
Sink Equilibria and ConvergeneMihel Goemans�, Vahab Mirrokniy and Adrian VettazAbstrat. We introdue the onept of a sink equilibrium. A sink equilibrium is a stronglyonneted omponent with no out-going ars in the strategy pro�le graph assoiated with a game.The strategy pro�le graph has a vertex set indued by the set of pure strategy pro�les; its ar setorresponds to transitions between strategy pro�les that our with non-zero probability. (Here ourfous will just be on the speial ase in whih the strategy pro�le graph is atually a best responsegraph; that is, its ar set orresponds exatly to best response moves that result from myopi orgreedy behaviour.) We argue that there is a natural onvergene proess to sink equilibria in gameswhere agents use pure strategies. This leads to an alternative measure of the soial ost of a lak ofoordination, the prie of sinking, whih measures the worst ase ratio between the value of a sinkequilibrium and the value of the soially optimal solution. We de�ne the value of a sink equilibriumto be the expeted soial value of the steady state distribution indued by a random walk on thatsink.We illustrate the value of this measure in three ways. Firstly, we show that it may more au-rately reets the ineÆieny of unoordinated solutions in ompetitive games when the use of purestrategies is the norm. In partiular, we give an example (a valid-utility game) in whih the gameonverges to solutions whih are a fator n worse than soially optimal. The prie of sinking isindeed n, but the prie of anarhy is lose to 1. Seondly, sink equilibria always exist. Thus, even ingames in whih pure strategy Nash equilibria (PSNE) do not exist, we an still alulate the prieof sinking. Thirdly, we show that bounding the prie of sinking an have important impliations forthe speed of onvergene to soially good solutions in games where the agents make best responsemoves in a random order.We present two examples to illustrate our ideas.(i) Unsplittable Sel�sh Routing (and Weighted Congestion Games): we prove that theprie of sinking for the weighted unsplittable ow version of the sel�sh routing problem(for bounded-degree polynomial lateny funtions) is at mostO(22dd2d+3). In omparison,we give instanes of these games without any PSNE. Moreover, our proof tehniqueimplies fast onvergene to soially good (approximate) solutions. This is in ontrast tothe negative result of Fabrikant, Papadimitriou, and Talwar [2℄ showing the existene ofexponentially long best-response paths.(ii) Valid-Utility Games: we show that for valid-utility games the prie of sinking is atmost n+ 1; thus the worst ase prie of sinking in a valid-utility game is between n andn+1. We use our proof to show fast onvergene to onstant fator approximate solutionsin basi-utility games.�Massahusetts Institute of Tehnology. Email: goemans�math.mit.eduyMassahusetts Institute of Tehnology. Email: mirrokni�theory.sail.mit.eduzMGill University. Email: vetta�math.mgill.a 1



2 In addition, we present a hardness result whih shows that, in general, there might be states thatare exponentially far from any sink equilibrium in valid-utility games. We prove this by showingthat the problem of �nding a sink equilibrium (or a PSNE) in valid-utility games is PLS-omplete.1. IntrodutionA standard approah in analysing the performane of systems ontrolled by non-ooperative agents isby the examination of Nash equilibria. Of partiular interest is the prie of anarhy1 in a game [8℄. Thisgives one measure of the ost to soiety of the inherent lak of oordination in a game. There are, however,several drawbaks in the use of Nash equilibria. For example, one issue relates to use of non-randomized(pure) and randomized (mixed) strategies. Often pure strategy Nash equilibria may not exist, yet theuse of a randomized (mixed) strategy is unrealisti in many games. This neessitates the need for analternative solution onept in evaluating suh games. Another issue arises from the observation thatNash equilibria represent \stable" points in a system. Therefore (even if pure Nash equilibria exist), theyare a more aeptable solution onept if it is likely that the system does onverge to suh stable points.In partiular, the use of Nash equilibria seems more valid in games in whih Nash equilibria arise whenagents iteratively engage in sel�sh behaviour. However, in many games it is not the ase that repeatedsel�sh behaviour always leads to Nash equilibria. In these games it also seems that another measure ofthe ost of the lak of oordination would be useful. Observe that these issues are partiularly importantin games in whih the use of pure strategies and repeated moves are the norm, for example, autions. Weremark that for many pratial games these properties are the rule rather than the exeption (and thisobservation motivates muh of the work in this paper). For these games, then, it is not suÆient to juststudy the value of the soial funtion at Nash equilibria.In this paper we introdue a new solution onept in a game, namely sink equilibria. We model thebehaviour of agents using a graph, alled the state graph (or strategy pro�le graph) whose vertex set isthe set of strategy states (or strategy pro�les). We assume that evolution of the game over time an bedesribed by walks on this graph. Here, we also assume that the only ars of the state graph are ars thatorrespond to moves of the players that may our with non-zero probability. Thus, solutions or stableoutomes will be given by the long-run behaviour of suh random walks. In partiular, eventually thesewalks must lead to a set of states that have the following two properties:� These states form a strongly onneted omponent in the state graph.� The strongly onneted omponent has no outgoing ars in the state graph.These strongly onneted omponents are sink equilibria. They are stable in that one we reah suha omponent we will never leave it. They inlude PSNE as a speial ase, but unlike PSNE they areguaranteed to exist in all suh games. As with Nash equilibria, we an use sink equilibria to measure theost to soiety of the lak of oordination. In partiular, here we will onsider an analogue of the prie ofanarhy termed the prie of sinking. This is the worst ase ratio of the soial value of a sink equilibriumompared to the optimal soial solution. The soial value of a sink equilibrium is measured by the expetedvalue of the stationary distribution of a random walk on the states in the sink.1The prie of anarhy is the worst ase ratio between the soial value of an optimal solution and a Nash equilibrium.



