
Resource Discovery in Distributed Networks�Mor Harchol-Baltery Tom Leightonz Daniel LewinxMIT, Cambridge, MA 02139h harchol,ftl,danli@theory.lcs.mit.eduAbstractIn large distributed networks of computers, it is often the case that a subset of machines wants tocooperate to perform a task. Before they can do so, these machines need to learn of the existenceof each other. In this paper we are interested in distributed algorithms whereby machines ina network learn of other machines in the network by making queries to machines they alreadyknow. The algorithms should be e�cient both in terms of the time required and in terms of thetotal network communication required until all machines have discovered all other machines. Wepropose a very simple algorithm called Name-Dropper whereby all machines learn about each otherwithin O(log2 n) rounds, where n is the number of machines in the network. The total number ofconnections required is O(n log2 n), and the total number of pointers which must be communicatedis O(n2 log2 n). Each of the preceding bounds is optimal to within polylogarithmic factors.

�Contact author: Mor Harchol-Balter, harchol@theory.lcs.mit.edu. Tracks: long presentation. Student paper: DanielLewin is a full-time studentyLaboratory for Computer Science. Supported by the NSF Postdoctoral Fellowship in the Mathematical Sciences.zDepartment of Mathematics and Laboratory for Computer Science. Supported by DARPA N00014-95-1-1246 andARMY DAAH 04-95-1-0607xLaboratory for Computer Science. Supported by DARPA N00014-95-1-1246 and ARMY DAAH 04-95-1-0607

1 IntroductionIn large distributed networks of computers, it is often the case that a subset of machines want to co-operate to perform a common task. For example, machines may cooperate to implement a distributedweb caching protocol, to form a distributed �le system, or to do some distributed computation. A�rst step in any of these applications is for the machines to learn about the existence of each other.In other words, machines need to know \Who on the network wants to cooperate with me?" Thiscommon �rst step is what we call the Resource Discovery Problem.Resource discovery algorithms need to be e�cient in terms of time and network communication.That is, machines should learn about each other quickly, without using an inordinate amount ofcommunication. This is particularly important in applications where the algorithm may be usedrepeatedly to obtain updated information about the status of machines in the system.An instance of the resource discovery problem is modeled as a directed graph. Each machine isrepresented by a node of the graph and edges represent the relation \machine A knows about machineB." As machines learn about each other, new edges are added to the graph. Communication can onlytake place between machines that know about each other, in contrast to, say, a \global ping" on thenetwork, that every machine responds to. In terms of the graph, a node u can only communicate withanother node v if there is a directed edge from u to v. In this case v is considered to be a neighbor oru. We will use the terms \network" and \graph" and the terms \machine" and \node" interchangably.We are interested in distributed resource discovery algorithms, where there is no central control inthe network and machines operate independently of each other, making local queries to their neighborsand transferring information about part or all of their neighbor lists. Figure 1 gives an example of aconnection between adjacent nodes where one node, A, sends its entire neighbor list (including itself)to its neighbor node, B, adding to B's neighbor list.We model resource discovery algorithms as proceeding in synchronous parallel rounds. We de�neone round as the time for each machine in the network to contact one or more of its neighbors andexchange some subset of its neighbor list. The running time of a resource discovery algorithm is thenumber of rounds required until every machine knows about every other machine, i.e., a completegraph is formed. Observe that di�erent rounds can have di�erent running times. One di�erence iscaused by the fact that the \neighbors" of a node may be of di�erent distances from the node in theunderlying physical network. However, it can also turn out that communicating between two nodeswhich are physically close may be more costly than communicating between two nodes which are farapart because of di�erences in the speeds of the routers and speeds of the machines. Thus we simplyuse the number of rounds as our run time metric. In practice there is enough time between roundsthat each round is able to complete.Another performance measure of resource discovery algorithms is the amount of network commu-nication they require. We measure network communication in two ways: The pointer communicationcomplexity is de�ned to be the total number of pointers communicated during the course of the al-gorithm. The connection communication complexity is de�ned to be the total number of connectionswhich are opened during the course of the algorithm, where a connection between u and v is createdwhen u contacts v. During the connection, u is allowed to transmit as much information as it likesto v. For example, suppose we have a d-regular graph and each node picks one of its neighbors andsends it its entire neighbor list (including itself). Then the total pointer complexity for that round isn(d+1), whereas the communication complexity for the round is n. We consider both the pointer com-munication complexity and the connection communication complexity because, in practice, networkcommunication is a linear combination of the two.Our only assumption about the network is that it is initially weakly connected. That is, if weignore edge directions then the graph is connected. In practice, this boils down to giving every newly1

