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ABSTRACT: We consider the following long-range percolation model: an undirected graph with
the node set {0, 1, . . . , N }d, has edges (x, y) selected with probability � �/�x � y�s if �x � y�
� 1, and with probability 1 if �x � y� � 1, for some parameters �, s � 0. This model was
introduced by Benjamini and Berger [2], who obtained bounds on the diameter of this graph for the
one-dimensional case d � 1 and for various values of s, but left cases s � 1, 2 open. We show that,
with high probability, the diameter of this graph is �(log N/log log N) when s � d, and, for some
constants 0 � �1 � �2 � 1, it is at most N�2 when s � 2d, and is at least N�1 when d � 1, s �
2, � � 1 or when s � 2d. We also provide a simple proof that the diameter is at most logO(1) N
with high probability, when d � s � 2d, established previously in [2]. © 2002 Wiley Periodicals, Inc.
Random Struct. Alg., 21: 1–13, 2002

1. INTRODUCTION

Long-range percolation is a model in which any two elements x, y of some (finite or
countable) metric space are connected by edges with some probability, inverse propor-
tional to the distance between the points. The motivation for studying this model is dual.
First, it naturally extends a classical percolation model on a lattice, by adding edges
between nonadjacent nodes with some positive probability. The questions of existence of
infinite components were considered specifically by Schulman [8], Aizenman and New-
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man [1], and Newman and Schulman [7], where the metric space is Z and edges (i, j)
� Z 2 are selected with probability �/�i � j�s for some parameters �, s. Existence of such
an infinite component with positive probability usually implies its existence with proba-
bility one, by appealing to Kolmogorov’s 0–1 law. It was shown in [7] and in [1],
respectively, that percolation occurs if s � 2, � � 1 and (suitably defined) short range
probability is high enough, and does not occur if s � 2, � � 1, for any value of the short
range probability.

The second motivation for studying long-range percolation is modelling social net-
works, initiated by Watts and Strogatz [9]. They considered a random graph model on
integer points of a circle, in which neighboring nodes are always connected by an edge,
and, in addition, each node is connected to a constant number of other nodes uniformly
chosen from a circle. Their motivation was a famous experiment conducted by Milgram
[6], which essentially studied the diameter of the “social acquaintances” network and
introduced the notion of “six degrees of separation.” Watts and Strogatz argued that their
graph provides a good model for different types of networks, not only social networks
(World Wide Web, power grids), and showed that the diameter of their random graph is
much smaller than the size of the graph. This model was elaborated later by Kleinberg [5],
who considered a model similar to a long-range percolation model on a two-dimensional
grid, although the work was concerned mostly with algorithmic questions of constructing
simple decentralized algorithms for finding short paths between the nodes.

The present paper is motivated by a recent work by Benjamini and Berger [2]. They
consider a one-dimensional long-range percolation model in which the nodes are elements
of a finite circle {0, 1, . . . , N }. An edge (i, j) exists with probability 1 if �i � j� � 1,
and with probability 1 � exp(��/�i � j�s) otherwise; for some parameters �, s; here the
distance � � � is taken with respect to a circle. Since for large �i � j�, 1 � exp(��/�i �
j�s) � �/�i � j�s, this model is closely related to the infinite percolation model on Z, with
an important distinction, however. The graph is finite and, since neighboring nodes are
connected with probability one, the graph is connected. Thus, the percolation question is
irrelevant as such; rather, as in models of “social networks,” the diameter of the graph is
of interest. It is shown in [2] that the diameter of the circle graph above is, with high
probability, a constant, when s � 1; is O(log� N), for some � � 1, when 1 � s � 2; and
is linear �(N), when s � 2. These results apply immediately to a graph on an interval
{0, 1, . . . , N }. A multidimensional version of this problem with a graph on a node set
{0, 1, . . . , N }d was also considered by Benjamini et al. in [3], who showed that the
diameter is d/(d � s) when s � d. The critical cases s � 1, 2 were left open in [2]
and the authors conjectured that the diameter is �(log N) when s � 1, and �(N�) for
some 0 � � � 1, when s � 2. In addition, the authors conjectured that, for the case 1 �
s � 2, �(log� N) is also a lower bound for some � � 1. In other words, the system
experiences a phase transition at s � 1 and s � 2. Recently Biskup [4] proved that for
the case 1 � s � 2 the diameter is indeed �(log� N) for some constant � which Biskup
computes explicitly.

