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Béla Bollobás∗†‡

Microsoft Research

One Microsoft Way

Redmond, WA 98122

bollobas@msci.memphis.edu

Christian Borgs

Microsoft Research

One Microsoft Way

Redmond, WA 98122

borgs@microsoft.com

Jennifer Chayes

Microsoft Research

One Microsoft Way

Redmond, WA 98122

jchayes@microsoft.com

Oliver Riordan§

Trinity College

Cambridge CB2 1TQ, UK

O.M.Riordan@dpmms.cam.ac.uk

Abstract

We introduce a model for directed scale-free graphs that grow with preferential attachment
depending in a natural way on the in- and out-degrees. We show that the resulting in- and out-
degree distributions are power laws with different exponents, reproducing observed properties of
the world-wide web. We also derive exponents for the distribution of in- (out-) degrees among
vertices with fixed out- (in-) degree. We conclude by suggesting a corresponding model with
hidden variables.

1 Introduction

Recently many new random graph models have been introduced and analyzed, inspired by certain
common features observed in many large-scale real-world graphs such as the ‘web graph’, whose
vertices are web pages (or sites), with a directed edge for each link between two web pages. For
an overview see the survey papers [2] and [15]. Other graphs studied are the ‘internet graph’ [18],
movie actor [28] and scientific [25] collaboration graphs, cellular networks [21] and many other
examples.

In addition to the ‘small-world phenomenon’ of logarithmic diameter investigated originally by
Strogatz and Watts [28], one of the main observations is that the graphs are ‘scale-free’ (see [5, 7, 24]
and the references therein); the distribution of vertex degrees follows a power law, rather than the
Poisson distribution of the classical random graph models G(n, p) and G(n, M) [16, 17, 19], see
also [9].

Many models have been suggested to explain this and other features of the graphs studied. One
of the basic ideas is the combination of growth with ‘preferential attachment’; the graph grows one
vertex at a time, and edges are added, perhaps only from the new vertex to old vertices, or perhaps
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also between old vertices, where the old vertices involved are chosen with probabilities proportional
to their degrees. One of the simplest and earliest models is that outlined by Barabási and Albert
in [5], made precise in [11]. The degree sequence of this model was analyzed heuristically in [5, 6],
and rigorously in [12]. Many generalizations have been suggested and studied heuristically; a few
have been analyzed precisely, see [27]). In a complicated paper Cooper and Frieze [14] have analyzed
rigorously a very general version of the model allowing for (finite) distributions of out-degrees and
mixtures of uniform and preferential attachment.

The models mentioned above essentially describe undirected graphs. The only exception is
[14], where the authors treat either in-degree or out-degrees, but not both simultaneously; a full
treatment of directed graphs was announced there, but has not yet appeared. However, in many
contexts – for example the web graph – it is natural to look at directed graphs, and to study
the (often different) power laws for in- and out-degrees. Here we propose a very natural model
of directed web graphs and show that it gives power laws consistent with those that have been
observed in the WWW.

Before turning to our model let us briefly mention two rather different kinds of model: Newman,
Strogatz and Watts [26], Aiello, Chung and Lu [1] and other groups have studied random graphs
chosen by first fixing the (scale-free) degree distribution, and then choosing a graph with this
degree distribution. This is very different from our aim here, which is to explain the power-law
distributions. Also, instead of preferential attachment, copying models have been studied [22, 24];
for the web this is very natural, and something like this is needed to explain the high density of
small subgraphs. Again, however, such models are not what we are concerned with here: firstly
they do not model out-degree distributions (the out-degrees are fixed). Secondly, they are rather
specific. By keeping the model simple we hope that it can give insight into many different scale-free
graphs, rather than just the web graph. Also, Cooper and Frieze [14] note that for (in-)degree
distribution there is little difference between copying and preferential attachment.