(i)

A B

(ii)

A B

Figure 1: (i) Machine A makes a connection to machine B and sends its list of neighbors to B. (ii)As a result, machine B learns about A and A's neighbors (shown as dashed lines). The operationdepicted above has connection communication complexity of 1 and pointer communication complexityof 4.added machine a pointer to at least one machine in the network. Weak connectivity is a necessaryassumption because otherwise we allow disconnected networks where there is no hope of ever evolvinginto one component.Our goal is to design a resource discovery algorithm which requires few rounds and requires lownetwork communication. In this paper we propose a randomized resource discovery algorithm withthe following properties:� Our algorithm is distributed and each machine executes the same simple local protocol.� Machines learn about each other quickly: If there are n machines, then with high probabilitywithin O(log2 n) rounds, all machines know about each other.� Our algorithm does not
ood the network with communication. In particular the connection com-munication complexity is O(n log2 n) and the pointer communication complexity is O(n2 log2 n),with high probability.Each of the preceding bounds is optimal to within polylogarithmic factors.1.1 Some Candidate AlgorithmsBefore describing our algorithm, we �rst describe three natural algorithms for resource discovery, someof which are used in real systems. Our algorithm uses ideas from each of these. The performance ofthese algorithms is summarized in Table 1.1.1.1 The Flooding AlgorithmThe Flooding algorithm is used by Internet routers today [7].In the Flooding algorithm, a machine is initially con�gured to have a �xed set of neighboringmachines, and direct communication is only allowed with machines in this set. In terms of the graph,a node only communicates over the edges that were initially in the graph; new edges that are addedto the graph are not used for communication. Observe that those edges that constitute the \initialneighbors" are not necessarily the links in the underlying physical network, but rather they are virtuallinks, each possibly corresponding to a path in the underlying network.We denote by �(v) the set consisting of v and of all the nodes that v points to. In every roundof the Flooding algorithm, each node v contacts all of its initial neighbors and transmits to them theupdates to �(v), (denoted by �(v)Updates), i.e., those nodes in �(v) that are new since the last time2

Num. Rounds Pointer Communication Connection CommunicationFlooding dinitial
(n �minitial)
(dinitial �minitial)Swamping O(log n)
(n3)
(n2)Random Pointer Jump
(n) in worst case (num. rounds)�minitial (num. rounds)�nName-Dropper O(log2 n) O(n2 log2 n) O(n log2 n)Table 1: This table shows the performance of 3 natural resource discovery algorithms, as compared withour own resource discovery algorithm, Name-Dropper. In the above notation: minitial is the numberof edges in the initial graph, n is the number of nodes in the graph, and dinitial is the initial diameterof the graph. The Name-Dropper algorithm outperforms the other 3 algorithms in terms of worst-case communication complexity by a factor of
(n=log2n), while the runtime of the Name-Dropperalgorithm is close to optimal.v sent information. A node u that receives �(v)Updates then updates its set of neighbors by merging�(u) and �(v)Updates, (�(u) � �(u) [�(v)Updates).The number of rounds required for the Flooding algorithm to converge to a complete graph is equalto the diameter, dinitial, of the initial graph. If dinitial is small then the algorithm is fast; howeverdinitial could be large: �(n). Thus the Flooding algorithm could be very slow if we are not careful tostart with an initial graph that has small diameter.The communication complexity of the Flooding algorithm also depends on the initial graph. Letminitial be the number of edges in the initial graph. The pointer communication complexity of theFlooding algorithm is �(n �minitial) because every pointer must be sent over every edge during thealgorithm. The connection communication complexity of the Flooding algorithm is �(dinitial �minitial).The above bound can be obtained by the following argument: If the diameter is dinitial, then everypoint s is at least d=2 distance away from some other point, which means that there is a shortest pathto s of length at least d=2. Thus s learns new pointer information in one of the next � d=2 rounds.Thus s must open up a connection with all of its initial neighbors during each of the new rounds, sothat it can communicate this new information to them. Hence every one of the minitial edges is usedduring at least the next d=2 rounds. Thus the lower bound is
(dinitial �minitial). Observe that this isalso an upper bound since there are dinitial rounds, and during each round at mostminitial connectionscan be open.The connection communication complexity of the Flooding algorithm is
(dinitial �minitial). Thisfollows from the fact that there are at least dinitial rounds, during which each machine opens up aconnection with all of its initial neighbors.The bottom line is that the network complexity depends on both dinitial and minitial, and often atleast one of these will be high. Observe that minitial is always � n, since the inital graph is weaklyconnected.1.1.2 The Swamping AlgorithmAs we mentioned above, the Flooding algorithm is used by Internet routers today. However theInternet routers are in fact designed with the capability of opening connections to any machine theyknow about, not just machines in the \initial set." Although this capability is not currently beingused in the context of the Internet, it is available in case future algorithms require it.The Swamping algorithm is identical to the Flooding algorithm except that machines may now openconnections with all their current neighbors, not just their initial neighbors. Also since the neighborsets change, all of the current neighbor set is transfered, not just the updates. That is, a machine vnow sends �(v) to every machine in �(v), instead of only sending to its initial set of neighbors.3