In this work we consider a multidimensional version of the problem. Our graph has a
node set {0, 1, . . . , N }d, and edges are selected randomly using a long-range percolation
�/�x � y�s law. We obtain upper and lower bounds on the diameter for the regimes s �
d, d � s � 2d, s � 2d, and s � 2d. This corresponds to regimes s � 1, 1 � s � 2,
s � 2, s � 2 for the one-dimensional case. We show that, with high probability, for s �
d, the diameter of this graph is �(log N/log log N); for d � s � 2d the diameter is at
most log� N for some constant � � 1; and for s � 2d, the diameter is at most N�2, for

2 COPPERSMITH, GAMARNIK AND SVIRIDENKO



some constant 0 � �2 � 1. We also prove a lower bound N�1, �1 � 1 on the diameter,
which holds with high probability but only when d � 1, s � 2d or d � 1, s � 2, � �
1. We do not have lower bounds for other cases. Note that our lower bound for s � 2d
is weaker than known linear lower bound when d � 1. We conjecture that the linear lower
bound holds for general dimensions. Our results, when applied to the one-dimensional
case, support bounds conjectured in [2] for the case s � 2 and disprove it for the case s �
1. As we mentioned above, the upper bound log� N for the case d � s � 2d was proven
in [2] for the one-dimensional case. It was pointed to the authors that the proof extends
to a multidimensional case as well. We provide here an alternative proof which seems
simpler. Summarizing the results of present paper and of [2], the diameter of the
long-range percolation graph in one-dimensional case experiences a phase transition at
s � 1, 2 and has a qualitatively different values for s � 1; s � 1; 1 � s � 2; s � 2
and � � 1; s � 2. Whether the same holds true for general dimensions (whether s � d,
s � 2d are the only critical values) remains to be seen. Our results only partially support
this conjecture.

2. MODEL AND THE MAIN RESULT

Our model is a random graph G � G(N) on a node set [N]d � {0, 1, . . . , N }d—integral
points of the d-dimensional cube with side length N. Let �x� denote an L1 norm in the
space Z d. That is �x� � ¥i�1

d �xi�. Nodes x, y � [N]d are connected with probability 1
if �x � y� � 1, and, otherwise, with probability 1 � exp� � �

�x � y�s�, where � � 0, s �

0 are some fixed parameters. Let D(N) denote the (random) diameter of the graph G(N),
and let P(N) denote the (random) length of a shortest path between nodes 0 � (0, . . . , 0)
and N � (N, . . . , N). For any x, y � [N]d let also P(x, y) denote the length of a shortest
path between nodes x, y in the graph G(N). Our main result is as follows.

Theorem 2.1. There exist constants C1, C2, Cs � 0, � � 1, 0 � �1 � �2 � 1, which in
general depend on s, �, and on dimension d, such that

1. limN3� Prob{D(N) � N�} � 1, for any s � 2d, � � s�2d
s�d�1.

2. limN3� Prob{D(N) � N�2} � 1, for s � 2d and limN3� Prob{D(N) � N�1} �
1, for d � 1, s � 2, � � 1.

3. limN3� Prob{Cslog N � D(N) � log� N } � 1, for d � s � 2d.

4. limN3� Prob�C1logN

loglogN
� D(N) �

C2logN

loglogN� � 1, for s � d.

As we mentioned above, it was shown in [3] that the diameter is, with high probability,
d/(d � s), when s � d. Also part 3 of the theorem above was proven by Benjamini
and Berger in [2] for the one-dimensional case. They also pointed out to the authors that
their proof holds for a multidimensional case as well. We provide here a simpler proof.
Throughout the paper we use standard notations f � O( g), f � 	( g), f � �( g), f �
o( g), which mean respectively that for two functions f(N), g(N), f(N) � C1g(N),
f(N) � C2g(N), C3g(N) � f(N) � C4g(N), f(N)/g(N) 3 0, for some constants Ci, i �
1, 2, 3, 4 which in general depend on �, s, but do not depend on N. The logarithmic
function is always assumed to be with the base e.
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3. CASE s > 2d. LOWER BOUND

In this section we show that, with high probability, the diameter of the graph G(N) is at
least essentially N(s�2d)/(s�d�1). As we noted, for the one-dimensional case d � 1 this
is weaker than the existing linear lower bound 	(N) [2].

