 3)? < cz® + (y(+& + 1))? for any ¢ > 1. Thus, we get:

Ine

d
() < @d+2)D > > ae;(fe+ri)r;

e jzoz‘e]*( )

< (2d+2) ZZae’] Z <cfj7“Z (——i—l) r?“)
e j=0 ieJ* (e
d
< (2d+2)zzae,j<f’fe <i+1> :J“)
e j:O
= ¢(2d+2) ZZae]fefe + (2d + 2) <—+1> ZZae,j 4L
e j=0 e 7=0
= ¢(2d +2) ZZae]f]f + (2d + 2) <—+1> ZA
e j=0

ieJ* (e id < f;‘d and the function f(z) = (= +1)*

where the second inequality comes from the fact that > e

is an increasing function for z > 0. Holder’s inequality states.
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*J+1

Applying this, with a; = ae]feJr bj =ac;f’", a= yields

J+1’

I(f) < c(2d + 2) ZZaeJ T+ (2d +2) <—+1> ZA (F5)
J/(3+1) 1/(j+1)
*J+1

IN IN AN
) ) DO
2 2 8
=8 =8 =¥
+ + +
= = =
B B M&
7N Y Y
-] -] ]
> > )
<Y <Y o
—~ —~ <
= = S
— — +
o o Ll
~_— ~_—
a <.
= P
S
e 3
= =
]
'S s
b ok
(LY ® %
~ ~
= (-
¥ ¥
= =

IN
DO
2
S
_|_
—_
[N
>
@
.
L
o+

N———

ISH

=

ISH

+

=
g
>
@
~
® %
@ %

N———

=

ISH

+

=

where the fourth inequality is from the inequality z%y> @ > z¥y @ forz >y >0and 1 > a > o > 0
with @ =37 Ae(fe) fe and y = 3 . Ae(fe) fo. By letting
(ki

r = 1
OPT+1

we get

d
e < 2¢(d + 1)22% + 2(d + 1) (11 + 1) .
nc

After dividing both sides by z%, we get:
d d
me T 1
z < 2e(d+1)% +2(d+1) (“ICT> .

d
We claim that if we set ¢ = 2 — ¢ for € = ﬁ (2(’1—1“)) , then we have z < 4(d + 1)2. Assume for
contradiction that z > 4(d + 1)2. Then,

d
|
Ad+1)? <z <4(d+1)? - 2e(d+1)> +2(d +1) (L* ) ,

T
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Thus,

EESA
(d+1)e < e

2d 4+ 1\*
< + ) [since Inc > 0.5]

IN

which is a contradiction. Therefore, by setting ¢ = 2 — €, we get = < 4(d + 1)2. Hence, I(f) = z¢T'opT <
O(2%(d + 1)?+2)opT. O

From Lemma 4.4, we can bound the price of sinking as follows. Consider a sink (). Let fy be a flow
in (). Consider a random walk starting from fy in which we let a random agent play his best response
at each step. Let fo, f1,fo,..., fn be a sequence of observed flows in (). Recall that the value for
sink @ is equal to I'(Q) = > g0 m(5)I(fs) where fg is the flow corresponding to the state S and mq
is the steady distribution for the random walk on ). Since @ is strongly connected, this is equal to
Q) = limy_ M In order to upper bound this value, it is sufficient to upper bound E[I( f;)]
for each 0 < j < N. Lemma 4.4 shows that there exists a state in any sink @) with total latency less than
0(2%4(d + 1)**+2)opT. Note that, as @ is strongly connected the value of the sink is independent of the
choice of fy. Therefore, we can set fo such that I(fo) < ¢/22%(d 4+ 1)??*20PT. Let ¢; be the coin toss of
step ¢ in the random walk. More precisely, we want to upper bound a; = E¢, ¢, ..., [l(f;)]. By Lemma 4.4

and Lemma 4.3, we have
e Either B, [I(fj+1)!fj] < (1 — 3)I(f;) or I(f;) < ¢2%!(d + 1)*¢+20pr.
o Be, o [1(f5+0)lf5] < (14 D)
Let E; be the event that I(f;) < ¢/224(d + 1)?¢*2 and E, be the event that [(f;) > ¢/224(d + 1)?¢+2)opT.