3We formally de�ne the prie of sinking in Setion 2. For any game the ar set and their assoiatedprobabilities in the state pro�le graph may vary dramatially. As mentioned, we will fous on perhapsthe simplest ase: the best response graph assoiated with myopi players. Here, the ar set onsists onlyof those ars that orrespond to a best response move of some player. We will also assume that, at agiven state, eah player is equally likely to be seleted to move. Thus our random walk will be a uniformrandom walk on the best response graph. We all sink equilibria in suh graphs myopi sink equilibria,and refer to the prie of sinking myopially. We will omit the \myopi" term when the ontext is lear.We remark that the assumption of myopi behaviour is very restritive and unrealisti in many situations.Consequently, further investigation into the general ase is important. This would allow for an examinationinto alternate behaviours suh as non-myopi behaviour, long-term planning, and simultaneous moves. Weontent ourselves, here, with onsidering the basi ase of myopi behaviour with non-simultaneous movesfor several reasons though. Firstly, it allows us to introdue sink equilibria in a lear manner, withouthaving to deal with the omplexities (both pratial and game-theoreti) of alternative behaviours. Forexample, given a game how do you justify non-uniform moves, realistially inorporate forward planning, orassign probabilities to simultaneous moves et. Moreover, even �nding simple, realisti examples of gameswith non-myopi behaviours is not a straight-forward task. In addition, mathematially there appears tobe no intrinsi additional diÆulty in takling the general ase, and so the ideas and tehniques presentedhere should also be useful in examining games with non-myopi behaviours.We illustrate the usefulness of our measure in Setion 3 where we present an n-agent valid-utility gamewhih always onverges to states with soial value a fator n worse than optimal. Indeed, the prie ofsinking for this game is n. However the prie of anarhy is almost 1. Thus, the prie of anarhy gives usa misleading on�dene in the soial quality of an outome that will result from sel�sh behaviour.As well as being perhaps a more appropriate solution onept than PSNE in many games, the existeneof sink equilibria has several nie impliations. Sine sink equilibria always exist, the prie of sinking analways be alulated2 even in games without PSNE. Unlike PSNE, sink equilibria also possess naturalonvergene properties. In partiular, the tehniques used to bound the prie of sinking may often alsogive bounds on the speed of onvergene of random walks to sink equilibria and/or approximate solutions.We study two examples in Setion 4:(1) Unsplittable Sel�sh Routing (and Weighted Congestion Games). We present instanes of the weightedunsplittable ow version of the sel�sh routing problem that possess no PSNE. However, we show that, forpolynomial lateny funtions of degree at most d, the prie of sinking is O(22dd2d+3). In addition, ourproof tehnique implies fast onvergene to good (approximate) solutions. This may be ompared to thenegative result by Fabrikant, Papadimitriou, and Talwar [2℄ showing the existene of exponentially longbest-response paths to PSNE. For example, onsider the ase of linear lateny funtions. Here, it is knownthat PSNE exist [4℄, but it may be the ase that the number of best response moves needed for onvergeneto a PSNE is exponential. Our results show that after a small number of random best response moves thesoial value of the ow is within a onstant fator of the optimal solution.2Of ourse, atually doing so may not be easy!



4(2) Valid-Utility Games. Our seond example onerns the lass of valid-utility games; spei� examplein this lass inlude marking sharing games [5℄, ahing games [3℄, traÆ routing games, faility loationgames, and multiple item autions [14℄. Here we show that the prie of sinking is at most n+ 1; thus theworst ase prie of sinking in a valid-utility game is between n and n+1. Again, our methods signify fastonvergene to approximate solutions. In partiular, for basi-utility games, the expeted soial value ofany state after n logn random best response moves is at least half of optimum.We also present a hardness result onerning sink equilibria. In setion 5 we show that in general itis a PLS-omplete problem to �nd a sink equilibria (or PSNE) in valid-utility games. This implies theexistene of exponentially long best response paths to any sink equilibrium in some valid-utility games.We onlude this introdution with a very brief disussion on related work. In order to deal with thestability and onvergene problems of Nash equilibria, equilibrium onepts other than Nash equilibriahave been studied in the eonomis literature. Among these onepts are stable equilibria [7℄, stohastiadjustment models [6℄, iterative elimination of dominated strategies, the set of undominated strategies et.Convergene and strategi stability of equilibria in evolutionary game theory is a also entral subjet ofstudy for many eonomists. However, in their studies the most important fator is typially the stabilityof equilibria, and not measurements of the soial value of equilibria. In [9℄, we began our investigationinto games in whih pure strategy moves are the norm.2. Sink EquilibriaA strategi game G is de�ned as a tuple G(U; fFiji 2 Ug; f�i()ji 2 Ug) where (i) U is the set of n players oragents, (ii) Fi is a family of feasible (pure) strategies or ations for player i and (iii) �i : �i2UFi ! R+[f0gis the (private) payo� or utility funtion for agent i, given the set of strategies of all players. Player i'sstrategy is denoted by si 2 Fi, and we let F := �i2UFi be the set of all possible strategy pro�les. In thegames we onsider, there will be a soial utility funtion, usually denoted by  : �i2UFi ! R, de�ned onall strategy pro�les in a strategi game. The soial value of the optimal solution is denoted by opt. Ourmain fous is on the soial quality of outomes produed by sel�sh agents.A strategy pro�le or a (strategy) state, denoted by S = (s1; s2; : : : ; sn), is the olletion of strategieshosen by the players. We let S � s0i := (s1; : : : ; si�1; s0i; si+1; : : : ; sk), that is, the strategy pro�le obtainedfrom S if agent i hanges its strategy from si to s0i. In order to model the sel�sh behavior of players, weuse the underlying strategy pro�le graph or state graph. Eah vertex in the state graph represents a stateS = (s1; s2; : : : ; sn). As noted, in this paper the ars in the state graph will orrespond to best-responsemoves by the players. Hene we have, for eah player i an ar from S to S� ŝi, where ŝi is the best responseof agent i at state S. (This model an be justi�ed in extensive games with omplete information, and isused in the eonomis literature extensively in the ontext of studying onvergene in games.) In manygames with iterative moves, the evolution of game-play may then be naturally modeled by a path in thestate graph. Suh a path may or may not onverge to a pure strategy Nash equilibrium (PSNE); a PSNE ofa strategi game is a strategy pro�le in whih eah player plays mutual best responses (that is, a vertex inthe state graph for whih the best response move of eah agent orresponds to a self-loop). Clearly it may



5be the ase that there are no PSNE. So we may ask what happens in suh games. Spei�ally, does someonept of stability or equilibrium exist? The answer is yes, and we now desribe suh an \equilibrium".Consider the strongly onneted omponents of the state graph. If we ontrat the strongly onnetedomponents to singletons then we obtain an ayli graph. The sink nodes in this graph (nodes without-degree equal to zero) orrespond to strongly onneted omponents with no out-going ars in the stategraph. We all suh a strongly onneted omponent a (myopi) sink equilibrium. The reason for thisterminology is lear: if a best-response walk ever reahes a node in a sink equilibrium then it will neverleave that set of nodes. In addition, a long enough random walk in the state graph will onverge to a sinkequilibrium with probability arbitrarily lose to 1.We denote by Q the set of sink equilibria in a game. We remark that the union of states in sink equilibriaorrespond to the set of reurrent states in a Markov hain that only has non-zero transitional probabilitieson ars in the state graph. In a random sequene of best responses of agents, we independently hoose anagent uniformly at random at eah step and let this agent play its best response (if the agent has morethan one best-response move, we may assume that the agent arbitrarily hooses a move from the olletionof best-response moves). When this walk reahes a state in some sink we then follow a random walk overthe states in that sink. For a sink Q 2 Q, let �Q : Q ! R+ [ f0g be the steady state distribution of therandom walk over states in Q. Let (S) measure the soial value of a state S. The (expeted) soial valueof a sink equilibrium Q 2 Q, denoted by �(Q), is the expeted soial value of states given by the steadydistribution of the random walk over the states of Q, i.e., �(Q) = PS2Q �Q(S)(S) We then de�ne, theprie of sinking (myopially) for a maximization soial funtion asPrie of Sinking = optminQ2Q�(Q) = optminQ2QPS2Q �Q(S)(S)In other words, the prie of sinking is the worst ratio between the expeted soial value of a sink equilib-rium and the soial value of the optimum. Similarly, the prie of sinking for a minimization problem ismaxQ2Q �(Q)=opt. Moreover, we have an analogous de�nitions for the prie of sinking for general strategypro�le graphs with alternate ar sets. Given that sink equilibria are stable solutions in suh games, thismay be a more realisti measure of the ost of the lak of oordination than the prie of anarhy.3. Prie of Sinking vs. Prie of AnarhyIn this setion, we present an n-agent (valid-utility) game in whih the prie of sinking and the prieof anarhy give very di�erent pitures as to the onsequenes of non-ooperative behavior. In partiular,the prie of anarhy will be lose to 1, suggesting that no form of mehanism design is required to enforesoially good solutions. However, every possible outome of the game will result in a solution whose value isa fator n smaller than that of the optimal soial solution. The olletion of strategies (groundset) availableto of agent i is fyi; x1i ; x2i ; : : : ; xni g, where i = 0; 1; : : : ; n� 1. For motivation, we an think of strategy yias a soially responsible strategy for agent i. In ontrast, all the strategies fx1i ; x2i ; : : : ; xni g an be viewedas soially irresponsible strategies. Moreover, we will see that in any situation one of these n irresponsiblestrategies provides a better payo� for agent i than ating responsibly. Consequently, there is an inentive