Proof of Theorem 2.1, Part 1. We fix a constant � � s � 2d
s � d � 1 . For any k � N1�� let L(k)

be the total number of edges between pairs of points at distance exactly k. We will now
show that if � � (s � 2d)/(s � d � 1) then ¥k�N1�� kL(k) � dN/ 2, with high
probability. Since �N� � dN, then this would imply that, with high probability, any path
between 0 and N would contain at least dN/(2N1��) � (dN�)/ 2 edges and the proof
would be completed. For a fixed pair of nodes x, y at a distance k, the probability that the
edge between them exist is 1 � exp(��/ks) � �/ks, where we use exp(��x) � 1 �
�x for all 0 � x � 1. For a fixed node x there are �(kd�1) nodes y which are at distance
k from x; also there are Nd choices for the node x. Combining, E[L(k)] � O(Ndkd�1(�/
ks)). Then

�
k�N1��

kE
L�k� � O��Nd �
k�N1��

kd�s� � O�NdN�1����d�s�1��.

For the given choice of �, we have d � (1 � �)(d � s � 1) � 1 and the value above
is o(N). Using Markov’s inequality, we obtain

Prob� �
k�N1��

kL�k� 	
N

2� �
o�N�

�N/2�
� o�1�.

�

4. CASE s � 2d

4.1. Upper Bound

In this subsection we prove that when s � 2d, there exists a constant 0 � � � 1, which
depends on � and d, such that with high probability D(N) � N�. To this end we first
establish an upper bound on maxx,y�[N]d

E[P(x, y)] and then use this bound to obtain a
polynomially small bound on Prob{D(N) � N�} for some constant � � 1.

Proof of Theorem 2.1, Part 2. We first assume that N is a power of 3, N � 3m, for some
integer m � 0, and then consider the general case. For any fixed integer n let R(n) �
maxx,y�[n]d

E[P(x, y)]. That is, R(n) is the maximum over expected lengths of shortest
paths between all the pairs of points in the cube [n]d. We obtain an upper bound on R(N)
by relating it to R(N/3). Divide the cube [N]d into 3d subcubes of the type Ii1 . . . id

� �j�1
d

[ij
N
3 , (ij � 1) N

3], 0 � ij � 2. Each cube has a side length N/3 (which is integer since
N is a power of 3). We say that two such cubes are neighboring if they have at least a
common node. For example [0, N/3]d and [N/3, 2N/3]d are neighboring through a corner
node (N/3, . . . , N/3). We now fix a pair of points x, y � [N]d and estimate P(x, y) by
considering two cases.
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1. x, y belong to the same subcube I � Ii1 . . . id
. The length of a shortest path between

these two points using edges of [N]d is not bigger than the length of the shortest path
between same points but using only edges of the subcube I. Therefore, E[P(x, y)]
� R(N/3).

2. x, y belong to different subcubes I, I�. Let E � E (I, I�) be the event “there exists
at least one edge between some nodes v � I, v� � I�.” The probability that E

occurs is at least 1 � exp(��(N
3 � 1)2d/(dN)2d) since there are (N

3 � 1)d nodes in
each cube, and the largest possible distance between them is dN. In particular,
Prob{E } is not smaller than a certain constant � � 0, independent of N. We now
estimate E[P(x, y)] conditioned on E and E� . Given that E occurs, select an edge
(v, v�) between the cubes I, I�. Then

E
P�x, y��E  � E
P�x, v��E  
 E
P�v�, y��E  
 1.

Note, however, that edges within each cube I, I� are selected independently from
edges between cubes and specifically are independent from the event E. Therefore,
since x, v belong to the same cube, E[P(x, v)�E ] � R(N/3). Similarly, E[P(v�,
y)�E ] � R(N/3). We conclude E[P(x, y)�E ] � 2 R(N/3) � 1. Now, suppose E

does not occur. Select a cube I� which is a neighboring cube for cubes I, I� (it is
easy to see that such a cube exists). Specifically, let z(z�) be the node shared by
cubes I and I� (I� and I�). Then arguing as above E[P(x, y)��� ] � E[P(x, z)��� ] �
E[P(z, z�)��� ] � E[P(z�, y)��� ] � 3R(N/3). Combining, we obtain

E
P�x, y� � �2R�N/3� 
 1�Prob�E � 
 3R�N/3��1 � Prob�E ��

� �3 � Prob�E ��R�N/3� 
 Prob�E � � �3 � ��R�N/3� 
 1.