Let p be the probability that event Ey happens. Furthermore, let Y = E[I(f;)|E1] < ¢/2%4(d + 1)?+2 and
X = E[l(f;)|E2]. Thus, a; = E[l(f;)] =pX + (1 —p)Y. Now,

ajt1 = E[(fj1)]
< (1—%>X+(l—p)<l+—>Y
< 1—% (pX+(1—p)Y)+2d2;tlY

IN

(d + 1)%¢20pT.

IA
/_\/._\\/ ~ =
[
[N~}
3|"
N N~ N~ 3
s
S
+
[N~}
1\3&‘
S|+
—_
>-<

2d + 10,22d
2n
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Combining the above recurrence relation and ag < I(fo) < 2¢'22%(d + 1)24F30PT, we can prove a;;; <
2¢'22%(d + 1)?T30pPT by induction. Thus, B, ¢, ...; [[(f;)] < O(2%%(d 4+ 1)**"30PT). Hence, the price of
sinking is at most O(22¢(d + 1)2¢+3) by the linearity of expectation. As (d + 1)2%+3 = O(d?¥*+3), we have
the desired bound. 0

We can also use the lemmas used in the proof of Theorem 4.1 to bound the rate of convergence to
states with good social value in unsplittable (weighted) selfish routing games. We can prove that starting
from a flow of latency C, after O(n log %) random best responses, the expected social value is less than
70 opT for linear latency functions, and is less than O(22¢d??+3)opPT for polynomial latency functions of
degree at most d. This is in contrast with the negative convergence result of Fabrikant, Papadimitriou,
and Talwar [2], in which they exhibit exponentially long best-response paths to PSNE (or sink equilibria)
in these games. Our bounds show that, even though convergence to PSNE (or sink equilibria) may be
exponential, a random sequence of best responses of agents converges to a state with good social value
after polynomial number of best responses. Here, we prove a tighter bound for convergence in the weighted
unsplittable selfish routing game with linear latency functions. We assume that the latency function of
arc e is a linear function. In particular, we let the latency function for arc e € E(G) be Ae(2) = aex + be

with ae, be > 0.

Theorem 4.5. In the weighted unsplittable selfish routing game with linear latency functions, starting from
any state with total latency C the expected latency of the flow after O(nlog 0%) random best responses is
at most 70 OPT for any € > 0.

Proof. Let f be the current flow, and suppose agent i changes its flow path from P; to P/, to give a new
flow f/. From Lemma 4.2, [(f!) < I(f)+20(f])—1;(f). We will use the following refinement to Lemma 4.4.

Lemma 4.6. Let f be the flow corresponding to the current strategy profile. Consider the following random
process: choose an agent i at random and let it play its best response. If f' is the new flow after this change,
then either B[I(f')|f] < (1 = £)I(f), or I(f) < 23.32 oPT.

Proof. Assume that the best response of agent i is to switch from path P; to P/ resulting in the flow f/.
Thus, E[[(f)|f] = 2 ;e L(f]). We consider the following two cases:

n

Case 1: Y, 4li(f]) < > ,cpli(f). In this case, similar to Case 1 of the proof of Lemma 4.4, it follows
that BIL(f') f] < (1 L)I(f).

Case 2: 3, 4li(f]) > >y li(f). Let P* = (Py,..., P;) be the optimal solution and let f* be the flow
corresponding to P*. Set J*(e) = {i : e € P’}. Let f be the flow resulting from the switch of agent i
from P; to P;. Since P} is i’s best response, we have ;(f) > I;(f!). In this case, we can apply the method



16

of Azar et al. [1] as follows:

() = D (ri Y (acfe+be))

i ech;

A

1eU

IN

IA

Z Al (1) [since player 4 play his best response to f/]
€U

Z4Tz Z Ge fe‘i"’"z)"i‘b)

€U e€ P

= A3 Y [(@efe +bo)ri + acr?]

ieU ee P}

42 Z (aefe + be)ri + aer ]

e ieeP;

IN

IN

It follows that

I(f)

IN

AT facfe 4 ) +4Yacf?
= 4Zf;aefe +4Z(aef: + be)f:

= 4 flacfe+4opT
e

IN
W

(Z(\/a_efe)2> (Z(\/@f;‘V) + 4 opt[Cauchy-Schwartz inequality]

_—

= 4\ (Z aefe2> (Z aeff) +4 oPT

e e

IA

4\/Z(aefe b fe S (auf +bo) e+ 4 o

& [

= 44/Il(f)oPT + 4 OPT.

