
ar
X

iv
:c

s.
D

S/
06

07
02

5 
v1

   
7 

Ju
l 2

00
6

The Evolution of Navigable Small-World Networks

Oskar Sandberg ∗, Ian Clarke †

July 7, 2006

Abstract

Small-world networks, which combine randomized and structured elements,
are seen as prevalent in nature. Several random graph models have been given
for small-world networks, with one of the most fruitful, introduced by Jon Klein-
berg [10], showing in which type of graphs it is possible to route, or navigate,
between vertices with very little knowledge of the graph itself.

Kleinberg’s model is static, with random edges added to a fixed grid. In this
paper we introduce, analyze and test a randomized algorithm which successively
rewires a graph with every application. The resulting process gives a model for
the evolution of small-world networks with properties similar to those studied
by Kleinberg.
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1 Introduction

The “Small World Phenonomenon” is the name given to the observation that seem-
ingly random people can often find a short chain of aquaintances connecting them
to one another. Mathematically, this has been related [18] [16] to the observation
that structured graphs, such as grids, can have their diameter drastically reduced
by the introduction on some random edges between the vertices (as proved for the
circle in [3]).

Connected with this is the question, raised by Jon Kleinberg in 2000 [10], whether
short paths can be found between any two vertices by actors in the network lacking
global information about the graph to use when routing. He showed that this is not
possible in all families of random graphs with small diameter, but instead depends
on very specific properties of certain classes of such graphs. Graphs where short
paths can be found are often called “navigable”.

The question of whether graphs are navigable is of particular practical interest
due to a multitude of applications. Specifically, the type of routing suggested by
Kleinberg has been employed in distributed computing, hashtables [14] and peer-to-
peer software [6].

1.1 Motivation

While previous results go a long way towards characterizing when graphs are nav-
igable, they leave open the question of how such graphs are formed. At the same
time, experiments with social networks (e.g. [15] [8]), seem to indicate that those
do, to at least some extent, have navigable properties. A model for evolution and
growth of navigable graphs, similar in some respects to the preferential-attachment
models of power-law degree distributions [4] [1], would help explain when and how
they arise through natural processes. Such a model could also be used to generate
graphs for use in networks where efficient routing is important, such as the types of
overlay networks on the Internet mentioned above.

In a recent summary paper [12] Kleinberg identifies this problem as one of central
open issues in the area.

1.2 Contribution

We summarize our contributions as follows:

1. We present an evolving random graph model where the edges of a graph are
re-wrired by performing repeated greedy walks between random points, and
changing the edges based on these.

2. We analyze rigourously, under a few simplifications, the stationary case of the
model, showing that it is a navigable random graph.
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3. We simulate the algorithm in a number of different circumstances, showing
that it leads to graphs that perform as well or better then those produced
with Kleinberg’s model.

1.3 Previous Work

In a followup to his original work [11], Jon Kleinberg motivated why the necessary
distribution for navigability might arise in nature by means of “group memberships”.
He showed that in a more generalized setting, structures are navigable if two vertices
are connected with a probability that is inversely proportional the size of the smallest
group they both populate. That this should be the case is in some sense natural,
since the probability of knowing somebody may decrease with the size of the group
in which you know them. Similar arguments can be found in [13] and [17].

A preprint paper by Clauset and Moore [7] presents a different re-wiring algo-
rithm for the creation of navigable graphs. They show positive results for this algo-
rithm using simulation, but do not present any analytic results. In [9] a re-wiring
algorithm for the creation of so called scale-free (or power-law) graphs is presented.
This does not deal with clustering nor navigability, and no analytic results regarding
the stationary distribution are derived.

Early versions of the Freenet peer-to-peer data network, presented in [5] and
[6], used a method similar to the algorithm we propose to update the links between
peers. The current work is in part inspired by trying to apply the ideas from the
design of Freenet to an environment more conductive to analysis. [19] previously
related Freenet to the discussion of navigable small-world graphs, but they worked
mostly on proposing modifications to the algorithm that resulted in a more robust
network, instead of looking more closely at the properties of Freenet’s neighbor
sampling.