We conclude, R(N) � maxx,y�[N]d
E[P(x, y)] � (3 � �) R(N/3) � 1. Applying this

bound m � 1 � log N/log 3 � 1 times, we obtain

R�N� � �3 � ��m�1R�3� 
 �
i�0

m�2

�3 � ��i � O��3 � ��m� � O�Nlog�3���/log 3�,

Note that � � log(3 � �)/log 3 � 1. We obtain R(N) � O(N�) for some � � 1.
In order to generalize the bound for all N, it is tempting to argue that R(N) � R(3m)

as long as N � 3m. This would require proving a seemingly obvious statement that R(n)
is a nondecreasing function of n. While this is most likely correct, proving it does not
seem to be trivial. Instead, we proceed as follows. Let m be such that 3m � N � 3m�1.
We cover the cube [N]d with 3d cubes Ii, i � 1, . . . , 3d with side length 3m, with a
possible overlapping. Specifically, Ii � [N]d and �iIi � [N]d. Let x, y � [N]d be
arbitrary. Find cubes Ii1

, Ii2
, Ii3

such that x � Ii1
, y � Ii3

, and Ii1
� Ii2

� A, Ii2
� Ii3

�
A. Let z1, z2 be some nodes lying in these intersections. Then E[P(x, y)] � E[P(x, z1)]
� E[P(z1, z2)] � E[P(z2, y)] � O((3m)�), where the last equality follows since pairs
(x, z1), (z1, z2), (z2, y) lie within cubes Ii1

, Ii2
, Ii3

respectively and each of them has a side
length 3m. But 3m � N. We conclude E[P(x, y)] � O(N�) and R(N) � maxx,y E[P(x,
y)] � O(N�).

We now finish the proof of part 2, upper bound, by obtaining a similar bound on the
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diameter D(N). Fix an arbitrary 0 � �,  � 1 such that � � � � 1 and � � d(1 � ) �
0. Divide the cube [N]d into equal subcubes Ii1 . . . id

� �j�1
d [ijN

, (ij � 1) N], 0 � ij �
N1�, each with side length N. The total number of subcubes is Nd(1�). Fix any such
cube I and let x(I) be its lower corner (the node with smallest possible coordinates). We
showed above E[P(0, x(I))] � O(N�), from which, using Markov inequality,

Prob�P�0, x�I�� � N���� � O� N�

N���� � O� 1

N��.

Then

Prob�max
I

P�0, x�I�� � N���� � O�Nd�1��

N� � � O� 1

N��d�1���.

On the other hand for every cube I and every x � I we have, trivially, P(x, x(I)) � dN.
Since D(N) � 2 supx�[N]d

P(0, x), then

Prob�D�N� � 2�dN 
 N����� � O� 1

N��d�1��� � o�1�.

We take � � max{, � � �} � 1 and obtain Prob{D(N) � 4dN�} � o(1). This
completes the proof of the upper bound. �

4.2. Lower Bound

The proof of the lower bound for the one-dimensional case d � 1, s � 2, � � 1 is similar
to the proof for the case s � 2, from [2], and uses the notion of a cut point. We first show
that E[D(N)] � N� for a certain constant 0 � � � 1, for large N. Then we show that this
bound holds with high probability. Given a node 1 � i � N � 1, we call it a cut node
if there are no edges which go across i. Namely, i is a cut point if edges ( j, k) do not exist
for all j � i � k. The probability that i is a cut node is exp(�� ¥j�i�k

1
�j � k�2

� � exp(��

¥1�n�N
n � 1

n2 � � �� 1
N��. Then the expected number of cuts is 	(N1��) (which will be

helpful to us only if � � 1). But the shortest path P(N) and as a result the diameter D(N)
are not smaller than the number of cuts. Taking � � 1 � �, we obtain the bound E[D(N)]
� N� for large N.