(i)

A B

(ii)

A B

Figure 2: (i) Before the Random Pointer Jump. Node A chooses at random one of its neighbors. Herethe chosen neighbor is labeled B. (ii) After the Random Pointer Jump. Node B has passed to node Aall of its neighbors, and now A also points to them. The newly formed edges are shown with dashedlines.The advantage of the Swamping algorithm is that the graph always converges to a complete graphin O(log n) steps, irrespective of the initial con�guration.The disadvantage of the Swamping algorithm is that the network communication complexity isincreased. The pointer communication complexity of the Swamping algorithm is
(n3), since duringthe last round, when the graph is almost complete, each of the n machines sends each of its n pointersto each of its n neighbors. The connection communication complexity of the Swamping algorithmis
(n2) since during the last round, when the graph is almost complete, each of n machines makesconnections with each of its n neighbors.The bottom line is that the Swamping algorithm is very fast (only O(log n) rounds), but this speedis obtained at the cost of wasted communication where many machines are being told of machinesthey already know about.1.1.3 The Random Pointer Jump AlgorithmThe disadvantage of the Swamping algorithm is that the communication complexity grows quickly.To reduce the communication complexity one might consider having each machine communicate withonly one randomly-chosen neighbor during each round.The Random Pointer Jump Algorithm works as follows: In each round, each machine v contactsa random neighbor u 2 �(v). The chosen neighbor u then sends �(u) to v, who then merges �(u)with �(v). An example of the Random Pointer Jump operation is given in Figure 2. Note that thisoperation corresponds to the classical pointer jump operation, commonly used in parallel algorithmdesign.The Random Pointer Jump Algorithm can only be applied to strongly connected networks (i.e.,there must exist a path between every pair of machines), because otherise the graph will never convergeto a complete graph. Consider for example the graph with two nodes and a single directed edge betweenthem: the remaining edge cannot be formed.Given that the graph is strongly connected, the Random Pointer Jumpmight seem like a good idea.For example a ring of n nodes converges to a complete graph in O(log n) rounds with high probabilityand the total connection communication complexity is only O(n log n), since there are log n roundsduring which each of n machines opens up one connection.Interestingly, it turns out that this algorithm is not a good choice { even for strongly connectedgraphs. Figure 3 gives an example of a graph that is strongly connected and requires, with highprobability �(n) rounds to converge to a complete graph.4