6for every agent to at anti-soially with extreme onsequenes for the soial outome. In ontrast, the prieof anarhy is oblivious to this inentive for anti-soial behavior. The reason being that the payo�s to eahagent are intrinsially linked to the behavior of the other agents. Any spei� irresponsible strategy maybe bene�ial in ertain irumstanes but typially (given the other agents responses) that spei� strategyhas smaller payo� than the responsible strategy. Consequently, under randomized strategies, playing anirresponsible strategy is likely to lead to low private returns. Thus mixed strategy Nash equilibria willrequire that most agents behave responsibly, blissfully ignoring the fat that in every possible situationeah agent has an inentive to behave irresponsible.The family of feasible strategies Fi for eah agent i is the set of singletons of his ground set and the emptyset, i.e., Fi = fs � Vi : jsj � 1g. Let Xi = fx1i ; x2i ; : : : ; xni g and X = [iXi. Let S = (s1; s2; : : : ; sn) be aolletion of subsets si � Vi for all i = 0; 1; : : : ; n�1. For a olletion S = (s1; : : : ; sn), we let SU = [i2Usi.We onstrut a non-dereasing, submodular soial utility funtion  on �i2UVi in the following manner.(S) = ( jSUnXj if SU \X = ;jSUnXj+ 2 otherwiseWe now need to speify the private utilities of eah agent at any state. In order to de�ne the payo�funtions, we de�ne a funtion i�(S) for eah strategy pro�le S. We set i�(S) = null for any strategypro�le S in whih no player plays an irresponsible strategy. If in a strategy pro�le S, some players playirresponsibly, i�(S) is the index of one of the players who plays irresponsibly. In addition, we would likei�(S) to satisfy the following property: given the strategies of the other agents, any agent i an alwayshoose some irresponsible strategy whih fores i�(S) = i. Clearly, this will give agents an inentive toat irresponsibly when using pure strategies. In order to omplete the desription of the funtion i�, let�ij(S) be the indiator variable for the event that agent i plays the irresponsible strategy xji . That is�ij(S) = ( 1 if xji 2 SU0 otherwise.Next let i�(S) = 8><>: null if SU \X = ; (No-one plays irresponsibly)il if [i (SU \Xi) 6= ; andl = [Pi2U (Pnj=1 j � �ij(S)) mod k℄Observe that if i�(S) = null then i an play the irresponsible strategy s0i = fxiig, thus foring i�(S�s0i) = i.Moreover, there always exists a strategy s0i = fxpi g suh that if i plays s0i = fxpi g then i�(S � s0i) = i. Weare now ready to give a payo� funtion �i for eah agent i.�i(S) = 8>>>><>>>>: 0 if yi =2 si and i 6= i�(S)1 if yi 2 si and i 6= i�(S)2 if yi =2 si and i = i�(S)3 if yi 2 si and i = i�(S):So agent i gets utility 1 for playing the responsible strategy and another 2 units of utility if i = i�(S). Wewill see in Setion 4.2 that this is a valid-utility game with a non-dereasing soial utility funtion. Thuswe may apply the following result from [14℄.



7Theorem 3.1. A valid-utility game with a non-dereasing soial utility funtion has a prie of anarhy atmost 2. �If fat, it is easy to see that the prie of anarhy in this game atually tends to 1 as the number ofagents inreases. In partiular, a soially optimal solution has n�1 of the agents playing their responsiblestrategies and exatly one of the agents plays an irresponsible strategy. Suh an outome has value n+ 1.Moreover, note that by playing responsibly an agent an guarantee that they reeive 1 unit of utility.Thus, it must be the ase that in a Nash equilibrium3 every agent has an expeted payo� of at least 1.Sine (S) �Pi2U �i(S) for any state S, we have that the expeted soial value of a Nash equilibrium isat least n. Thus the prie of anarhy is at most 1 + 1n .Now we onsider the prie of sinking in this game. Given any strategy pro�le S, the best response ofeah agent is to play the spei� irresponsible strategy that gives it a payo� of 2. To see this, note thatagent i always has a move that sets i�(S0) = i. Thus a responsible strategy yi is never a best-responsestrategy. In fat, the best response of eah player is to play an irresponsible strategy to get the payo� of2, thus foring to the payo�s of the other players using irresponsible strategies to 0. It follows that thereis a unique sink equilibrium onsisting of every strategy pro�le in whih eah agent plays an irresponsiblestrategy. Thus, every state in the sink has soial value exatly two. Hene the prie of sinking is exatlyn+12 . We remark that even if we start at an optimal solution and then allow eah agent to make just onesingle best-response move in turn then we end up with a solution of value 2! Moreover, we an then neverleave this sink if players play their myopi best responses.Notie also that we ould alter the payo�s in the game slightly so that the payo� resulting from the�rst irresponsible move is 1 + Æ rather than 2. Clearly the prie of sinking is then n+Æ1+Æ whilst the prie ofanarhy is 1 + Æn . Thus we haveLemma 3.2. There are valid-utility games, with non-dereasing soial utility funtions, having a prie ofsinking of almost n and a prie of anarhy of almost 1. �Consequently the prie of anarhy underestimates the soial ost of the lak of oordination by a fatorn. The reason for this is that the good strategy always gives a good return. Any bad strategy an givea high return but only in a small number of situations, thus any bad strategy performs badly againstrandomized strategies and players tend to play their good strategies in a mixed Nash equilibria. This typeof issue often arises in games, and explains why the prie of anarhy may often signi�antly under-estimatethe soial ost of the lak of oordination in suh games.Finally, note that this game has no PSNE so fousing here upon sink equilibria is essential. Surprisingly,Lemma 3.2 is also almost tight; we will show in Setion 4 that the prie of sinking in a valid-utility gameis at most n+ 1.3One Nash equilibrium is the following. Eah agent i plays strategy yi with probability p and eah bad strategy withprobability 1�pn . It is easy to hek that letting p = n�1q 12 (1� 1n�1 ) gives a Nash equilibrium.