We now complete the proof, by showing that the lower bound holds with high
probability. Divide the interval [N] into N2/3 intervals I1, I2, . . . , IN2/3 each of length
N1/3. For each interval Ii and each x � Ii, we say that x is a local cut point if it is a cut
point with respect to just the graph induced by vertices from Ii. We showed above that the
expected number of local cut points in the interval Ii is at least �Ii�

� � N�/3, for any � �
1 � � and for all i. Let C(Ii) be the number of local cut points in the interval Ii. We now
show that, with high probability, at least one of the intervals has at least (1/ 2) N�/3 local
cut points. Note {C(Ii)}1�i�N2/3 are independent from each other. We have E[C(Ii)] �
N�/3. Also Var(C(Ii)) � �Ii�

2 � N2/3. Applying Chebyshev’s inequality, we have
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Prob��
i

C�Ii�

N2/3 �
1

2
N�/3� �

Var�Ii�
1
2 N�/3N2/3

� O� 1

N�/3�.

Therefore, with high probability, at least one of the intervals contains at least (1/ 2) N�/3

local cut points. We denote this interval by Ii*. Let us estimate the number of edges
between Ii* and [N]�Ii*. Note that in defining interval Ii* with many local cut points, we
only considered edges within intervals Ii. Note also that for each k � 1 there are at most
2k edges of length k between Ii* and its complement. Then, the expected number of edges
between Ii* and [N]�Ii* is at most

�
k�1

N

2k�1 � exp��
�

k2�� 
 O�1� � O��
k�1

N
�

k� � O�log N�,

where we use exp(��x) � 1 � �x for all x � [0, 1]. Using Markov’s inequality, the
probability that the number of edges between Ii* and its complement is bigger than log2

N is at most O(1/log N). We conclude that with high probability there are at most log2

N edges between Ii* and its complement. Since the number of local cuts in Ii* is 	(N�/3)
then there are two local cuts i1, i2, such that the interval [i1, i2] contains at least
	(N�/3/log2 N) � 	(N�/4) local cuts and no outside edges are connected to nodes in
interval [i1, i2]. Let the number of local cuts in [i1, i2] be L. We take the (1/3) Lth and
the (2/3) Lth local cut in this interval. By construction, the shortest path between these
local cuts is at least (1/3) L � 	(N�/4). We conclude, D(N) � 	(N�/4), with high
probability. �

5. CASE d < s < 2d

The lower bound D(N) � Cs log N was proven to hold with high probability in [2] for
the case d � 1, using branching theory and the fact that for each node, the expected
number of its neighbors is a constant. The proof extends easily to all dimensions d. We
now focus on an upper bound. Our proof is similar to the one in [2] and is based on
renormalization technique, although our analysis is simpler.

Proof of Theorem 2.1, Part 3. We have d � s � 2d. Let us fix � � 1 such that 2d�
� s. Split the cube [N]d into equal subcubes Ii1 . . . id

� �j�1
d [ijN�, (ij � 1)N� � 1]

with side length N�. If N/N� is not an integer then we make the cubes containing
nodes (. . . , N, . . .) overlap partially with some other cubes. In the following we drop the
rounding  �  for simplicity; the argument still holds. Consider the following event E 1:
“there exist two cubes I, I� such that no edge exists between points x � I and y � I�.”
Each resulting cube I � Ii1 . . . id

we split further into subcubes with side length N�2

. We
consider the event E 2: “there exist a cube I with side length N� and its two subcubes I1,
I2 with side length N�2

, such that no edge exists between points in I1 and I2.” We continue
this process m times, obtaining in the end cubes with side length N�m

. Assume that none
of the events E 1, E 2, . . . , E m occurs. We claim that then the diameter of our original
graph is at most 2m�1N�m

. In fact, since event E 1 does not occur any two points x, y �
[N]d are connected by a path with length at most 2D� (N�) � 1, where D� (N�) is the
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(random) largest diameter of the cubes Ii1 . . . id
with side length N�. Similarly, since event

E 2 does not occur, D� (N�) � 2D� (N�2

) � 1, where D� (N�2

) is the largest diameter of the
subcubes with side length N�2

, obtained in second stage. In the end we obtain that the
diameter of our graph satisfies D(N) � 2mD(N�m

) � 2m � 2m�1dN�m

, since, trivially,
D(N�m

) � dN�m

. We now show that for a certain value of m, which depends on N, this
upper bound on the diameter D(N) is at most log� N for some constant � � 1 and
simultaneously, the probability Prob{�r�1

m E� r} 3 1, as N 3 �. For a given cube with
side length N�r�1

and its two given subcubes with side length N�r

, the probability that no
edges exist between these two subcubes is at most exp(��N2d�r