2 The model

We consider a graph which grows by adding single edges at discrete time steps. At each such step
a vertex may or may not also be added. For simplicity we allow multiple edges and loops. More
precisely, let α, β, γ, δin and δout be non-negative real numbers, with α+β +γ = 1. Let G0 be any
fixed initial graph, for example a single vertex without edges, and let t0 be the number of edges
of G0. (Depending on the parameters, we may have to assume t0 ≥ 1 for the first few steps of
our process to make sense.) We set G(t0) = G0, so at time t the graph G(t) has exactly t edges,
and a random number n(t) of vertices. In what follows, to choose a vertex v of G(t) according

to dout + δout means to choose v so that Pr(v = vi) is proportional to dout(vi) + δout, i.e., so that
Pr(v = vi) = (dout(vi) + δout)/(t + δoutn(t)). To choose v according to din + δin means to choose v
so that Pr(v = vi) = (din(vi) + δin)/(t + δinn(t)), where all degrees are measured in G(t).

For t ≥ t0 we form G(t + 1) from G(t) according the the following rules:
(A) With probability α, add a new vertex v together with an edge from v to an existing vertex

w, where w is chosen according to din + δin.
(B) With probability β, add an edge from an existing vertex v to an existing vertex w, where v

and w are chosen independently, v according to dout + δout, and w according to din + δin.
(C) With probability γ, add a new vertex w and an edge from an existing vertex v to w, where

v is chosen according to dout + δout.
The probabilities α, β and γ clearly should add up to one. To avoid trivialities, we will also
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assume that α + γ > 0. When considering the web graph we take δout = 0; the motivation is that
vertices added under step (C) correspond to web pages which purely provide content - such pages
never change, are born without out-links and remain without out-links. Vertices added under step
(A) correspond to usual pages, to which links may be later added. While mathematically it seems
natural to take δin = 0 in addition to δout = 0, this gives a model in which every page not in G0 has
either no in-links or no out-links, which is rather unrealistic and uninteresting! A non-zero value of
δin corresponds to insisting that a page is not considered part of the web until something points to
it, typically one of the big search engines. It is natural to consider these edges from search engines
separately from the rest of the graph, as they are of a rather different nature; for the same reason
it is natural not to insist that δin be an integer. We include the parameter δout to make the model
symmetric with respect to reversing the directions of edges (swapping α with γ and δin with δout),
and because we expect the model to be applicable in contexts other than that of the web graph.

Our model allows loops and multiple edges; there seems no reason to exclude them. However,
there will not be very many, so excluding them would not significantly affect our conclusions.

Note also that our model includes (a precise version of) the m = 1 case of the original model
of Barabási and Albert as a special case, taking β = γ = δout = 0 and α = δin = 1. We could
introduce more parameters, adding m edges for each new vertex, or (as in [14]) a random number
with a certain distribution, but one of our aims is to keep the model simple, and the main effect,
of varying the overall average degree, can be achieved by varying β.

3 Analysis

Having decided on the model it is not hard to find the power laws for in- and out-degrees. Through-
out we fix constants α, β, γ ≥ 0 summing to 1 and δin, δout ≥ 0, and set

c1 =
α + β

1 + δin(α + γ)
and c2 =

β + γ

1 + δout(α + γ)
.

We also fix a positive integer t0 and an initial graph G(t0) with t0 edges. Let us write xi(t) for the
number of vertices of G(t) with in-degree i, and yi(t) for the number with out-degree i.

Note that the in-degree distribution becomes trivial if αδin + γ = 0 (all vertices not in G0 will
have in-degree zero) or if γ = 1 (all vertices not in G0 will have in-degree 1), while for γδout +α = 0
or α = 1 the out-degree distribution becomes trivial. We will therefore exclude these cases in the
following theorem.

Theorem 1. Let i ≥ 0 be fixed. There are constants pi and qi such that xi(t) = pit + o(t) and

yi(t) = qit + o(t) hold with probability 1. Furthermore, if αδin + γ > 0 and γ < 1, then as i → ∞
we have

pi ∼ CIN i−XIN ,

where XIN = 1 + 1/c1 and CIN is a positive constant. If γδout + α > 0 and α < 1, then as i → ∞
we have

qi ∼ COUT i−XOUT ,

with XOUT = 1 + 1/c2 and COUT is a positive constant.