2 Navigable Small Worlds

In his initial study of navigable graphs [10], Kleinberg studied graphs constructed
by starting with a two dimensional grid, and adding random long-range contacts
according to a certain class of distributions. For the purpose of vertex to vertex
routing in such graphs, he defined a decentralized algorithm as one where each
vertex has to make a routing decision based only on the grid positions of the query’s
destination and the vertex’s immediate neighborhood1.

Kleinberg showed that if one starts with a two dimensional grid and adds long-
range edges between vertices x and y with probability ∝ |x−y|α where |x−y| denotes
Manhattan-distance in the grid, then only the case α = −2 allows for decentralized

1For the upper bounds, he also allowed vertices to know the grid position of all previous vertices

in the query and their neighbors. This was not used in the lower bounds, and so strengthens both

results.
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routing in a polylogarithmic number of steps. For all other values of α a lower bound
which is a fractional power of the graph size can be derived.

In the critical case α = −2, however, it is sufficient to use the most direct routing
possible, so called greedy routing. As the name implies, greedy routing means that
at each step, one attempts to minimize the distance to the destination. That is, if
x wishes to route a query to vertex z, then he picks as the next step the one of his
neighbors (long-range or otherwise) which is closest to z. If n is the size of the graph,
then a bound of O(log2 n) on the expected number of steps needed can be found.
Kleinberg’s model can easily be extended to graphs formed by adding long-range
edges to grids of dimension other than two. If the basic grid has dimension d, it can
be seen that α = −d corresponds to the critical case in which routing is possible.

3 The Algorithm

We let V be the set of vertices, each with a position in a grid or some other regular
lattice. We will let E be set of directed shortcut (long-range) edges between vertices
in V , and G = (V,E) the resulting digraph. Let G′ be G augmented by additional
edges going both ways between each pair of vertices that are adjacent in the lattice.
The proposed algorithm, which we call destination sampling, is as follows:

Algorithm 3.1. Let Gs = (V,Es) be the directed graph of shortcuts at time s. Let
0 < p < 1. Then Gs+1 is defined as follows.

1. Choose ys+1 and zs+1 uniformly from V .

2. If ys+1 6= zs+1, do a greedy walk in G′
s from ys to zs along the lattice and the

shortcuts of Es. Let x0 = ys+1, x1, x2, ..., xt = zs+1 denote the points of this
walk.

3. For each x0, x1, ..., xt−1 with at least one shortcut, independently with proba-
bility p replace a randomly chosen shortcut with one to zs+1.

After a walk is made, Gs+1 is the same as Gs, except that a shortcut from each
vertex in walk s + 1 is with probability p replaced by an edge to the destination. In
this way, the destination of each edge is a sample of the destinations of previous walks
passing through it. The claim is that updating the shortcuts using this algorithm
eventually results in a shortcut graph with greedy path-lengths of O(log2 n).

The value of p is a parameter in the algorithm. It serves to disassociate the
shortcut from a vertex with that of its neighbors. For this purpose, the lower the
value of p > 0 the better, but very small values of p will also lead to slower sampling.

4 Analysis

The algorithm above is stated in full generality, but for the sake of analysis, we
will make a couple of simplifications. Firstly, it is advantageous to replace the two
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dimensional lattice used by Kleinberg with a one dimensional ring of vertices, and
move to the directed case where edges follow a single orientation. This means that
the lattice distance is the number of steps following the orientation of the ring from
one vertex to another. Bariere et al. [2] have performed a thorough investigation of
this setting. The case α = −1 here corresponds to the single critical, navigable case
of Kleinberg’s model where greedy routing performs in O(log2 n) steps, other values
of α do not allow for decentralized routing in a polylogarithmic number of steps.

Secondly we will study only the case where each vertex has exactly one shortcut.
Graphs with multiple shortcuts can be derived from this by coalescing multiple
vertices, or by slight variations in the analysis. A final simplification of the model
we analyze, shortcut independence, will be introduced below.