/(dN)s�r�1

) �
exp(��(N�r�1(2d��s))), since there are N2d�r

pairs of points considered and the largest
distance among any two of them is dN�r�1

. Since there are at most N2d pairs of such
subcubes, then the probability of the event E r is bounded above by
N2dexp(��(N�r�1(2d��s))). We conclude

Prob�	r�1
m Er� � �

r�1

m

N 2de���N�r�1�2d��s�� � mN 2de���N�m�2d��s��.

Let us fix a large constant C and take

m �
log log N � log log log N 
 log�2d� � s� � log C

log
1

�

� O�log log N�.

A straightforward computation shows that, for this value of m,

Prob�	r�1
m E� r� � O�e���logC N��. (1)

On the other hand, we showed above that, conditioned on event �rE� r, we have D(N) �
O(2mdN�m

). For our choice of m a simple calculation shows that �m log N � O(log log
N) or N�m

� logO(1) N. Also, since m � O(log log N), then 2m � O(logO(1) N). This
completes the proof. �

In the course of the proof we established the following bound which follows imme-
diately from (1).

Corollary 5.1. For any constant C, there exists a constant � � 1 such that

Prob�D�N� 	 log� N� � O�e���logC N��.

6. CASE s � d

Proof of Theorem 2.1, Part 4. We first prove a lower bound. We show that D(N) �
(d � �)log N/log log N with high probability, for any constant 0 � � � 1. Observe, that,
for any 1 � k � N and for each node x � [N]d, there are �(kd�1) nodes at distance k
from x. Each such node is connected to x with probability 1 � exp(��/kd) � �/kd. (We
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used exp(��x) � 1 � �x for all x � [0, 1].) Then the expected number of nodes
connected to x by an edge is at most O(1) � O(¥1�k�dN (kd�1/kd)) � O(log N). Then,
the total expected number of nodes which are reachable from x by paths with length � m
is at most cm logm N, for some constant c. We denote the number of such nodes B(m).
Using Markov’s inequality

Prob�B�m� � Nd� �
E
B�m�

Nd �
cmlogm N

Nd 3 0

if m � (d � �) log N/log log N. Therefore, with probability tending to one, the diameter
D(N) is 	(log N/log log N).

We now focus on a more difficult part—the upper bound. The proof is fairly technical,
but is based on a simple observation which we present now. We have already noted that
any fixed node z, in particular, node N � (N, N, . . . , N), has in expectation �(log N)
neighbors. We will show later in the formal proof that this actually holds with high
probability. Consider a subcube I � [0, N/logc N]d for a certain constant c. Let y be a
neighbor of x. The probability that y has no neighbors in I is at most exp(��Nd/(ddNd

logcd N)), since the largest possible distance is dN and the number of nodes in I is
Nd/logcd N. Then probability that none of the �(log N) neighbors of N is connected to
some node of I by a path of length � 2 is at most exp(��Nd log N/(ddNd logcd N)) �
exp(��(log1�cd N)). If c � 1/d, then this quantity converges to 0. Therefore, with high
probability N is connected to some node X1 � I by a path of length 2. Applying this
argument for X1, we find a node X2 which is connected to X1 by a path of length 2 and
such that all the coordinates of X2 are at most N/log2c N. Continuing m times, we will
obtain that N is connected by a path of length O(m) to some node Xm with all the
coordinates � N/logcm N. Taking m � O(log N/log log N), we will obtain that, with high
probability, N is connected to 0 by a path of length � O(m). We now formalize this
intuitive argument.

We fix an arbitrary node z0 � [N]d. Consider all the paths (x, y, z0) with length two,
which end in node z0. That is edges (x, y), (y, z0) exist. Let X1 � argmin�x�, where the
minimum is taken over all such paths. In other words, X1 is the smallest, in norm, node
connected to z0 via a path of length at most 2. Note, X1 is random and �X1� � �z0�, as z0

is connected to itself by a path of length 2. Similarly, let X2 be the smallest, in norm, node,
connected to X1 via a path of length 2. We continue this procedure for m (to be defined
later) steps and obtain a (random) node Xm.