8 4. Prie of Sinking and ConvergeneReall that PSNE are speial ases of sink equilibria. We have already seen that games in whih agentsrepeatedly reat to the other agent's strategies via the use of pure strategy best responses will onvergeto sink equilibria and not neessarily to PSNE. Moreover, many lasses of games have instanes for whihno PSNE exists. In these games, we an still measure the ost to soiety of the lak of oordination usingthe prie of sinking. Moreover, in bounding the prie of sinking for sink equilibria we may obtain boundson the expeted soial value of states after a random sequene of best responses.4.1. Unsplittable Sel�sh Routing and Weighted Congestion Games. Consider the \unsplittableow" version of the sel�sh routing game. We have a direted network G = (V;E) with a ow dependentlateny funtion �e : R ! R+ [f0g on eah ar e 2 E. There is a set U of n agents; agent i wishes to routeow at a rate ri from a soure si to a sink ti. Eah agent aims to inur as small a lateny as possible. Inthe unsplittable ow version, an agent may not split its ow. Hene eah agent piks a unique si� ti pathand routes all its ow along the path. The lateny of an agent is equal to its traÆ size multiplied by thesum of the latenies of ars along the path that it hooses. The lateny of an ar e is a non-dereasing andnon-negative funtion of the total load on ar e. In this paper, we onsider bounded-degree polynomiallateny funtions. In partiular, for an ar e, we let �e(x) = P0�j�d ae;jxj be a non-negative and non-dereasing delay funtion for ar e. For a strategy pro�le P = (P1; P2; : : : ; Pn) where Pi is a si � ti path,let the load of ar e be fe = Pi:e2Pi ri. Then, the lateny of agent i is li(f) = riPe2Pi �e(fe) and thetotal lateny of ow f is l(f) =Pi2U li(f) =Pe2E(G) �e(fe)fe.Reently Awerbuh, Azar, and Epstein [1℄ proved that the prie of anarhy in suh games is exatly2:618 for linear lateny funtions and is at most O(2ddd+1) for polynomial lateny funtions of degree atmost d. They extended their results to mixed Nash equilibria, sine the existene of pure Nash equilibriafor these games with polynomial lateny funtions was not known. For linear lateny funtion Fotakis,Kontogiannis, and Spirakis [4℄ proved that the game is a potential game. Here, we exhibit an instaneof this game with quadrati lateny funtions that does not possess any PSNE. This, in turn, providesadditional motivation for analyzing the prie of sinking in these games. Our example is shown in Figure1. It depits a network with 4 verties and 6 ars. Ars are labeled from 1 to 6. The lateny funtionsof ars are �1(x) = x + 33, �2(x) = 13x, �3(x) = 3x2, �4(x) = 6x2, �5(x) = x2 + 44, and �6(x) = 47x.There are two agents with traÆ r1 = 1 and r2 = 2. The soure of both agents is vertex 1 (s1 = s2 = 1)and the destination of both agents is vertex 4 (t1 = t2 = 4). There are four soure-destination paths:P1 = (6), P2 = (3; 5), P3 = (3; 4; 2), and P4 = (1; 2) where the numbers within the parentheses arethe labels of ars on the path. It is not hard to hek that the weighted unsplittable sel�sh routinggame on this network has no PSNE. There is one sink equilibrium, namely the set of strategy pro�lesf(P1; P2); (P3; P2); (P3; P4); (P1; P4)g.The key to obtaining bounds on the prie of sinking is that any agent making a best-response moveannot ause too muh umulative harm to the other agents. Consequently, if an agent an make a movethat signi�antly inreases its private welfare, then the overall soial welfare must rise. This will be animportant fator in allowing us to prove that we have a low prie of sinking in these routing games.
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Figure 1. A routing game without PSNE.
Theorem 4.1. The prie of sinking for a weighted unsplittable sel�sh routing game (or a weighted on-gestion game) is at most O(22dd2d+3).Proof. We need the following three lemmas for the proof.Lemma 4.2. Let f be the ow orresponding to the urrent strategy pro�le P = (P1; : : : ; Pn). Supposeagent i hanges its ow path from Pi to P 0i , to give a new ow f 0i. Then l(f 0i) � l(f)+ (d+1)li(f 0i)� li(f).In partiular, if agent i dereases its lateny by hanging to P 0i , then l(f 0i) � l(f) + dli(f) � (d+ 1)l(f).Proof. The lateny inurred by agent i is then

li(f 0i) = ri Xe2P 0i X0�j�d ae;j(f 0i;e)j = ri0� Xe2P 0i\Pi X0�j�d ae;jf je + Xe2P 0i�Pi X0�j�d ae;j(fe + ri)j1A :
Note that for e 2 P 0i � Pi, we have f 0i;e = fe + ri. Moreover, we know that

l(f 0i) � l(f) + (li(f 0i)� li(f)) + Xe2P 0i�Pi0� X0�j�d(ae;jf 0i;ej)� (ae;jf je )1A (f 0i;e � ri);



10the last term orresponding to the inrease in lateny for agents other than i due to the rerouting of agenti. We an get an upper bound on the inrease in latenies faed by the other agents by noting thatXe2P 0i�Pi0� X0�j�d(ae;jf 0i;ej)� (ae;jf je )1A (f 0i;e � ri)= Xe2P 0i�Pi X0�j�d(ae;j(f 0i;ej � f je )fe)= Xe2P 0i�Pi0� X0�j�d ae;j(f 0i;e � fe)0� X1�t�j f 0i;ej�tf t�1e 1A fe1A< Xe2P 0i�Pi0� X0�j�d ae;jri0� X1�t�j(fe + ri)j�11A (fe + ri)1A� ri Xe2P 0i�Pi0� X0�j�d jae;j(fe + ri)j1A� dli(f 0i):Thus, the total lateny after agent i hanges its strategy is at most l(f) + (d + 1)li(f 0i) � li(f). Sine,li(f 0i) � li(f), this shows that l(f 0i) � l(f) + dli(f) � (d+ 1)l(f). �Lemma 4.3. Let f be the ow orresponding to the urrent strategy pro�le. Consider the following randomproess: hoose an agent i at random and let it play its best response. If f 0 is the new ow after this hange,then E[l(f 0)jf ℄ � (1 + dn)l(f).Proof. Let f 0i be the ow after agent i plays its best response to f . Then, using Lemma 4.2, we have:E[l(f 0)jf ℄ = 1nXi2U l(f 0i)� 1nXi2U(l(f) + dli(f))= 1n(nl(f) + dl(f))= (1 + dn)l(f): �The third lemma we need is below. Its proof is inspired by the work of Azar et al. [1℄.Lemma 4.4. Let f be the ow orresponding to the urrent strategy pro�le. Consider the following randomproess: hoose an agent i at random and let it play its best response. If f 0 is the new ow after this hange,then either E[l(f 0)jf ℄ � (1� 12n)l(f), or l(f) � O(22d(d+ 1)2d+2)opt.Proof. Assume that the best response of agent i is to swith from path Pi to P 0i resulting in the ow f 0i .Thus, E[l(f 0)jf ℄ = 1nPi2U l(f 0i). We onsider the following two ases:



11Case 1: Pi2U 2(d+ 1)li(f 0i) �Pi2U li(f). In this ase, by Lemma 4.2,
E[l(f 0)jf ℄ = 1nXi2U l(f 0i)� 1nXi2U �l(f) + (d+ 1)li(f 0i)� li(f)�� 1n  Xi2U l(f) +Xi2U 12 li(f)�Xi2U li(f)!= 1n(nl(f)� 12 l(f))= (1� 12n)l(f):