In the statement above, the o(t) notation refers to t → ∞ with i fixed, while a(i) ∼ b(i) means
a(i)/b(i) → 1 as i → ∞.
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Proof. Note first that if the initial graph has n0 vertices then n(t) is equal to n0 plus a Binomial
distribution with mean (α + γ)(t − t0). It follows from standard results (e.g., the Chernoff bound)
that there is a positive constant c such that for all sufficiently large t we have

Pr
(

∣

∣n(t) − (α + γ)t
∣

∣ ≥ t1/2 log t
)

≤ e−c(log t)2 . (1)

In particular, the probability above is o(t−1) as t → ∞.
We consider how the vector (x0(t), x1(t), . . .), giving for each i the number of vertices of in-degree

i in the graph G(t), changes as t increases by 1. Let G(t) be given. Then with probability α a
new vertex with in-degree 0 is created at the next step, and with probability γ a new vertex with
in-degree 1 is created. More importantly, with probability α + β the in-degree of an old vertex
is increased. In going from G(t) to G(t + 1), from the preferential attachment rule, given that
we perform operation (A) or (B), the probability that a particular vertex of in-degree i has its
in-degree increased is exactly (i+ δin)/(t+ δinn(t)). Since the chance that we perform (A) or (B) is
α+β, and since G(t) has exactly xi(t) vertices of in-degree i, the chance that one of these becomes
a vertex of in-degree i + 1 in G(t + 1) is exactly

(α + β)xi(t)
i + δin

t + δinn(t)
,

so with this probability the number of vertices of in-degree i decreases by 1. However, with proba-
bility

(α + β)xi−1(t)
i − 1 + δin

t + δinn(t)

a vertex of in-degree i − 1 in G(t) becomes a vertex of in-degree i in G(t), increasing the number
of vertices of in-degree i by 1. Putting these effects together,

E
(

xi(t + 1)
∣

∣

∣
G(t)

)

= xi(t) +
α + β

t + δinn(t)

(

(i − 1 + δin)xi−1(t) − (i + δin)xi(t)
)

+ α1{i=0} + γ1{i=1}, (2)

where we take x−1(t) = 0, and write 1A for the indicator function which is 1 if the event A holds
and 0 otherwise.

Let i be fixed. We wish to take the expectation of both sides of (2). The only problem is with
n(t) in the second term on the right hand side. For this, note that from a very weak form of (1),
with probability 1 − o(t−1) we have |n(t) − (α + γ)t| = o(t3/5). Now whatever value n(t) takes we
have

α + β

t + δinn(t)
(j + δin)xj(t) = O(1)

for each j, so

E

(

α + β

t + δinn(t)
(j + δin)xj(t)

)

=
α + β

t + δin(α + γ)t
(j + δin)Exj(t) + o(t−2/5)

and, taking the expectation of both sides of (2),

Exi(t + 1) = Exi(t) +
α + β

t + δin(α + γ)t

(

(i − 1 + δin)Exi−1(t) − (i + δin)Exi(t)
)

+ α1{i=0} + γ1{i=1} + o(t−2/5).
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Let us write xi(t) for the ‘normalized expectation’ Exi(t)/t. Recalling that c1 = (α + β)/(1 +
δin(α + γ)), we have

(t + 1)xi(t + 1) − txi(t) = c1

(

(i − 1 + δin)xi−1(t) − (i + δin)xi(t)
)

+ α1{i=0} + γ1{i=1} + o(t−2/5). (3)

Now let p−1 = 0 and for i ≥ 0 define pi by

pi = c1

(

(i − 1 + δin)pi−1 − (i + δin)pi

)

+ α1{i=0} + γ1{i=1}. (4)

Our first claim is that for each i we have

E(xi(t)) = pit + o(t3/5) (5)

as t → ∞; later we shall show that xi(t) is concentrated around its mean, and then finally that the
pi follow the stated power law. To see (5), set ǫi(t) = xi(t) − pi. Then subtracting (4) from (3),

(t + 1)ǫi(t + 1) − tǫi(t) = c1(i − 1 + δin)ǫi−1(t) − c1(i + δin)ǫi(t) + o(t−2/5),

which we can rewrite as

ǫi(t + 1) =
t − c1(i + δin)

t + 1
ǫi(t) + ∆i(t), (6)

where ∆i(t) = c1(i − 1 + δin)ǫi−1(t)/(t + 1) + o(t−7/5).
To prove (5) we must show exactly that ǫi(t) = o(t−2/5) for each i. We do this by induction on

i; suppose that i ≥ 0 and ǫi−1(t) = o(t−2/5), noting that ǫ−1(t) = 0, so the induction starts. Then
∆i(t) = o(t−7/5), and from (6) one can check (for example by solving this equation explicitly for
ǫi(t) in terms of ∆i(t)) that ǫi(t) = o(t−2/5). This completes the proof of (5).