4.1 Notation

We will index the set of vertices V such that the edges of the base graph are neg-
atively oriented, in the sense that there is an edge from x to x − 1 mod n for all
x = 0 . . . n − 1. The function d(x, z) gives the distance in this digraph from x to
z. It is not symmetric, for example d(x, x − 1) = 1 while d(x − 1, x) = n − 1. The
probability space used will be V ×V ×{E : V 7→ V } with elements (y, z,E) denoting
a starting point, destination, and shortcut configuration respectively. On this we
define a probability measure P, which chooses the three elements independently, the
first two uniformly, and the third with probability defined below.

We will denote by ℓ(x, z) the marginal probability that x has a link to z. We
let Dz be the event that z is chosen as the destination of a query, and Hx be the
event that a query passes through x. The conditional hitting probability of x is
denoted by h(x, z) = P(Hx |Dz): that is h(x, z) is the probability that a query from
a uniformly selected starting point with destination z passes through the point x.
By translation invariance, both ℓ(x, z) and h(x, z) are functions of d(x, z), and we
will sometimes see them as such (i.e. we let ℓ(x) = ℓ(x, 0) so that ℓ(d(x, z)) = ℓ(x, z)
and define h(x) equivalently.)

For sets A ⊂ V we let ℓ(A) =
∑

x∈A ℓ(x) and h(A) =
∑

x∈A ℓ(x). We let

τ = h(V ) =
∑n−1

ξ=1
h(ξ) and note that τ is exactly the expected greedy routing time

of a query from a uniformly chosen point to 0.

4.2 Markov Chain

Each application of Algorithm 3.1 defines the transition of a Markov chain on the
set of shortcut configurations. Thus for any n, the Markov chain in question is
defined on a finite (if large) state space. Since it can easily be seen that this chain
is irreducible and aperiodic, the chain converges to a unique stationary distribution.
The goal is to motivate that this distribution leads to short greedy walks. The
shortcut from a vertex x at any time is simply a sample of the destination of the
previous walks that x has seen. Under the stationary distribution this should not
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change with time, so marginally it holds that

ℓ(x, z) = P(Dz |Hx).

By using Bayes’ theorem, and the definition above, we can thus write the shortcut
distribution in terms of the hitting probability:

ℓ(x, z) =
h(x, z)P(Dz)∑

ξ 6=x h(x, ξ)P(Dξ)
.

Since the destination is chosen uniformly at random, P(D•) cancels out in numerator
and denominator, and we are left with:

ℓ(x, z) =
h(x, z)∑

ξ 6=x h(x, ξ)
=

h(x, z)
∑N−1

ξ=1
h(ξ)

(1)

where the last equality follows by using translation independence and re-indexing.
In other words, ℓ(x) ∝ h(x) for all x: we will call shortcut distributions which have
this property balanced.

4.3 The Independent Case

In order to get a bound on the expected greedy routing time, we will need to make
one further simplification. Instead of studying the true stationary distribution of
the rewiring process, we will look at graphs where links are chosen independently in
such a way that (1) holds. There is no reason to believe that there is independence
under the true distribution (in fact, it is quite clear that there isn’t), but below we
will argue heuristically that these results are still valid.

Theorem 4.1. For all n ≥ 1, there exists a distribution ℓ(x) on x ∈ [n − 1] which
is balanced when shortcuts are chosen independently at each node.

Proof. If we consider each shortcut as chosen independently, we may view the query,
which approaches the destination in each step, as being a Markov chain, and using
the backwards equations for the hitting probability of Markov chains, we may deduce
that (fixing the destination as 0):

h(x) =

N−1∑

ξ=x+1

h(ξ)ℓ(ξ − x) + h(x + 1)

N−1∑

ξ=x+2

ℓ(ξ) +
1

n − 1
. (2)

The first term above gives the probability that we enter x using a shortcut from a
vertex that is ξ steps from the destination, while the second term gives the proba-
bility that we enter x from the vertex which is x+1 steps from the destination using
the base graph.
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Fix a distribution ℓ′(x). The hitting probability under this distribution h′(x)
can be derived from (2), and from this we may derive a new distribution

ℓ′′(x) =
h′(x)

∑n−1

i=1
h′(x)

.