Thus, we obtain E[l(f 0)jf ℄ � (1� 12n)l(f).Case 2: Pi2U 2(d + 1)li(f 0i) >Pi2U li(f). Let P� = (P �1 ; : : : ; P �n) be the optimal solution and let f� bethe ow orresponding to P�. Set J�(e) = fi : e 2 P �i g. Let f�i be the ow resulting from the swithof agent i from Pi to P �i . Sine P 0i is i's best response, we have li(f�i ) � li(f 0i). Thus, in this ase,Pi2U 2(d+ 1)li(f�i ) �Pi2U li(f) = l(f). Consequently,
l(f) � Xi2U 2(d+ 1)li(f�i )� (2d + 2)Xi2U ri Xe2P �i �e(fe + ri)= (2d + 2)Xi2U ri Xe2P �i dXj=0 ae;j(fe + ri)j= (2d + 2)Xe dXj=0 Xi2J�(e) ae;j(fe + ri)jri:



12 The rest of the proof of this ase is based on the proof of Lemmas A1, A2, and A3 in [1℄. First, we usethe following inequality from [1℄: (x+ y)d � xd + (y( dln  + 1))d for any  > 1. Thus, we get:
l(f) � (2d + 2)Xe dXj=0 Xi2J�(e) ae;j(fe + ri)jri� (2d + 2)Xe dXj=0 ae;j Xi2J�(e) f je ri +� jln  + 1�j rj+1i !

� (2d + 2)Xe dXj=0 ae;j  f jef�e +� dln  + 1�d f�e j+1!= (2d + 2)Xe dXj=0 ae;jf jef�e + (2d+ 2)� dln  + 1�dXe dXj=0 ae;jf�e j+1= (2d + 2)Xe dXj=0 ae;jf jef�e + (2d+ 2)� dln  + 1�dXe �e(f�e )f�e
where the seond inequality omes from the fat thatPi2J�(e) rdi � f�e d and the funtion f(x) = ( xln  +1)xis an inreasing funtion for x � 0. Holder's inequality states:

Xj a�j b1��j � 0�Xj aj1A�0�Xj bj1A1�� :



13Applying this, with aj = ae;jf j+1e , bj = ae;jf�e j+1, � = jj+1 , yieldsl(f) � (2d + 2)Xe dXj=0 ae;jf jef�e + (2d + 2)� dln  + 1�dXe �e(f�e )f�e� 2(d + 1) dXj=0 Xe ae;jf j+1e !j=(j+1) Xe ae;jf�e j+1!1=(j+1)+2(d+ 1)� dln  + 1�dXe �e(f�e )f�e� 2(d + 1) dXj=0 Xe �e(fe)fe!j=(j+1) Xe �e(f�e )f�e!1=(j+1)+2(d+ 1)� dln  + 1�dXe �e(f�e )f�e� 2(d + 1) dXj=0 Xe �e(fe)fe!d=(d+1) Xe �e(f�e )f�e!1=(d+1)+2(d+ 1)� dln  + 1�dXe �e(f�e )f�e� 2(d + 1)2 Xe �e(fe)fe!d=(d+1) Xe �e(f�e )f�e!1=(d+1)+2(d+ 1)� dln  + 1�dXe �e(f�e )f�ewhere the fourth inequality is from the inequality x�y1�� � x�0y1��0 for x � y > 0 and 1 � � � �0 � 0with x =Pe �e(fe)fe and y =Pe �e(f�e )f�e . By lettingx = l(f) 1d+1opt 1d+1 ;we get xd+1 � 2(d + 1)2xd + 2(d+ 1)� dln  + 1�d :After dividing both sides by xd, we get:x � 2(d + 1)2 + 2(d+ 1) dln  + 1x !d :We laim that if we set  = 2 � � for � = 1d+1 � 12(d+1)�d, then we have x � 4(d + 1)2. Assume forontradition that x > 4(d+ 1)2. Then,4(d + 1)2 < x � 4(d+ 1)2 � 2�(d+ 1)2 + 2(d + 1) dln  + 1x !d :



14Thus, (d+ 1)� <  dln  + 1x !d� �2d+ 1x �d [sine ln  > 0:5℄< � 2d+ 14(d+ 1)2�d< � 12(d+ 1)�d= (d+ 1)�whih is a ontradition. Therefore, by setting  = 2� �, we get x � 4(d+ 1)2. Hene, l(f) = xd+1opt �O(22d(d+ 1)2d+2)opt. �From Lemma 4.4, we an bound the prie of sinking as follows. Consider a sink Q. Let f0 be a owin Q. Consider a random walk starting from f0 in whih we let a random agent play his best responseat eah step. Let f0; f1; f2; : : : ; fN be a sequene of observed ows in Q. Reall that the value forsink Q is equal to �(Q) = PS2Q �Q(S)l(fS) where fS is the ow orresponding to the state S and �Qis the steady distribution for the random walk on Q. Sine Q is strongly onneted, this is equal to�(Q) = limN!1 P0�j�N E[l(fj)℄N . In order to upper bound this value, it is suÆient to upper bound E[l(fj)℄for eah 0 � j � N . Lemma 4.4 shows that there exists a state in any sink Q with total lateny less thanO(22d(d + 1)2d+2)opt. Note that, as Q is strongly onneted the value of the sink is independent of thehoie of f0. Therefore, we an set f0 suh that l(f0) � 022d(d + 1)2d+2opt. Let i be the oin toss ofstep i in the random walk. More preisely, we want to upper bound aj = E1;2;:::;j [l(fj)℄. By Lemma 4.4and Lemma 4.3, we have� Either Ej+1 [l(fj+1)jfj℄ � (1� 12n)l(fj) or l(fj) � 022d(d+ 1)2d+2opt.� Ej+1 [l(fj+1)jfj ℄ � (1 + dn)l(fj)Let E1 be the event that l(fj) � 022d(d + 1)2d+2 and E2 be the event that l(fj) > 022d(d + 1)2d+2)opt.Let p be the probability that event E2 happens. Furthermore, let Y = E[l(fj)jE1℄ � 022d(d+ 1)2d+2 andX = E[l(fj)jE2℄. Thus, aj = E[l(fj)℄ = pX + (1� p)Y . Now,aj+1 = E[l(fj+1)℄� p�1� 12n�X + (1� p)�1 + dn�Y� �1� 12n� (pX + (1� p)Y ) + 2d+ 12n Y� �1� 12n� aj + 2d+ 12n Y� �1� 12n� aj + 2d+ 12n 022d(d+ 1)2d+2opt:



15Combining the above reurrene relation and a0 � l(f0) � 2022d(d + 1)2d+3opt, we an prove aj+1 �2022d(d + 1)2d+3opt by indution. Thus, E1;2;:::;j [l(fj)℄ � O(22d(d + 1)2d+3opt). Hene, the prie ofsinking is at most O(22d(d + 1)2d+3) by the linearity of expetation. As (d + 1)2d+3 = O(d2d+3), we havethe desired bound. �We an also use the lemmas used in the proof of Theorem 4.1 to bound the rate of onvergene tostates with good soial value in unsplittable (weighted) sel�sh routing games. We an prove that startingfrom a ow of lateny C, after O(n log Copt) random best responses, the expeted soial value is less than70 opt for linear lateny funtions, and is less than O(22dd2d+3)opt for polynomial lateny funtions ofdegree at most d. This is in ontrast with the negative onvergene result of Fabrikant, Papadimitriou,and Talwar [2℄, in whih they exhibit exponentially long best-response paths to PSNE (or sink equilibria)in these games. Our bounds show that, even though onvergene to PSNE (or sink equilibria) may beexponential, a random sequene of best responses of agents onverges to a state with good soial valueafter polynomial number of best responses. Here, we prove a tighter bound for onvergene in the weightedunsplittable sel�sh routing game with linear lateny funtions. We assume that the lateny funtion ofar e is a linear funtion. In partiular, we let the lateny funtion for ar e 2 E(G) be �e(x) = aex+ bewith ae; be � 0.Theorem 4.5. In the weighted unsplittable sel�sh routing game with linear lateny funtions, starting fromany state with total lateny C the expeted lateny of the ow after O(n log Copt) random best responses isat most 70 opt for any � > 0.Proof. Let f be the urrent ow, and suppose agent i hanges its ow path from Pi to P 0i , to give a newow f 0i . From Lemma 4.2, l(f 0i) � l(f)+2li(f 0i)� li(f). We will use the following re�nement to Lemma 4.4.Lemma 4.6. Let f be the ow orresponding to the urrent strategy pro�le. Consider the following randomproess: hoose an agent i at random and let it play its best response. If f 0 is the new ow after this hange,then either E[l(f 0)jf ℄ � (1� 12n)l(f), or l(f) � 23:32 opt.Proof. Assume that the best response of agent i is to swith from path Pi to P 0i resulting in the ow f 0i .Thus, E[l(f 0)jf ℄ = 1nPi2U l(f 0i). We onsider the following two ases:Case 1: Pi2U 4li(f 0i) �Pi2U li(f). In this ase, similar to Case 1 of the proof of Lemma 4.4, it followsthat E[l(f 0)jf ℄ � (1� 12n)l(f).Case 2: Pi2U 4li(f 0i) >Pi2U li(f). Let P� = (P �1 ; : : : ; P �n) be the optimal solution and let f� be the oworresponding to P�. Set J�(e) = fi : e 2 P �i g. Let f�i be the ow resulting from the swith of agent ifrom Pi to P �i . Sine P 0i is i's best response, we have li(f�i ) � li(f 0i). In this ase, we an apply the method



16of Azar et al. [1℄ as follows:l(f) = Xi (ri Xe2Pi(aefe + be))� Xi2U 4li(f 0i)� Xi2U 4li(f�i ) [sine player i play his best response to f 0i ℄� Xi2U 4ri Xe2P �i (ae(fe + ri) + be)= 4Xi2U Xe2P �i �(aefe + be)ri + aer2i �� 4Xe Xi:e2P �i �(aefe + be)ri + aer2i � :It follows thatl(f) � 4Xe f�e (aefe + be) + 4Xe aef�e 2= 4Xe f�e aefe + 4Xe (aef�e + be)f�e= 4Xe f�e aefe + 4 opt� 4vuut Xe (paefe)2! Xe (paef�e )2!+ 4 opt[Cauhy-Shwartz inequality℄= 4vuut Xe aef2e! Xe aef�e 2!+ 4 opt� 4sXe (aefe + be)feXe (aef�e + be)f�e + 4 opt= 4pl(f)opt+ 4 opt:By setting x = l(f)opt , we have x � 4(px+1). This gives x � 23:32. Hene, in this ase, l(f) � 23:32 opt. �Proof of Theorem 4.5. Let a0 = C be the soial value of the initial ow. Assume that at eah step wehoose an agent at random and let it play its best response. Let aj be the expeted lateny of the owafter j's step. From Lemma 4.6, we have for any j � 0, aj � 23:32 opt or aj+1 � aj(1 � 12n). Moreover,from Lemma 4.3, aj+1 � aj(1 + 1n) for any j � 0. Now, let p be the probability that aj > 23:32 opt. LetX be the expeted value of aj given that aj > 23:32opt and Y be the expeted value of aj given that



17aj � 23:32opt. Thus, aj+1 � p�1� 12n�X + (1� p)(1 + 1n)Y� �1� 12n� (pX + (1� p)Y ) + 32nY� �1� 12n� aj + 69:962n opt:It follows that aj � aj�i�1� 12n�i + 69:962n opt�1� �1� 12n�i�12nfor i � j. As a result, aj � a0 �1� 12n�j + 69:96 �1� �1� 12n�j�opt � C �1� 12n�j + 69:96 opt. Thus,for j � n log 1� log Copt , we get aj � (69:96 + �) opt. Therefore, after O(n log Copt) steps the expeted valueof aj is at most 70 opt. �Finally, we note that all our results on the prie of sinking and onvergene for weighted unsplittablesel�sh routing games extend to weighted ongestion games. Weighted ongestion games are the general-ization of weighted unsplittable sel�sh routing game in whih the family of feasible strategies of playersare an arbitrary family of subsets of ars (and not neessarily paths from a soure to a destination). Ourproofs do not rely on the fat that the feasible strategy is a path. Therefore, all our results hold for generalweighted ongestion games.4.2. Valid-Utility Games.Here we de�ne the lass of valid-utility games; see [14℄ for more details. A funtion f of the form 2V !R+ [ f0g is alled a set funtion on the ground set V . A set funtion f : 2V ! R+ [ f0g is submodular iffor any two sets A;B � V , f(A) + f(B) � f(A \ B) + f(A [ B). A set funtion f , is non-dereasing iff(X) � f(Y ) for any X � Y � V . In valid-utility games, for eah player i, there exists a ground set Vi.We denote by V the union of ground sets of all players, i.e., V = [i2UVi. The feasible strategy set Fi ofplayer i is a subset of the power set, 2Vi , of Vi. Thus, the strategy si of player i is a subset of Vi (si � Vi).The empty set, denoted ;i for player i, orresponds to player i taking no ation.Given a olletion of strategies S = (s1; : : : ; sn), where si is a subset of the ground set Vi (si � Vi), theset HS = f(i; j) : i 2 U; j 2 sig is alled the pair set for the olletion S. Note that S may or may not be afeasible strategy pro�le. Given a funtion f : �i2U2V ! R+ [ f0g, the orresponding set funtion f s of fis a set funtion of the form 2H ! R+ [f0g where H = f(i; j) : i 2 U; j 2 V g and f s(HS) = f(S). In otherwords, for a set A � H, f s(A) = f((a1; a2; : : : ; an)) if ai = fj : (i; j) 2 Ag. Here, we also assume that thesoial funtion  is of the form �i2U2V ! R+ [ f0g rather than just of the form �i2UFi ! R+ [ f0g.Let G(U; fFiji 2 Ug; f�i()ji 2 Ug) be a non-ooperative strategi game where Fi � 2Vi is a family offeasible strategies for player i. Let V = [i2UVi and let the soial funtion be  : �i2U2V ! R+ [ f0g.Then G is a valid-utility game if it satis�es the following properties:(1) Submodular and Non-dereasing Soial Funtion: The orresponding set funtion, s, of  over the setH = f(i; j) : i 2 U; j 2 V g, is submodular and non-dereasing.