(i)Figure 3: (i) A strongly connected graph with n nodes that takes time
(n) to converge to a completegraph using the random pointer jump local query. The \center" of the graph is a complete graph onn=2 nodes. Each node in the ring around the center is connected to every node in the central clique.There is a single node in the clique that points out to a single node on the ring - therefore making thegraph strongly connected.Claim 1 With high probability, the graph in �gure 3 requires
(n) time to converge to a completegraph using the random jump local query.Proof: Omitted for brevity.1.2 Our Algorithm { Name-DropperThe Name-Dropper algorithm looks very similar to the Random Pointer Jump algorithm presented inthe previous section.The Name-Dropper algorithm works as follows: During each round, each machine v transmits �(v)to one, randomly chosen neighbor. A machine u that receives �(v) merges �(v) with �(u) as in theprevious algorithms. Figure 4 illustrates one connection in the Name-Dropper algorithm.2In Section 2 we will prove that Name-Dropper terminates in O(log2 n) rounds with high probabilitywhereas the random pointer jump algorithm can take
(n) rounds. As a consequence, we will alsoconclude that the network communication complexity of Name-Dropper is very low: The connectioncommunication complexity is O(n log2 n) and the pointer communication complexity is O(n2 log2 n).All these bounds are within polylogarithmic factors of optimal.The Name-Dropper algorithm has been implemented within the Laboratory of Computer Scienceat MIT as part of a project to build a large-scale distributed cache. The project enables certainmachines on the Internet to cooperate in caching information. In order for these machines to cooperatethey must �rst locate each other { this is where the Name-Dropper resource discovery algorithm isused. The Name-Dropper algorithm has been licensed to Akamai Technologies, which is building anInternet-wide distributed caching system.2Name-Dropper derives its name from the following social behavior commonly called \name dropping." A newcomerapproaches a group of people and introduces himself. During the ensuing conversation, the newcomer inserts into theconversation all the names of the people he knows, usually in the belief that he will pro�t from his associations, howeverthis aspect of the social behavior is irrelevant to our algorithm :)5

1.3 Previous WorkThe Flooding algorithm which we describe in Section 1.1.1 is used today by routers on the Internet,see the Internet request for comments number 1583 [7].Communication and broadcast by local queries has been extensively studied under the name \gos-siping" [6, 4, 2, 9]. The \classical" gossiping problem assumes that either all machines know abouteach other, or that there is a �xed communication network. Gossiping is used to broadcast informa-tion from every machine to every machine. In [6], a survey of general lower bounds on the numberof connections that need to be made to broadcast information from every machine to every othermachine can be found. In addition, [6] describes tight upper bounds for gossiping on �xed speci�ccommunication networks.In contrast to the classical gossiping problem, we address the problem of broadcasting in networkswhere machines may not initially know about each other. Our results show that if we allow machinesto learn about other machines during the gossip process, then gossiping can be done e�ciently startingfrom any weakly connected graph.Gossip type algorithms have been used in various practical distributed systems and algorithms[1, 3, 5, 9, 8, 10]. For example, in [1, 3], gossiping is used to maintain consistency in a distributedreplicated database. Recently [10], gossiping has been used to gather information about failures in anetwork of machines. Most of these gossiping algorithms assume that all the machines on the networkare already aware of each other, and that information needs to be broadcast from one or more of themachine to the others. This broadcast is carried out by an algorithm similar to the Name-Dropper:choose a random neighbor and tell him your information.In [10], it is assumed for simplicity that only a single machine gossips at every round, and theauthors give empirical evidence that information is propagated to all machines in linear time. Ouranalysis proves that even if machines are not aware of each other at the start, after O(log2 n) parallelrounds of gossiping, information has propagated to the whole network.2 Performance Analysis of Name-DropperThe main theorem in this paper is as follows:Theorem 2 Let G be any weakly connected directed graph on n vertices. Then, after O(log2 n) roundsof the Name-Dropper algorithm, the graph evolves into a complete graph with probability greater than1� 1nO(1) .Observe that there is a lower bound of log n steps for any resource discovery algorithm since thediameter of the graph can at most halve with every round. We conjecture that this lower bound canbe achieved with high probability using the Name-Dropper algorithm; however we have not been ableto �nd a proof nor a counterexample to this conjecture.As a corollary to Theorem 2, we obtain an upper bound on the network communication complexityrequired by the Name-Dropper algorithm.Corollary 1 The connection communication complexity of Name-Dropper is O(n log2 n). The pointercommunication complexity of the Name-Dropper algorithm is O(n2 log2 n).Proof: With respect to connection communication complexity, during each round, each of n machinesonly makes one connection, and there are O(log2 n) rounds.With respect to pointer communication complexity, each round may require each machine totransfer O(n) pointers. Thus the pointer communication complexity is upper bounded by n2 times6