By setting z = %, we have z < 4(y/x+1). This gives 2 < 23.32. Hence, in this case, I[(f) < 23.32 opT. O
Proof of Theorem 4.5. Let ag = C be the social value of the initial flow. Assume that at each step we
choose an agent at random and let it play its best response. Let a; be the expected latency of the flow
after j's step. From Lemma 4.6, we have for any j > 0, a; < 23.32 OPT or a;j41 < a;(l — —) Moreover,
from Lemma 4.3, a;11 < a;(1 + ﬁ) for any j > 0. Now, let p be the probability that a; > 23.32 OPT. Let

X be the expected value of a; given that a; > 23.320PT and Y be the expected value of a; given that
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aj < 23.320PT. Thus,

IN

aj+1

IN

IN
A~ 3
—
|
[\
3
~ ~— =
)
>
+
_
|
=
=
+
Y|
b<

It follows that

PT
2n 2n ==

i 1—(1—2L)
ajgaji<1_i>+69.960< (1-2))

for i < j. As aresult, a; < ag (1= 5)" +69.96 (1= (1= 2)’) orT < € (1= %) +69.96 oPT. Thus,

n n
en
OPT’
of a; is at most 70 OPT. O

for j > nlog L log we get a; < (69.96 + €) oPT. Therefore, after O(n log O%) steps the expected value

Finally, we note that all our results on the price of sinking and convergence for weighted unsplittable
selfish routing games extend to weighted congestion games. Weighted congestion games are the general-
ization of weighted unsplittable selfish routing game in which the family of feasible strategies of players
are an arbitrary family of subsets of arcs (and not necessarily paths from a source to a destination). Our
proofs do not rely on the fact that the feasible strategy is a path. Therefore, all our results hold for general

weighted congestion games.

4.2. VALID-UTILITY GAMES.

Here we define the class of valid-utility games; see [14] for more details. A function f of the form 2V —
R* U {0} is called a set function on the ground set V. A set function f : 2" — R U {0} is submodular if
for any two sets A,B CV, f(A)+ f(B) > f(ANB) + f(AU B). A set function f, is non-decreasing if
f(X) < f(Y) for any X CY C V. In valid-utility games, for each player i, there exists a ground set V;.
We denote by V' the union of ground sets of all players, i.e., V = U;cpyV;. The feasible strategy set F; of
player i is a subset of the power set, 2¥i, of V;. Thus, the strategy s; of player i is a subset of V; (s; C V;).
The empty set, denoted (; for player 7, corresponds to player i taking no action.

Given a collection of strategies S = (s1,...,8,), where s; is a subset of the ground set V; (s; C V;), the
set Hg = {(i,7) :1 € U,j € s;} is called the pair set for the collection S. Note that S may or may not be a
feasible strategy profile. Given a function f : IL;cy2" — RT U {0}, the corresponding set function f* of f
is a set function of the form 2% — RT U{0} where H = {(i,5) : i € U,j € V} and f*(Hs) = f(5). In other
words, for a set A CH, f*(A) = f((a1,aq9,...,an)) if a; = {j: (i,j) € A}. Here, we also assume that the
social function v is of the form M2 — RY U {0} rather than just of the form ey F; — RY U {0}.

Let G(U,{F;|i € U},{a;()|i € U}) be a non-cooperative strategic game where F; C 2" is a family of
feasible strategies for player i. Let V = U;cp/V; and let the social function be «y : Il;cr2Y — Rt U {0}.
Then G is a valid-utility game if it satisfies the following properties:

(1) Submodular and Non-decreasing Social Function: The corresponding set function, %, of -y over the set

H ={(i,j) : i € U,j € V}, is submodular and non-decreasing.
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(2) Vickrey Condition: The payoff of a player is at least the difference in the social function when the

player participates versus when it does not participate, i.e., a;(S) > v, (S @ 0;). In basic-utility games we
always have o;(S) = .. (S @ ;).
(3) Cake Condition: For any strategy profile, the sum of the payoffs of players should be less than or equal

to the social function for that strategy profile, i.e., for any strategy profile S, >, a;(S) < v(95).