18(2) Vikrey Condition: The payo� of a player is at least the di�erene in the soial funtion when theplayer partiipates versus when it does not partiipate, i.e., �i(S) � 0si(S � ;i). In basi-utility games wealways have �i(S) = 0si(S � ;i).(3) Cake Condition: For any strategy pro�le, the sum of the payo�s of players should be less than or equalto the soial funtion for that strategy pro�le, i.e., for any strategy pro�le S, Pi2U �i(S) � (S).This framework enompasses a wide range of games inluding the faility loation games, traÆ routinggames, autions [14℄, market sharing games [5℄, and distributed ahing games [3℄. In [14℄ it was shownthat the prie of anarhy (for mixed Nash equilibria) in valid-utility games is at most 2. While provingtheorems about valid-utility and basi-utility games, we use the following notation: given S = (s1; : : : ; sn)and S0 = (s01; : : : ; s0n), we de�ne S[S0 := (s1[s01; : : : ; sn[s0n). Also we de�ne S[s0i := (s1; s2; : : : ; si�1; si[s0i; si+1; : : : ; sn).Here we prove bounds on the worst-ase prie of sinking in valid-utility games. First, we show that ourbad example in Setion 3 is a valid-utility game. Thus the prie of sinking in valid-utility games an be asbad as n. Then, we will prove that this lower bound for valid-utility games is almost tight. In partiular,we will show that the prie of sinking in a valid-utility game is at most n+ 1.In order to prove that the bad example in Setion 3 is a valid-utility game, we need to verify threeonditions:1) Non-dereasing and Submodular Soial Funtion:: First, it is lear that the orrespondingset funtion of the soial funtion s is non-dereasing. To show its submodularity, we use anequivalent de�nition of submodular funtions: A set funtion f is submodular if for any two subsetsA and B suh that A � B and for any element i =2 B, f(A[fig)�f(A) � f(B[fig)�f(B). Thus,in order to prove that s is submodular, it is enough to prove that for two (possibly infeasible)strategy pro�les S = (s1; : : : ; sn) and S0 = (s01; : : : ; s0n) suh that si � s0i for all i 2 U , by adding anew element j to the strategy of any player i the inrease in s for S is not less than the inrease forS0. First, we onsider the ase that j = xti. If S0U\X = ; then SU\X = ;, and thus 0xti(S0�;i) = 2and 0xti(S�;i) = 2. If S0U\X 6= ; then 0xti(S0�;i) = 0 � 0xti(S�;i). Hene if j = xti, the desiredondition for submodularity holds. Also, if j = yi it is implied that 0yi(S0 � ;i) = 1 if and only ifS0U \ fyig = ;, otherwise 0yi(S0 � ;i) = 0. It follows that 0yi(S0 � ;i) � 0yi(S � ;). Therefore, sis submodular.2) Vikrey Condition:: If player i plays yi then she gets 1 and the soial value hanges by 1. Ifplayer i plays an element of Xi and inreases the soial value by 2, then she is the only playerwho plays an irresponsible strategy. Thus, i = i�(S) and so she reeives those two utility units.Otherwise the playing of an element of Xi has no e�et on the soial value. Thus, the Vikreyondition is trivially satis�ed.3) Cake Condition:: It is straightforward to hek thatPi2U �i(S) = (S) and the ake onditionholds.Now, we prove that this bound is almost tight.



19Lemma 4.7. Given a strategy pro�le T = (t1; : : : ; tn) in a valid-utility game, let the best response of agenti be si. Set T i = (t1; : : : ; ti�1; si; ti+1; : : : ; tn). Then Pi2U �i(T i) � opt� (T ).Proof. Let 
 = (�1; : : : ; �n) be the optimum state. Let
i = (�1; �2; : : : ; �i; ;i+1; ;i+2; : : : ; ;n):Given that si is a best-response strategy, we have �i(T i) � 0�i(T �;i). Combining this with the submod-ularity of , we obtain Xi2U �i(T i) � Xi2U 0�i(T � ;i)= Xi2U((T � �i)� (T � ;i))� Xi2U((T [ �i)� (T ))� Xi2U((T [ 
i)� (T [
i�1))= (T [ 
)� (T ):Sine  is non-dereasing, it follows that Pi2U �i(T i) � opt� (T ). �Theorem 4.8. The prie of sinking in a valid-utility game is at most n+ 1.Proof. Consider a sink equilibrium Q. Let T = (t1; : : : ; tn) be a state in Q. Let the best response ofagent i be si at state T , and set T i = (t1; : : : ; ti�1; si; ti+1; : : : ; tn). Let Y be the expeted soial value ofthe state after a random best-response move from T . By the ake property and Lemma 4.7, we haveY = 1nXi2U (T i)� 1nXi2U �i(T i)� 1n(opt� (T )):Observe that the prie of sinking is equal to the expeted soial value on a suÆiently long random walk.Now take a long random walk T0; T1; : : : ; Tk. Let ei be the expeted value of (Ti) where the expetationis over the random oin tosses of the random walk. We know that as i tends to 1, �(Q) = ei. We need toprove that ei � 1n+1opt as i tends to1. Let pi;y be the probability that (Ti) = y. Thus, ei =Py pi;yy andei+1 =Py pi;yE[(Ti+1)j(Ti) = y℄. The above inequality shows that E[(Ti+1)j(Ti) = y℄ � 1n(opt� y).Therefore, ei+1 � 1nXy pi;y(opt� y)= 1n(opt�Xy pi;yy)= 1n(opt� ei):



20Hene, ei+1 � 1nopt� ein . Sine as i goes to 1, �(Q) = ei = ei+1, we get �(Q) � 1nopt� �(Q)n . Therefore,�(Q) � 1n+1opt as desired. �Thus the worst ase prie of sinking in a valid-utility game is between n and n+ 1.4.3. Basi Utility Games.For basi utility games (examples inlude servie provider and faility loation games [14℄) the situation ismuh better. These games are potential games, thus, the only sink equilibria are PSNE. Hene, the prieof sinking in a basi-utility game is equal to the prie of anarhy for PSNE whih is at most 2. Usingsimilar tehniques to those of Theorem 4.8, we an prove that in basi-utility games, the expeted soialvalue of a state after O(n log 1� ) random best responses is at least 12 � � of the optimal soial value, for any� > 0.Theorem 4.9. In basi-utility games, for any onstant � > 0, there exists a onstant  suh that theexpeted soial value of a state after n log 1� random best responses is at least 12 � � of the optimum.Moreover, for any onstant �0 > 0, there exist onstants �; 0 > 0 suh that after 0n logn log 1� random bestresponses, the soial value is at least 12 � �0 of the optimum with high probability.Proof. Let 
 = (�1; : : : ; �n) denote an optimal state, and T = (t1; t2; : : : ; tn) be a strategy pro�le ofagents. Let T i be the strategy pro�le resulting from T after agent i plays its best response in T and let
i = (�1; : : : ; �i; ;i+1; : : : ; ;n). Let Y = 1nPi2U (T i) be the expeted soial value of the state after arandom agent plays its best response. Our goal is to lower bound Y .To do so, using submodularity, basiness and the ake ondition we get:nY � n(T ) = Xi2U((T i)� (T ))= Xi2U((T i)� (T � ;i))�Xi2U((T )� (T � ;i))= Xi2U �i(T i)�Xi2U �i(T ) [by basiness℄� Xi2U �i(T i)� (T ) [by ake ondition℄� Xi2U �i(T i � �i)� (T ) [sine i plays his best response in T i℄= Xi2U 0�i(T � ;i)� (T ) [by basiness℄� Xi2U((T � �i)� (T � ;i))� (T )� Xi2U((T [ 
i)� (T [
i�1))� (T ) [by submodularity℄= (T [ 
)� (T )� (T ) [sine it is a telesopi summation℄� opt� 2(T ) [sine  is non-dereasing℄:



21The above inequalities show that Y � n�2n (T ) + 1nopt. Let Y0 be the atual soial value of the initialstate. At eah step, a random agent is piked and plays its best response. Thus, if Yi is the soial valueof the state after step i, then E[YijYi�1 = y℄ � (n�2n )y + 1nopt. Let pyy0 be the probability that Yi�1 = y0given that Yi�2 = y. Thus, E[Yi�1jYi�2 = y℄ =Py0 pyy0y0. Therefore,E[YijYi�2 = y℄ = Xy0 pyy0E[YijYi�2 = y; Yi�1 = y0℄� Xy0 pyy0((n� 2n )y0 + 1nopt)= (n� 2n )E[Yi�1jYi�2 = y℄ + 1nopt� (n� 2n )((n� 2n )y + 1nopt) + 1nopt= (n� 2n )2y + 1nopt(1 + (n� 2n )):Thus, E[YijYi�2 = y℄ � (n�2n )2y + 1nopt(1 + (n�2n )). Similarly, we an prove that E[YijY0 = y0℄ �(n�2n )iy0 + 1nopt(1 + (n�2n ) + : : :+ (n�2n )i�1). Sine y0 � 0, E[Yi℄ � opt2 (1� (1� 2n)i).This proves that for a suÆiently large onstant  and by setting i = n log 1� , the expeted soialvalue after n log 1� best responses is at least 12 � � of the optimum. Moreover, sine in basi-utility gamesthe soial value is non-dereasing as agents play their best responses, we laim that for a suÆiently large0 = 00 > 0 and a suÆiently small � > 0, after 0n logn log 1� random best responses, with high probabilitythe soial value is at least 12 � �0 of the optimum. The reason is that we an partition the best responsewalk of length 0n logn log 1� into 00 log n best-response walks of length n log 1� , and after eah of thesesubwalks, the expeted soial value is at least 12 � � of the optimum. Thus, by Markov inequality, witha onstant probability after eah of the subwalks of length n log 1� , the expeted soial value is at least(12 � �0) of the optimum. Hene, after 0n logn log 1� best responses, the soial value is at least 12 � �0 of theoptimum with high probability. �5. A Hardness ResultIn this setion, we prove that �nding a sink equilibrium (or a PSNE if it exists) in some instanes ofvalid-utility games is PLS-omplete. We prove this using a tight PLS redution from the Max-Cut problem.This, in turn, has some impliations on the onvergene to sink equilibria of these games.Theorem 5.1. Finding a sink equilibrium is PLS-omplete for some instanes of valid-utility games.Proof. We give a redution from the Max-Cut loal searh problem. Consider an instane G = (V;E),with edge weights, of the Max-Cut problem. Suppose our loal searh operation is the moving of a vertexfrom one side of the bipartition to the other; this operation is alled swapping.We reate a game orresponding to this instane as follows. There is an agent v for eah vertex v inthe graph. The groundset of agent v is Vv = feL; eR : e 2 Æ(v)g. Thus the size of the groundset of agentv is twie the degree of v. A strategy for agent v is then just a subset of this groundset. Now, given thestrategy pro�le (Tv : v 2 V ), what is the payo� to eah agent?



22 Take an edge e = (u; v). Agent v reeives a payo� of value we if it plays eL but agent u does not, andvie versa. If both agents play eL then they eah reeive a payo� of value 12we. If neither agents plays eLthen they both reeive nothing. The same payo� sheme arises with the element eR. Hene the payo� toagent v is the sum of the payo�s he reeives from eah of the elements in its groundset. The soial funtionis just the sum of payo�s of agents. We laim that this game is a valid-utility game. Submodularity followsfrom the onstrution. By de�nitionPi �i(S) = (S), so the ake ondition holds. Finally, if agent i playsa subset Si � Vi then the inrease in the soial value is exatly the sum of the values of those elements inSi that have not been played by another agent. The payo� to agent i is the value of these elements plushalf the value of the other elements in Si. So the Vikrey ondition holds.In order for the game to model the Max-Cut problem we just need to restrit the set of feasible strategiesfor eah agent. In fat, we will only allow two feasible strategies (in addition to the null strategy) peragent. Agent v has the feasible strategies Lv = feL : e 2 Æ(v)g and Rv = feR : e 2 Æ(v)g. The motivationfor this is lear; the former strategy orresponds to plaing v on the left side of the partition, the latterstrategy orresponds to plaing v on the right side of the partition. Sine it is never in an agents interest toplay the null strategy, a best response move for agent v is either staying in its urrent side of the partitionor swapping to the other side of the partition.Let W = Pe2E we, and suppose that the strategy pro�le T = (Tv : v 2 V ) indues a ut (A;B)in the graph. Then the soial funtion is (T ) = W + Pe2Æ(A) we, and private utility of agent v isav(T ) = 12Pe2Æ(v);e=2Æ(A) we +Pe2Æ(v);e2Æ(A) we. Evidently, the soial objetive is to maximize the ut.Moreover, this redution equates loal improvements in the Max-Cut loal searh problem with bestresponses of the valid-utility game. If the loal improvement orresponds to node v swapping sides, thenthe inrease in the value of a ut equals the inrease in the soial funtion. This, in turn, is exatly twiethe inrease in the private payo� of node v arising from the swap. The theorem follows. �Using the above redution from the Max-Cut problem to a valid-utility game, we an prove the following:Corollary 5.2. In some instanes of valid-utility games, there exist states that are exponentially far fromany sink equilibrium. �Referenes[1℄ B. Awerbuh and Y. Azar and A. Epstein, \The prie of routing unsplittable ow", STOC, 2005.[2℄ A. Fabrikant and C. Papadimitriou and K. Talwar, \On the omplexity of pure equilibria", STOC, 2004.[3℄ L. Fliesher, M. Goemans, V. Mirrokni and M. Sviridenko, \Almost tight approximation algorithms for maximisinggeneral assignment problems", submitted, 2005.[4℄ D. Fotakis and S. Kontogiannis and P. Spirakis, \Sel�sh unsplittable ow", ICALP, 2004.[5℄ M. Goemans, L. Li, V. Mirrokni, and M. Thottan, \Market sharing games applied to ontent distribution in ad-honetworks", MOBIHOC, 2004.[6℄ M. Kandori, G. Mailath and R. Rob, \Learning, mutuation, and long-run equilibria in games", Eonometria, 61, pp29-56,1993.[7℄ E. Kohlberg and J. Mertens, \On the strategi stability of equilibria", Eonometria, 54(5), pp1003-1037, 1986.[8℄ E. Koutsoupias and C. Papadimitriou, \Worst-ase equilibria", STACS, 1999.[9℄ V. Mirrokni and A. Vetta, \Convergene issues in ompetitive games", RANDOM-APPROX, 2004.
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