Our next aim is to show that, with probability 1, we have

xi(t)/t → pi, (7)

as claimed in the statement of the theorem. To do this we show concentration of xi(t) around its
expectation using, as usual, the Azuma-Hoeffding inequality [4, 20] (see also [10]). This can be
stated in the following form: if X is a random variable determined by a sequence of n choices, and
changing one choice changes the value of X by at most θ, then

Pr
(

|X − EX| ≥ x
)

≤ 2e−
x
2

2nθ2 . (8)

To apply this let us first choose for each time step which operation (A), (B) or (C) to perform. Let
A be an event corresponding to one (infinite) sequence of such choices. Note that for almost all A
(in the technical sense of probability 1), the argument proving (5) actually gives

E(xi(t) | A) = pit + o(t). (9)

(We leave out the straightforward but somewhat technical details.)
Given A, to determine G(t) it remains to choose at each step which old vertex (for (A) or (C)), or

which old vertices (for (B)) are involved. There are at most 2t old vertex choices to make. Changing
one of these choices from v to v′, say, only affects the degrees of v and v′ in the final graph. (To
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preserve proportional attachment at later stages we must redistribute later edges among v and v′

suitably, but no other vertex is affected.) Thus xi(t) changes by at most 2, and, applying (8), we
have

Pr
(

∣

∣xi(t) − E (xi(t) | A)
∣

∣ ≥ t3/4 | A
)

≤ 2e−
√

t/16.

Together with (9) this implies that (7) holds with probability one, proving the first part of the
theorem. (Note that with a little more care we can probably replace (7) with xi(t) = pit +
O(t1/2 log t). Certainly our argument gives an error bound of this form in (5); the weaker bound
stated resulted from replacing t1/2 log t in (1) by o(t3/5) to simplify the equations. However the
technical details leading to (9) may become complicated if we aim for such a tight error bound.)

We now turn to the more substantial part of the result, determining the behaviour of the quan-
tities pi defined by (4).

Assuming γ < 1, we have α + β > 0 and hence c1 > 0, so we can rewrite (4) as

(i + δin + c−1
1 )pi = (i − 1 + δin)pi−1 + c−1

1 (α1{i=0} + γ1{i=1}).

This gives p0 = α/(1 + c1δin), p1 = (1 + δin + c−1
1 )−1( αδin

1+c1δin
+ γ

c1
) and, for i ≥ 1,

pi =
(i − 1 + δin)i−1

(i + δin + c−1
1 )i−1

p1 =
(i − 1 + δin)!

(i + δin + c−1
1 )!

(1 + δin + c−1
1 )!

δin!
p1. (10)

Here, as usual, for x a real number and n an integer we write (x)n for x(x−1) · · · (x−n+1). Also,
we use x! for Γ(x + 1) even if x is not an integer. Also, we skip some detail in the derivations,
as equations such as (4) clearly have unique solutions, and it is straightforward to check that the
formulae we obtain do indeed give solutions. One can check that, as expected,

∑∞
i=0 pi = α + γ;

there are (α + γ + o(1))t vertices at large times t.
From (10) we see that as i → ∞ we have pi ∼ CIN i−xIN with

xIN = (δin + c−1
1 ) − (−1 + δin) = 1 + 1/c1,

as claimed.
For out-degrees the calculation is exactly the same after interchanging the roles of α and γ and of

δin and δout. Under this interchange c1 becomes c2, so the exponent in the power law for out-degrees
is xOUT = 1 + 1/c2, as claimed.

We now turn to more detailed results, considering in- and out-degree at the same time. Let
nij(t) be the number of vertices of G(t) with in-degree i and out-degree j.