The mapping of ℓ′ 7→ ℓ′′ is continuous, since
∑n−1

i=1
h′(x) > 1, and maps a convex

set (the simplex of n − 1 valued distributions) into itself. By Brouwer’s fix-point
theorem, there exists at least one fixpoint ℓ∗, which by construction is a balanced
distribution.

We also note that:

Lemma 4.2. If the shortcut configuration is chosen according to a translation in-
variant distribution, then h(x) is non-increasing in x.

Proof. This can been seen easily by considering any realization of the graph, together
with a starting point, which causes a query for 0 to pass through x + 1. For each
such case, there is a corresponding configuration and starting point attained by
translating each down one step (modulo n), for which a query for 0 will pass through
x.

Using this we may state and prove the main result:

Theorem 4.3. For every N = 2k with k ≥ 4, let τ be the expected greedy routing
time. If shortcuts are selected independently according to a balanced distribution at
each node, then

τ ≤ 3k2.

Proof. We fix the destination as 0, and consider routing from a randomly chosen
point. Start by dividing 1, . . . , n− 1 into k contiguous parts F1,F2, . . . , Fk such that

h(F1) ≈ h(F2) ≈ . . . ≈ h(Fk)

in the sense that |h(Fi) − h(Fj)| < 2 for all i, j (such a partition is possible since
h(x) ≤ 1 for all x). It follows by proportionality that

ℓ(Fi) ≥
1

k
−

1

τ
=

τ − k

τk

Let r0 = 0, and Fi = {ri−1 + 1, ri}. We now consider a query starting at rk = n− 1,
the furthest point from 0 in Fk, and want to find the probability that rk has a
shortcut to a vertex in {0, . . . , rk−1}.

Assume that rk−1 > rk/2. Then Fk ∩ {rk − Fk} = ∅, so the desired probability
is at least ℓ(rk, rk − Fk) = ℓ(Fk). It follows from Lemma 4.2 that the probability of
finding such a link cannot be less for any other point in Fk. The expected number
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of steps spent in Fk is thus bounded from above by the expectation of a geometric
random variable with success probability τ−k

τk
, whence

h(Fk) ≤
τk

τ − k
. (3)

However, the expected time spent in each Fi differs at most by a constant, so we
can conclude that:

τ =
k∑

i=1

h(Fi) ≤ 2
τk2

τ − k
.

which implies τ ≤ 2k2 + k ≤ 3k2.
This leaves the case when rk−1 ≤ n/2. If this holds, then by the same reason-

ing, starting instead at rk−1, we may exclude any case but rk−2 ≤ rk−1/2 ≤ n/4.
Continuing in this fashion, we can exclude every case but

r1 ≤
n

2k−1
= 2.

The result then follows again since h(F1) ≤ r1 and 2 < k.

4.4 Dependencies

In order to fully prove that the rewiring algorithm presented above leads to a nav-
igable graph, one needs to prove that the dependencies present in the resulting
distribution of shortcuts are not destructive to the argument. In fact, our reasoning
uses independence only at one point. In the proof of Theorem 4.3, after having
calculated a marginal bound of ≈ 1/k of the probability that each point in Fi has
a shortcut to a point outside the phase but closer to 0, we conclude (3): that this
means that the expected number of steps in Fi is at most ≈ k. This is true only if we
draw a shortcut independently at each vertex in Fi that we reach, or if conditioned
on not having found a useful shortcut in one step, the probability of doing so in the
next increases.

Proving the full result formally is still an open problem, but one can see heuristi-
cally why it should hold. There are two forms of dependence present between edges
created using the destination sampling algorithm. The first comes from the fact
that two edges may have been created from the same query, and thus have the same
destination. The parameter p is introduced into the algorithm to alleviate this (if p
is large, one can very clearly see that nearby vertices tend to have the same short-
cut destination, with considerable cost to routing performance), and by choosing p
sufficiently small, we can make it negligible. The second type of dependence comes
from the fact that what other edges are present around a vertex x will, of course,
greatly affect the probability of whether a query for some vertex z passes through
x.
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When trying to bound the expected time spent in each Fi in the proof of The-
orem 4.3, and thus calculating the probability that x has a shortcut that takes the
query out of Fi, we have to condition on the previously encountered vertices having
shortcuts that failed to do this. These could either be shortcuts from one earlier
vertex in Fi to another, or shortcuts that overshoot the target (0) and thus are not
used by the query. The presence of neither type of shortcut would seem to make it
less likely that a query for a point in A = {0, . . . , ri−1} passes through x, and hence
one would not expect that the conditioning should make h(x,A) (and thus ℓ(x,A))
smaller. Formalizing this argument has, however, proved difficult.