This framework encompasses a wide range of games including the facility location games, traffic routing
games, auctions [14], market sharing games [5], and distributed caching games [3]. In [14] it was shown
that the price of anarchy (for mixed Nash equilibria) in valid-utility games is at most 2. While proving
theorems about valid-utility and basic-utility games, we use the following notation: given S = (s1,...,sy)
and S’ = (s},...,s),), we define SUS’ := (s Us],...,s,Us},). Also we define SUs, := (s1,52,...,8i-1,8 U
Sh Sitl,y e, Sn).

Here we prove bounds on the worst-case price of sinking in valid-utility games. First, we show that our
bad example in Section 3 is a valid-utility game. Thus the price of sinking in valid-utility games can be as
bad as n. Then, we will prove that this lower bound for valid-utility games is almost tight. In particular,
we will show that the price of sinking in a valid-utility game is at most n + 1.

In order to prove that the bad example in Section 3 is a valid-utility game, we need to verify three

conditions:

1) Non-decreasing and Submodular Social Function:: First, it is clear that the corresponding
set function of the social function v® is non-decreasing. To show its submodularity, we use an
equivalent definition of submodular functions: A set function f is submodular if for any two subsets
A and B such that A C B and for any element i ¢ B, f(AU{i})— f(A) > f(BU{i})— f(B). Thus,
in order to prove that 4* is submodular, it is enough to prove that for two (possibly infeasible)
strategy profiles S = (s1,...,s,) and 8" = (s),...,s),) such that s; C s} for all i € U, by adding a
new element j to the strategy of any player 4 the increase in «* for S is not less than the increase for
S'. First, we consider the case that j = z!. If SN X = () then SYNX = ), and thus v (S'®0;) =2
and 7/, (S@0;) = 2. If SVNX # ) then v, (5@ 0;) =0 <+, (S 0;). Hence if j = mfz-, the desired
condition for submodularity holds. Also, ifl“j = y; it is impliéd that v, (S' © 0;) = 1 if and only if
SV N {yi} = 0, otherwise v, (S' & 0;) = 0. Tt follows that ~, (S’ @& 0;) < v,,(S & 0). Therefore, ~*
is submodular.

2) Vickrey Condition:: If player i plays y; then she gets 1 and the social value changes by 1. If
player 7 plays an element of X; and increases the social value by 2, then she is the only player
who plays an irresponsible strategy. Thus, i = i*(S) and so she receives those two utility units.
Otherwise the playing of an element of X; has no effect on the social value. Thus, the Vickrey
condition is trivially satisfied.

3) Cake Condition:: It is straightforward to check that ), ;; a;(S) = v(S) and the cake condition
holds.

Now, we prove that this bound is almost tight.
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Lemma 4.7. Given a strategy profile T = (t1,...,t,) in a valid-utility game, let the best response of agent
1 be s;. Set T = (t1y. . ytiz1sSistizty. - tn). Then ZieU ai(Ti) > opT — (7).

Proof. Let Q = (01,...,0,) be the optimum state. Let
Qi == (01,02, P ,Ui,®i+1,®i+2, [P ,@n)

Given that s; is a best-response strategy, we have a;(T") >~ (T & 0;). Combining this with the submod-
ularity of v, we obtain

Z a; (T > Z Vo, (T @ 0;)

icU icU

= > (VT &) —v(T @)
€U
> (T uai) - (T))
%
> Y ((TUQ) —y(TUQ)
€U

= ATUQ) —(T).

v

Since v is non-decreasing, it follows that Y, ; a;(T%) > oPT — (7). O
Theorem 4.8. The price of sinking in a valid-utility game is at most n + 1.

Proof. Consider a sink equilibrium Q. Let T' = (¢1,...,t,) be a state in ). Let the best response of
agent i be s; at state T, and set T% = (t1,...,ti_1,8i, tit1,...,tn). Let Y be the expected social value of

the state after a random best-response move from 7T'. By the cake property and Lemma 4.7, we have

v o= 3T

€U
1 .