Theorem 2. Assume the conditions of Theorem 1 hold, that α, γ < 1, and that αδin + γδout > 0.
Let i, j ≥ 0 be fixed. Then there is a constant fij such that nij(t) = fijt+o(t) holds with probability

1. Furthermore, for j ≥ 1 fixed and i → ∞,

fij ∼ Cj i−X′
IN , (11)

while for i ≥ 1 fixed and j → ∞,

fij ∼ Di j
−X′

OUT , (12)

where the Cj and Di are positive constants,

X ′
IN = 1 + 1/c1 + c2/c1(δout + 1{γδout=0})

and

X ′
OUT = 1 + 1/c2 + c1/c2(δin + 1{αδin=0}).
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The proof of this theorem is given in the appendix.
Before discussing the application of Theorems 1 and 2 to the web graph, note that if δout = 0

(as we shall assume when modelling the web graph), vertices born with out-degree 0 always have
out-degree 0. Such vertices exist only if γ > 0. Thus γδout > 0 is exactly the condition needed for
the graph to contain vertices with non-zero out-degree which were born with out-degree 0. It turns
out that when such vertices exist they dominate the behaviour of fij for j > 0 fixed and i → ∞. A
similar comment applies to αδin with in- and out-degrees interchanged. If αδin = γδout = 0 then
every vertex not in G0 will have either in- or out-degree 0.

Note also for completeness that if γδout > 0 then (11) holds for j = 0 also. If γ = 0 then fi0 = 0
for all i. If γ > 0 but δout = 0, then among vertices with out-degree 0 (those born at a type (C)
step), the evolution of in-degree is the same as among those with non-zero out-degree. It follows
from Theorem 1 that in this case fi0 ∼ C0i

−XIN .

4 Particular values

An interesting question is for which parameters (if any) our model reproduces the observed power
laws for certain real-world graphs, in particular, the web graph.

For this section we take δout = 0 for the reasons explained in section 2. We assume that α > 0,
as otherwise there will only be finitely many vertices (the initial ones) with non-zero out-degree.
As before, let c1 = (α + β)/(1 + δin(α + γ)) and note that now c2 = 1 − α. We have shown that
the power-law exponents are

xIN = 1 + 1/c1

for in-degree overall (or in-degree with out-degree fixed as 0),

xOUT = 1 + 1/c2

for out-degree overall, and that if δin > 0 we have exponents

x′
IN = 1 + 1/c1 + c2/c1

for in-degree among vertices with fixed out-degree j ≥ 1, and

x′
OUT = 1 + 1/c2 + δinc1/c2

for out-degree among vertices with fixed in-degree i ≥ 0.
For the web graph recently measured values of the first two exponents [13] are xIN = 2.1 and

xOUT = 2.7. (Earlier measurements in [3] and [23] gave the same value for xIN but smaller values
for xOUT .) Our model gives these exponents if and only if c2 = .59, so α = .41, and c1 = 1/1.1, so

δin =
1.1(α + β) − 1

1 − β
.

This equation gives a range of solutions: the extreme points are δin = 0, β = .49, γ = .1 and
δin = .24, β = .59, γ = 0.

As a test of the model one could measure the exponents x′
IN and x′

OUT (which may of course
actually vary when the fixed out-/in-degree is varied). We obtain 2.75 for x′

IN and anything in the
interval [2.7, 3.06] for x′

OUT .
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5 Other models

In many contexts, such as the web graph, it is clear that while preferential attachment is important,
it is not the only, or perhaps even the main, reason for widely varying degrees. Another underlying
cause which can produce this effect is the varying fitness or attractiveness of vertices or web pages;
some web pages are just more interesting than others. This can be modelled mathematically using
‘hidden variables’; each vertex has a random attractiveness, and preferential attachment depends
on this and on degree. A model along these lines has been proposed by Bianconi and Barabási [8]
(see also [15]).