5 Simulation

Simulations indicate that the algorithm gives results which scale as desired in the
number of greedy steps, and that the resulting shortcut distribution approximates
1/ log(n)d(x, y) as expected.

The results in the directed one-dimensional case can be seen in Figure 1. To get
these results, the graph is started with no shortcuts, and then the algorithm is run
10N times to initialize the references. The value of p = 0.1 is used. The greedy
distance is then measured as the average of 100,000 walks, each updating the graph
according to the algorithm (this decreases the variance of the estimate).

The square root of the mean greedy distance increases linearly as the graph size
increases exponentially, just as we would expect. In fact our algorithm leads to
better simulation results than choosing from Kleinberg’s distribution. Doubling the
graph size is found to increase the square route of the greedy distance by ≈ 0.41
when links are selected using our algorithm, compared to an increase of ≈ 0.51
when Kleinberg’s model is used. (For Kleinberg’s model we can use (2) to calculate
numerically exact values for τ , allowing us to confirm this figure.)

In Figure 3 the marginal distribution of shortcut lengths is plotted. It is roughly
harmonic in shape, except that it creates less links of length close to the size of the
graph. This may be part of the reason why it is able to outperform Kleinberg’s
model: while Kleinberg’s model is asymptotically correct, this algorithm takes into
account finite size effects. (This reasoning is similar to that of the authors of [7].
Like them, we have no strong analytic arguments for why this should be the case,
which makes it a tenuous argument at best.)

The algorithm has also been simulated to good effect using base graphs of higher
dimensions. Figure 2 shows the mean greedy distance for two dimensional grids of
increasing size. Here also, the algorithm creates configurations that seem to display
square logarithmic growth, and which perform considerably better than explicit
selection according to Kleinberg’s model.
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Figure 1: The expected greedy walk length using our selection algorithm, compared
to selection according the harmonic distribution, in a directed ring.
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Figure 2: The expected greedy walk length of the selection algorithm, compared to
selection according to harmonic distances, in a two dimensional base grid.
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Figure 3: The inverse of distribution of shortcut distances, with N = 100000, p =
0.10. The straight line is the inverse of the harmonic distribution.

6 Conclusion

We have introduced an evolutionary model that by successively updating the the
shortcut edges of a small-world graph creates configurations which are navigable.
We have explored this model both analytically and with the help of simulation, and
found support for the claim that navigability should arise.

The major open question is to complete the rigorous analysis of the station-
ary distribution, in particularly with regard to the dependencies between shortcuts.
Random graphs with dependencies between the edges are notoriously difficult to
analyze mathematically, and possibility of doing so usually relies on finding a for-
mulation where the edges can be seen to be independent conditioned on a certain
event (already Kleinberg’s model is an example of this: the edges do not exist inde-
pendently, but are independent conditioned on the position of the nodes). No such
formulation has been found here, but the existence cannot be ruled out.

Further, there are interesting questions regarding the scope of the results. We
have a upper bound for the navigable case which matches Kleinberg, but it would
be interesting to see if lower bounds can be found for the case when ℓ(x, z) deviates
from greatly from proportionality to h(x, z), in the notation above. While it seems
clear that this must be the case, a direct proof would be illustrative. Finally, it is
noted that the destination sampling algorithm suggested can be stated and imple-
mented independently of the structure of the underlying graph (and thus distance
function), and there is no reason to believe it wouldn’t work with just about any
graph. Exploring the limits of the algorithms applicability is an interesting, open
problem.
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