> - (T

2 ng Q‘Z(T)
€U
1

> (opT — A(T)).
n

Observe that the price of sinking is equal to the expected social value on a sufficiently long random walk.
Now take a long random walk Ty, Th,...,Ty. Let e; be the expected value of v(7;) where the expectation
is over the random coin tosses of the random walk. We know that as 7 tends to oo, I'(Q) = e;. We need to
prove that e; > n%—l
eit1 = >, PiyE[y(Tit1)|7(Ti) = y]. The above inequality shows that E[y(Ti11)v(Ti) =y > LopT - y).

Therefore,

OPT as 7 tends to co. Let p; , be the probability that v(7;) = y. Thus, e; = Zy Piyy and

1
el 2 > piy(oPT —y)
Yy

1
= E(OPT - Zpi,yy)
Y

1
= E(OPT —€).
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Hence, ;11 > OPT — <. Since as i goes to oo, ['(Q) = ¢; = e;41, we get I'(Q) > LopT — F(HQ)

re) > %HOPT as desired. O

Thus the worst case price of sinking in a valid-utility game is between n and n + 1.

. Therefore,

4.3. Basic UTiLiTY GAMES.

For basic utility games (examples include service provider and facility location games [14]) the situation is
much better. These games are potential games, thus, the only sink equilibria are PSNE. Hence, the price
of sinking in a basic-utility game is equal to the price of anarchy for PSNE which is at most 2. Using
similar techniques to those of Theorem 4.8, we can prove that in basic-utility games, the expected social
value of a state after O(n log %) random best responses is at least % — ¢ of the optimal social value, for any
e > 0.

Theorem 4.9. In basic-utility games, for any constant € > 0, there exists a constant ¢ such that the
expected social value of a state after cn log% random best responses is at least % — € of the optimum.
Moreover, for any constant € > 0, there exist constants €,c¢’ > 0 such that after c’nlognlog% random best

responses, the social value is at least % — ¢ of the optimum with high probability.

Proof. Let Q = (01,...,0,) denote an optimal state, and T' = (t1,t9,...,t,) be a strategy profile of
agents. Let T be the strategy profile resulting from T' after agent i plays its best response in 7' and let
Q= (01,...,0i,0i41,...,0,). Let Y = L3 4(T%) be the expected social value of the state after a
random agent plays its best response. Our goal is to lower bound Y.

To do so, using submodularity, basicness and the cake condition we get:

Y —ny(1) = ST - A1)

€U
= Y (T =T @ 0:) = > (AT) =T & y))
€U iU
= Z o (T — Z a;(T) [by basicness]
i€U i€U
> Z o;(T") —4(T) [by cake condition]
€U
> Z o;(T" @ 0;) —(T) [since i plays his best response in T"]
ieU
= Z Yo, (T ® 0;) —~(T)  [by basicness]
1%
> Y (T @) —v(T &) —y(T)
ieU
> ) (T UQ) —y(TUQ ) —(T) [by submodularity]
ieU
= Y(TUQ)—~(T)—~(T) [since it is a telescopic summation]
> opPT —2y(T) [since v is non-decreasing].
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The above inequalities show that Y > ”T_Q'y(T) + %OPT. Let Yy be the actual social value of the initial
state. At each step, a random agent is picked and plays its best response. Thus, if Y; is the social value
of the state after step i, then E[Y;|Y; 1 = y] > (”Td)y + %OPT. Let py, be the probability that ¥;_; =3/
given that Y;_o = y. Thus, E[Y; 1|Yi-2 =y| =", pyyy'. Therefore,

EY;[Yio=y] = > pyBENi|Vieo=y.Yi1 =y
yl
n—2 1
> Zpyy’(( n )y + EOPT)
yl
n—2

1
E[Yi1[Yiz = y] + —0PT

n—2.,n—2

)((

n n
n—2

1 1
)y + —OPT) + —OPT
n n

n—2

= )2y + %OPT(I + (T)).