Here we would like to propose a corresponding model for directed graphs: when a vertex v is
created, two random numbers are associated with it, λv and µv, its in- and out-fitness. Let us
fix two distributions DIN and DOUT on the non-negative real numbers. (The simplest examples
would be exponential or power-law distributions.) In what follows, for each new vertex v created
we choose independently λv from DIN and µv from DOUT , these choices being independent of all
earlier choices. As before we fix α, β, γ ≥ 0 with α + β + γ = 1, and also δin, δout ≥ 0. At time
t0 ≥ 0 we start with an initial graph G0 with t0 edges and n0 ≥ 1 vertices, with certain fitnesses
λv, µv for the vertices v of G0.

For t ≥ t0 we form G(t + 1) from G(t) as follows:
(A) With probability α, add a new vertex v together with an edge from v to an existing vertex

w, where w is chosen according to λ(din + δin).
(B) With probability β, add an edge from an existing vertex v to an existing vertex w, where v

and w are chosen independently, v according to µ(dout + δout), and w according to λ(din + δin).
(C) With probability γ, add a new vertex w and an edge from an existing vertex v to w, where

v is chosen according to µ(dout + δout).
Here, to choose v according to λ(din+δin) means to choose v so that Pr(v = vi) is proportional to

λvi
(din(vi) + δin), and to choose v according to µ(dout + δout) means to choose v so that Pr(v = vi)

is proportional to µvi
(dout(vi) + δout), where the degrees are measured in G(t).

Since the in- and out-degrees of vertices with different fitness will grow at different power-law
rates, this model will produce some vertices of very high in-degree but low out-degree and vice-
versa. This will be the topic of a forthcoming paper. Of course, one could also consider more
general ‘preference functions’, depending on attractiveness and degree in a more complicated way,
as well as a joint distribution for λv, µv, combined with extra parameters as in [14]. However, there
is always some benefit in keeping the model simple and the number of parameters small.
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Appendix: Proof of Theorem 2

In this appendix, we give the proof of Theorem 2. Arguing as in the proof of Theorem 1 we see
that for each i and j we have nij(t)/t → fij , where the fij satisfy

fij = c1(i − 1 + δin)fi−1,j − c1(i + δin)fij

+c2(j − 1 + δout)fi,j−1 − c2(j + δout)fij (13)

+α1{i=0,j=1} + γ1{i=1,j=0}.

Of course we take fij to be zero if i or j is −1. (At first sight there might seem to be a problem
caused by the possibility that a vertex sends a loop to itself, increasing both its in- and out-degrees
in one step. While this does complicate the equations for E(nij(t)), it is easy to see that for fixed
i and j the effect on this expectation is o(t), so (13) holds exactly.)

We start by finding an expansion for fij when i → ∞ with j fixed.
The recurrence relation (13) is of the form

L(f) = α1{i=0,j=1} + γ1{i=1,j=0}

for a linear operator L on the two-dimensional array of coefficients fij . It is clear from the form of
L that there is a unique solution to this equation. By linearity we can write

fij = gij + hij

where
L(g) = α1{i=0,j=1} (14)

and
L(h) = γ1{i=1,j=0}. (15)

Let us first consider g. As α, γ < 1 we have c1, c2 > 0, so setting

bj = δin +
1

c1
+

c2

c1
(j + δout),

dividing (14) through by c1 we obtain

(i + bj)gij = (i − 1 + δin)gi−1,j +
c2(j − 1 + δout)

c1
gi,j−1 +

α

c1
1{i=0,j=1}. (16)

Using (16), it is not hard to show that gij = 0 for all i > 0 if αδin = 0. For the moment, we
therefore shall assume that αδin > 0.

Note that, from the boundary condition, we have gi0 = 0 for all i. Thus for j = 1 the second
term on the right of (16) disappears, and we see (skipping the details of the algebra) that

gi1 = a
(i − 1 + δin)!

(i + b1)!

where

a = α
(b1 − 1)!

c1(δin − 1)!

is a positive constant. (Here we have used αδin > 0.)
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For j ≥ 2 the last term in (16) is always zero. Solving for gij by iteration, we get

gij =
c2(j − 1 + δout)

c1

i
∑

k=0

(i − 1 + δin)i−k

(i + bj)i−k+1
gk,j−1. (17)

Suppose that for some constants Ajr we have

gij =

j
∑

r=1

Ajr
(i − 1 + δin)!