Lemma 6.1. For any constantly large integer c, if m � (2d � 2) � 2c�1 log N/log log
N, then the bound �Xm� � exp((log N)d/2c

) holds with probability at least 1 � 1/N2d.

Before we prove the lemma, let us show how it is used to prove the result. We invoke
part 3 of Theorem 2.1, which we proved in the previous section. Choose a constant integer
c such that 2c/d � 2�, where � � 1 is a constant from part 3 of Theorem 2.1. Applying
part 3 of Theorem 2.1, the diameter of the cube [exp(log N)d/ 2c

)]d is at most ((log
N)d/ 2c

)� � log1/ 2 N � o(log N/log log N) with high probability. In particular
supx:�x��exp((log N)d/ 2c

) P(0, x) � o(log N/log log N) with high probability. By the
conclusion of the lemma, with probability at least 1 � O(1/N2d), each fixed node z0 � [N]d is
connected to some node Xm with �Xm� � exp((log N)d/2c

) by a path of length m � O(log N/log
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log N). Then, with probability at least 1 � O(1/Nd), all the nodes z0 � [N]d are connected to
some corresponding nodes Xm � [exp((log N)d/2c

)]d by a path of length O(log N/log log N).
Combining, we obtain that supz0�[N]d

P(0, z0) � O(log N/log log N) with probability at least
1 � o(1). But D(N) � 2 supz0�[N]d

P(0, z0). �

Proof of Lemma 6.1. We fix a node x with �x� � �z0�, fix 1 � r � m and consider Xr

conditioned on event Xr�1 � x (assume X0 � z0). Our goal for the remaining part is the
following:

Lemma 6.2. If �x� � exp((log N)d/2c

), then

E
�Xr��Xr�1 � x � O� �x�
�log N�1/2c�1�. (2)

In other words, at each step r � 1, 2, . . . , m, the expected value of �Xr� decreases by a
factor of O� 1

�logN�1/2c 
 1�, provided that �Xr�1� is still bigger than exp((log N)d/2c

).

Proof. Let B(x) be the total number of nodes which are connected to Xr�1 � x and
which have a norm smaller than �x�. Note, that for each such node y, �y � x� � �y� � �x�
� 2�x�. We first show that with probability at least 1 � O� 1

�logN�d/2c�, the equality B(x) �

	(log�x�) holds. For any fixed k � �x� there are �(kd�1) nodes y which for which �y �
x� � k and �y� � �x�. Each such node is connected by an edge to x with probability 1 �
exp(��/kd). Then

E
B�x� � �
0�k��x�

�1 � exp��
���kd�1�

kd �� � ��log�x��.

Let c1 � c2 be constants, such that c1log�x� � E[B(x)] � c2log�x�. We now estimate
the second moment

E
B2�x� � E
B�x� 
 �
y1�y2,�y1�,�y2���x�

�1 � exp��
�

�y1 � x����1 � exp��
�

�y2 � x���
� E
B�x� 
 �

�y1�,�y2���x�
�1 � exp��

�

�y1 � x����1 � exp��
�

�y2 � x���
� E
B�x� 
 �E
B�x��2.

It follows, Var(B(x)) � E[B(x)]. Using Chebyshev’s inequality,

Prob�B�x� � �1/2�c1 log�x�� � Prob��B�x� � E
B�x�� � �1/2�c1log�x�� �
Var�B�x��

�1/4�c1
2log2�x�

�
c2log�x�

�1/4�c1
2log2�x� � O� 1

log�x�� � O� 1

�log N�d/2c�, (3)
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where the last inequality follows from the assumption �x� � exp((log N)d/ 2c

) of the
lemma. Let

V�x� � �z : �z� �
�x�

�log N�1/2c�1�.

In particular, �V(x)� � �(�x�d/(log N)d/ 2c�1

). Suppose y, �y� � �x�, is any node connected
by an edge to x (if any exist). Note that the distance between y and any node in V(x) is
smaller than 3�x�. Then, the probability that y has no nodes in V(x) connected to it by an
edge is at most

exp��
����x�d�

�log N�d/2c�1�x�d� � exp��
��1�

�log N�d/2c�1�.