Thus, E[Y;[Y;—o = y] > (Z2)?y + Lop7(1 + (Z2)). Similarly, we can prove that E[Y;|Yy = yo] >

(Z=2)iyg + LopT(1 + (22) + ... + (=2)1). Since yo > 0, E[Y;] > %&T(1 — (1 - 2)i).

n n

This proves that for a sufficiently large constant ¢ and by setting ¢ = cnlog %, the expected social
value after cn log % best responses is at least % — € of the optimum. Moreover, since in basic-utility games
the social value is non-decreasing as agents play their best responses, we claim that for a sufficiently large
¢ = cc” > 0 and a sufficiently small € > 0, after ¢'nlognlog 2 random best responses, with high probability
the social value is at least % — ¢’ of the optimum. The reason is that we can partition the best response
walk of length c’nlognlog% into ¢’ logn best-response walks of length cn log %, and after each of these
subwalks, the expected social value is at least % — € of the optimum. Thus, by Markov inequality, with
a constant probability after each of the subwalks of length ¢nlog %, the expected social value is at least

1

(5 — €') of the optimum. Hence, after c’nlognlog% best responses, the social value is at least 3 — €’ of the

optimum with high probability. O
5. A HARDNESS RESULT

In this section, we prove that finding a sink equilibrium (or a PSNE if it exists) in some instances of
valid-utility games is PLS-complete. We prove this using a tight PLS reduction from the Max-Cut problem.

This, in turn, has some implications on the convergence to sink equilibria of these games.
Theorem 5.1. Finding a sink equilibrium is PLS-complete for some instances of valid-utility games.

Proof. We give a reduction from the Max-Cut local search problem. Consider an instance G = (V, E),
with edge weights, of the Max-Cut problem. Suppose our local search operation is the moving of a vertex
from one side of the bipartition to the other; this operation is called swapping.

We create a game corresponding to this instance as follows. There is an agent v for each vertex v in
the graph. The groundset of agent v is V,, = {er,er : e € §(v)}. Thus the size of the groundset of agent
v is twice the degree of v. A strategy for agent v is then just a subset of this groundset. Now, given the

strategy profile (T}, : v € V'), what is the payoff to each agent?
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Take an edge e = (u,v). Agent v receives a payoff of value w, if it plays e;, but agent u does not, and
vice versa. If both agents play ey, then they each receive a payoff of value %we. If neither agents plays ey,
then they both receive nothing. The same payoff scheme arises with the element er. Hence the payoff to
agent v is the sum of the payoffs he receives from each of the elements in its groundset. The social function
is just the sum of payoffs of agents. We claim that this game is a valid-utility game. Submodularity follows
from the construction. By definition ), o;(S) = v(S), so the cake condition holds. Finally, if agent ¢ plays
a subset S; C V; then the increase in the social value is exactly the sum of the values of those elements in
S; that have not been played by another agent. The payoff to agent i is the value of these elements plus
half the value of the other elements in S;. So the Vickrey condition holds.

In order for the game to model the Max-Cut problem we just need to restrict the set of feasible strategies
for each agent. In fact, we will only allow two feasible strategies (in addition to the null strategy) per
agent. Agent v has the feasible strategies L, = {er, : e € 6(v)} and R, = {er : € € §(v)}. The motivation
for this is clear; the former strategy corresponds to placing v on the left side of the partition, the latter
strategy corresponds to placing v on the right side of the partition. Since it is never in an agents interest to
play the null strategy, a best response move for agent v is either staying in its current side of the partition
or swapping to the other side of the partition.

Let W =} .pwe, and suppose that the strategy profile T = (T3, : v € V) induces a cut (A, B)
in the graph. Then the social function is y(T) = W + Zeea(A) we, and private utility of agent v is
ay(T) = %2865(v)’6¢5(A) We + X ees(w),ecs(a) We- Evidently, the social objective is to maximize the cut.
Moreover, this reduction equates local improvements in the Max-Cut local search problem with best
responses of the valid-utility game. If the local improvement corresponds to node v swapping sides, then
the increase in the value of a cut equals the increase in the social function. This, in turn, is exactly twice
the increase in the private payoff of node v arising from the swap. The theorem follows. O

Using the above reduction from the Max-Cut problem to a valid-utility game, we can prove the following:

Corollary 5.2. In some instances of valid-utility games, there exist states that are exponentially far from

any sink equilibrium. O
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