(i)

A B

(ii)

A B

Figure 4: (i) Before Name-Dropper. Node A chooses a random neighbor, here the neighbor is labeledby B. (ii) After one round of the Name-Dropper algorithm. A has passed to B all of its neighborsand B has added edges to these neighbors. In addition, B learns about A. The edges added to thegraph are dashed.the number of rounds.The rest of this section is devoted to proving Theorem 2. We begin with an overview of the proof.We break the evolution of the graph into stages that are each O(log n) rounds long. We thenshow that, with high probability, the distance between every two nodes (measured after undirectingthe edges) goes down by a constant factor every stage. Therefore, after O(log n) stages, the graph iscomplete since the distance between every two nodes is one with high probability.The main step in showing that a stage is successful (namely that the distance between every twonodes goes down by a constant factor) is to show that every node on a shortest path makes a \pointerjump" with high probability. More speci�cally, if v �! u �! w is a subsequence of a shortest path,then we show that after O(log n) rounds, v has an edge to w with high probability.In fact,we'll show that every triple v �! u �! w has a very good chance of making a pointerjump within O(log n) rounds. Then we're done by the following argument: Pick one shortest pathbetween each of the n2 pairs of nodes. Each of these shortest paths has at most n triples. Thus wehave n3 triples which we care about, and each of these makes a pointer jump with probability 1� 1nc ,where c is a constant. Assuming c is high enough (in this case � 4), then all the n3 triples will makea pointer jump with probability at least 1� 1n1 .We will use the above type of union-bound argument repeatedly in our analysis. To avoid extensivenotation we will always denote the above constant by c, however it is important to realize that eachtime we use this type of argument the constant c needs to be chosen appropriately.We now prove Theorem 2:Let G = (V;E) be the graph. We abuse notation and always denote the edge set of the graphby E, although it may increase at every step. A directed edge from u to v is denoted by (u; v). Thefollowing lemma is the main step in proving Theorem 2.Lemma 2.1 Given any u; v; w 2 V such that (w; u) 2 E and (w; v) 2 E. Then for any constant c,with probability greater than 1 � 1nO(c) after O(c log n) steps of the Name-Dropper algorithm we have(u; v) 2 E and (v; u) 2 E.Figure 5 shows the setup of Lemma 2.1.For now we simply assume Lemma 2.1 to be true and continue with our proof of Theorem 2. Ouroriginal graph G = (V;E) is weakly connected. As a �rst step, we will prove that the graph willbecome strongly connected after O(log n) steps of the name dropper algorithm. In fact we will provesomething stronger, namely that for every edge in E, an edge in the opposite direction will be created.7

u

(i)

w

v u

(ii)

w

v

Figure 5: (i) The setup of the nodes u, v, and w in Lemma 2.1. (ii) The con�guration guaranteed tooccur with high probability by Lemma 2.1 after O(log n) steps of the Name-Dropper algorithm.Lemma 2.2 If (u; v) 2 E, then with probability at least 1 � 1nO(c) , after O(c log n) steps the edge(v; u) 2 E.Proof: We will apply Lemma 2.1. Suppose there exists a node w 2 V such that (w; u) 2 E and(w; v) 2 E. In this case, Lemma 2.1 immediately applies and we are done. Now suppose there doesnot exist such a node w. In this case, either u contacts v directly in the next round, forming the edge(v; u), or else u contacts some other node w in the next round. In the latter case, w will now get apointer back to u and a pointer to all of u's neighbors, including v. At this point, w will satisfy thecondition for Lemma 2.1.So by running Name-Dropper for O(c log n) steps, the graph becomes strongly connected withprobability at least 1 � 1nO(c) . After this �rst stage, we divide the evolution of the graph into stagesconsisting of O(log n) rounds each. At the beginning of each stage we measure the distance betweeneach pair of nodes (note that since the graph is already strongly connected, there is a path betweeneach pair of nodes). Our goal is to show that after O(c log n) rounds, or one stage, the distance betweeneach pair of nodes is at most half of what it was at the beginning of the stage, with probability 1� 1nO(c) .We will focus on one particular pair of nodes u and v and show that the above statement is true forthat pair. Then, since there are only O(n2) paths, we can use a union bound to show that all thepaths shrink by the desired amount with probability greater than 1� 1nO(c) .Let u �! w1 �! w2 �! : : : �! v be the shortest path between u and v at the start of a stage.We show that with probability greater than 1 � 1nO(c) every node on the path executes a \pointerjump" after O(c log n) steps, for every constant c. We focus on one particular node, s, in the path,and prove that it does a pointer jump with probability at least 1� 1nO(c) after O(c log n) rounds. Sincethere are at most n nodes in the path, a union bound su�ces to show the result.Let s �! t �! z be three nodes in the path. We �rst invoke Lemma 2.2 to show that afterO(c log n) rounds, with probability greater than 1� 1nO(c) , the edge (t; s) is added to the graph. Nowwe have exactly the con�guration of Lemma 2.1, and thus the edge (s; z) is added to the graph withprobability greater than 1� 1nO(c) after O(c log n) steps.Since there can be at most O(log n) stages where distances go down by a constant factor, the graphmust be complete with probability greater than 1� 1nO(1) in O(log2 n) steps.The only thing that remains is proving Lemma 2.1.Proof:[Proof of Lemma 2.1] Let A denote the set of nodes that have edges to both nodes u and v.The set A is not empty by the assumption of the lemma, w 2 A. By symmetry it su�ces to focus onone of the edges (u; v), (v; u), say (u; v). The overview of the proof is as follows: We will show thatduring every round one of two things are true: Either8