(i + br)!
(18)

for all 1 ≤ j ≤ j0 and all i ≥ 0. Note that we have shown this for j0 = 1, with A11 = a. Let
j = j0 + 1. Then, using (17) and (18), we see that

gij =

j−1
∑

r=1

c2(j − 1 + δout)

c1
Aj−1,r

i
∑

k=0

(i − 1 + δin)!

(i + bj)i−k+1(k + br)!
. (19)

Now it is straightforward to verify that if 0 < y < x and s is an integer with 0 ≤ s ≤ i + 1, then

i
∑

k=s

1

(i + x)i−k+1(k + y)!
=

1

x − y

(

1

(i + y)!
−

(s − 1 + x)!

(i + x)!(s − 1 + y)!

)

. (20)

(For example one can use downwards induction on s starting from s = i + 1 where both sides are
zero.) Combining (19) and the s = 0 case of (20) we see that

gij =

j−1
∑

r=1

c2(j − 1 + δout)

c1
Aj−1,r

(i − 1 + δin)!

bj − br

(

1

(i + br)!
−

(bj − 1)!

(i + bj)!(br − 1)!

)

.

Collecting coefficients of 1/(i + br)! for different values of r, and noting that bj − br = (j − r)c2/c1,
we see that (18) holds for j = j0 + 1, provided that

Ajr =
j − 1 + δout

j − r
Aj−1,r

for 1 ≤ r ≤ j − 1, and

Ajj = −

j−1
∑

r=1

j − 1 + δout

j − r

(bj − 1)!

(br − 1)!
Aj−1,r.

In fact we have the power law we are interested in (for g rather than f) without calculating the
Ajr. Observing only that A11 > 0, so Aj1 > 0 for every j ≥ 1, the r = 1 term dominates (18).
Thus for any fixed j > 0 we have

gij ∼ C ′
ji

−1+δin−b1 = C ′
ji

−(1+1/c1+c2/c1(1+δout)). (21)

Having said that we do not need the Ajr for the power law, we include their calculation for
completeness since it is straightforward. Skipping the rather unpleasant derivation, we claim that

Ajr = a(−1)r−1 (j − 1 + δout)!

δout!(j − 1)!

(

j − 1

r − 1

)

(br − 1)!

(b1 − 1)!
,
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for the same constant a as above. This is easy to verify by induction on j using the relations above.
We now turn to h, for which the calculation is similar. From (15) we have

(i + bj)hij = (i − 1 + δin)hi−1,j +
c2(j − 1 + δout)

c1
hi,j−1 +

γ

c1
1{i=1,j=0}. (22)

Again skipping much of the algebra, for j = 0 we see that h00 = 0, while

hi0 = γ
b0!

c1δin!

(i − 1 + δin)!

(i + b0)!

for all i ≥ 1.
If γδout = 0, then hij = 0 is zero for all j > 0, so let us now assume γδout > 0. This time the

boundary condition implies that h0j = 0 for all j. For j ≥ 1 we thus have from (22) that

hij =
i

∑

k=1

c2(j − 1 + δout)

c1
hk,j−1

(i − 1 + δin)i−k

(i + bj)i−k+1
.

(The only difference from (17) is that the sum starts with k = 1.) Arguing as before, using the
s = 1 case of (20), we see that, for i ≥ 1 and j ≥ 0,

hij =

j
∑

r=0

Bjr
(i − 1 + δin)!

(i + br)!
,

where

Bjr = (−1)rγ
(j − 1 + δout)!

j!(δout − 1)!

(

j

r

)

br!

c1δin!
.

(This makes sense as we are assuming that δout > 0.) Here the r = 0 term dominates, and we see
that for each j ≥ 0 we have

hij ∼ C ′′
j i−1+δin−b0 = C ′′

j i−(1+1/c1+c2δout/c1) (23)

as i → ∞, for some positive constant C ′′
j . Returning now to f = g + h, considering j ≥ 1 fixed

and i → ∞ we see that when γδout > 0, the contribution from h dominates, while if γδout = 0, this
contribution is zero. Thus combining (21) and (23) proves (11).

The second part of Theorem 2, the proof of (12), follows by interchanging in- and out-degrees,
α and γ and δin and δout.
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