By (3), with probability at least 1 � O� d

�logN�1/2c�, x has 	(log�x�) nodes y, �y� � �x�,

connected to it. Conditioned on this event, the probability that no node in V(x) is
connected to x by a path of length two is at most exp� �

	�log�x��

�logN�d/2c 
 1�. By assumption, �x�

� exp((log N)d/ 2c

) or log�x� � (log N)d/ 2c

, using which, exp� �
	�log�x��

�logN�d/2c 
 1� �

exp(�	((log N)d/ 2c�1

)). It follows, that the probability that no node in V(x) is connected
to x by a path of length 2, is at most

O� 1

�log N�d/2c� 
 exp��	��log N�d/2c�1
�� � O� 1

�log N�d/2c�.

Summarizing, conditioned on Xr�1 � x, the bound �Xr� � �x�
�logN�1/2c 
 1 holds with proba-

bility at least 1 � O� d

�logN�1/2c�. On the other hand, with probability one �Xr� � �Xr�1�. We

conclude

E
�Xr� � Xr�1 � x �
�x�

�log N�1/2c�1 
 O� �x�
�log N�d/2c� � O� �x�

�log N�1/2c�1�.

This completes the proof of Lemma 6.2. �

We now complete the proof of Lemma 6.1. Note, that for any 2 � r � m, E[Xr�Xr�1,
Xr�2, . . . , X1] � E[Xr�Xr�1]. We denote exp((log N)d/ 2c

) by �(N). We have

Prob��Xm� 	 ��N�� � �
��N���xm���xm�1���z0�

Prob�Xm � xm�Xm�1 � xm�1�Prob�Xm�1 � xm�1�

� �
��N���xm���xm�1���z0�

�xm�Prob�Xm � xm�Xm�1 � xm�1�Prob�Xm�1 � xm�1�

� �
��N���xm�1���z0�

E
�Xm��Xm�1 � xm�1Prob�Xm�1 � xm�1�.
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But, using bound (2) of Lemma 6.2, we have E[�Xm��Xm�1 � xm�1] � O(�xm�1�/(log
N)1/ 2c�1

), as long as �xm�1� � �(N). We obtain

Prob��Xm� 	 ��N�� � O� 1

�log N�1/2c�1� �
��N���xm�1���z0�

�xm�1�Prob�Xm�1 � xm�1�

� O� 1

�log N�1/2c�1� �
��N���xm�1���xm�2���z0�

�xm�1�Prob�Xm�1 � xm�1�Xm�2 � xm�2�Prob�Xm�2

� xm�2� � O� 1

�log N�1/2c�1� �
��N���xm�2���z0�

E
�Xm�1��Xm�2 � xm�2Prob�Xm�2 � xm�2�

� �O� 1

�log N�1/2c�1��2 �
��N���xm�2���z0�

�xm�2�Prob�Xm�2 � xm�2�,

where in the last inequality we used bound (2) of Lemma 6.2 again. Continuing this
conditioning argument m � 1 times, we obtain that for some constant C

Prob��Xm� 	 ��N�� �
C m�1

�log N��m�1�/�2c�1� �z0� �
�log N�1/�2c�1�C m

�log N�m/�2c�1� dN.

But, by assumption of the lemma, m � (2d � 2) � 2c�1log N/log log N, from which (log
N)1/(2c�1)Cm � o(N) and Prob{�Xm� � �(N)} � 1/N2d for large N. �

7. CONCLUDING REMARKS AND OPEN QUESTIONS

We considered a long-range percolation model on an graph with a node set {0, 1, . . . ,
N }d. Answering some open questions raised by Benjamini and Berger in [2], we showed
that if two nodes at a distance r are connected by an edge with probability � �/rs, then,
with high probability, the diameter of this graph is �(log N/log log N) when s � d, and
is at most N� for some value � � 1, when s � 2d. We also proved a lower bound N��,
�� � 1 on the diameter for the cases d � 1, s � 2, � � 1 and s � 2d, d � 1. Note
that for the case d � 1, s � 2 our bound is weaker than known linear lower bound 	(N)
established in [2]. We conjecture that this linear lower bound holds for all dimensions d
as long as s � 2d. Other unanswered regimes are lower bounds for s � 2d and d � 1,

s � 2, � � 1. It would also be interesting to compute the limits D�N�

�logN/loglogN�3 C and log
D(N)/log N 3 � or even show that these limits actually exist when s � d, 2d,
respectively.
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