1. The probability that the edge (u; v) is formed is at least some constant, or2. The probability that the set A grows by some constant factor is at least some constant.This su�ces to prove the lemma since (2) can happen at most O(log n) times and if (1) happensO(c log n) times then the probability that the edge (u; v) is formed is at least 1� 1nO(c) .Observe that the only way that the edge (u; v) can be formed is if some node in A contacts u. Letdi denote the degree of node i in A. Then,Pr fedge (u; v) is formedg = 1�Pr fedge (u; v) is not formedg= 1��i2A �1� 1di�� 1� e�Pi2A 1diSo, if the probability that (u; v) is formed is less than 1� e� 14 , then:Xi2A 1di � 14This in turn implies that at least half of the nodes in A have degree greater than 2jAj. We nowshow this last statement in turn implies that the size of A will increase by a constant factor withconstant probability at the next step. In particular we show that at least jAj16 nodes that were not inA are contacted by a node in A with probability at least 115 .Denote by the \special set" the set of jAj2 nodes in A that have degree at least 2jAj. Each of thenodes in the special set point to at least jAj nodes that are not in A. Thus, each node in the specialset contacts a node not in A that no other node in the special set contacts with probability at least14 . Thus, the expected number of new nodes in A is at least jAj2 � 14 = jAj8 .We now use a \bounded Markov argument" to show that the probability that the number of newnodes in A is less than jAj16 is less than 1415 .Bounded Markov Argument Let X be a random variable that is bounded from below by 0 andfrom above by U . That is, 0 � X � U . Then for t � U ,Pr fX � tg � U �E fXgU � t :Thus by the bounded Markov argument we see thatPrnNumber of new nodes in A < jAj16 o � jAj � jAj8jAj � jAj16 = 1415 :We have shown that at every round either there is a constant probability that the edge (u; v)is formed or a constant probability that the set A grows by a constant factor. A simple Cherno�argument will now show that if an event has a constant probability at every step of occurring andthere is independence between the steps then after O(c log n) steps the event will happen O(log n)times with probability greater than 1� 1nO(c) .This concludes the proof of Lemma 2.1 and thus the proof of Theorem 2 as well.
9

3 Conclusion and Future WorkIn this paper we consider the problem of resource discovery in a distributed network and proposeseveral natural and simple distributed algorithms to solve the problem. All of our algorithms involvemachines making local queries to one or more neighboring machines, whereby a machine transfers itsneighbor list, or part thereof to a neighboring machine. Our analysis shows that the Name-Dropperalgorithm achieves near-optimal performance both with respect to time complexity and with respectto the network communication complexity.One thing that makes this result peculiar is that the Name-Dropper algorithm is almost identicalto the Random Pointer Jump algorithm, however the worst-case performance of the Random PointerJump algorithm is very poor (
(n) rounds are required by Random Pointer Jump as compared withO(log2 n) rounds for Name-Dropper). In both the Name-Dropper and the Random Pointer Jumpalgorithms, during each round, each machine a chooses one, random machine b from its neighbor listat random. In the case of Name-Dropper, a sends to b a pointer to each machine on a's neighbor list(which includes itself). In the case of Random Pointer Jump, b sends to a a pointer to each machineon b's neighbor list.As mentioned earlier, the Name-Dropper algorithm is currently being implemented within theLaboratory of Computer Science at the Massachusetts Institute of Technology as part of a projectto build a large-scale distributed cache, whereby certain machines on the Internet can cooperate incaching information. In order for these machines to cooperate they must �rst locate each other, whichis where the Name-Dropper resource discovery algorithm is used. The Name-Dropper algorithm hasbeen licensed to an LCS startup company, Akamai Technologies, which is building an Internet-widedistributed caching system.There are many issues which we have not explored in this paper. For one thing, our analysis hasassumed that the network is static, i.e., that there are no machines being added or removed while thealgorithm is running. In reality, a machine can unexpectedly crash and be brought back online, canchange location, or can become temporarily unavailable. Such circumstances are likely to occur in largesystems with no centralized control, and resource discovery algorithms should be capable of operatingin such environments. Currently the time for one or more new machines to be fully incorporated intothe network is the running time of the algorithm, but that assumes that no new machines are addedto the network during the time the algorithm is running. We have some preliminary results for therunning time of the algorithm in the presence of ongoing births. However we are �nding the presenceof deaths more di�cult to analyze.A second, somewhat related problem, is the question of how the cooperating machines know thatthey have all discovered each other (and can thus stop running the algorithm). In particular, theremight be more machines out there which just haven not been discovered yet. Unfortunately, knowingwhen to stop depends on �rst knowing the number of machines which are out there, which is a relatedproblem of interest proposed by Lipton [Personal communication, 1998].Thirdly, one weakness of our current model is that it allows for the possibility that in some givenround, many machines in the network might all choose to contact the same one particular host. Inreality that host could only maintain a small number of simultaneous connections and would haveto deny access to all the other machines trying to contact it. Even under those more stringentcircumstances, however, we conjecture that the Name-Dropper algorithm would still converge to acomplete graph in O(log2 n) rounds.Finally, an interesting open problem is whether the running time of the Name-Dropper algorithmcan be shown to be �(log n) rounds, or whether the
(log n) lower bound on the running time of theName-Dropper algorithm can be raised. 10

References[1] Divyakant Agrawal, Amr El Abbadi, and R. Steinke. Epidemic algorithms in replicated databases. In Pro-ceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,pages 161{172, Tucson, Arizona, 12{15 May 1997.[2] Susan Assmann and Daniel Kleitman. The number of rounds needed to exchange information within agraph. SIAM Discrete Applied Math, 6:117{125, 1983.[3] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, and John Larson. Epidemic algorithms forreplicated database maintenance. In Proceedings of the Sixth Annual ACM Symposium on Principles ofDistributed Computing, pages 1{12, Vancouver, British Columbia, Canada, 10{12 August 1987.[4] S. Even and B. Monien. On the number of rounds necessary to disseminate information. In Proceedings ofthe ACM Symposium on Parallel Algorithms and Architectures, pages 261{266, 1989.[5] Mark Hayden and Kenneth Birman. Probabilistic broadcast. Cornell CS Technical Report TR96-1606,1998.[6] Sandra Hedetniemi, Stephen Hedetniemi, and Arthur Liestman. A survey of gossiping and broadcasting incommunication networks. Networks, 18:319{349, 1988.[7] John Moy. Ospf version 2, rfc 1583. Available fromhttp://www.dsi.unive.it/Connected/RFC/1583/index.html, 1994.[8] Derek C. Oppen and Yogen K. Dalal. The clearinghouse: A decentralized agent for locating named objectsin a distributed environment. ACM Transactions on O�ce Information Systems, 1(3):230{253, July 1983.[9] Andrzej Pelc. Fault-tolerant broadcasting and gossiping in communication. Networks, 28(3):143{156,October 1996.[10] Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style failure detector. 1998.

11

