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Sampling regular graphs

Let (dn) be a sequence of positive integers such that
n × dn is even. Write d = dn. For all n, let Sn,d be the
set of all d-regular graphs on the vertex set [n].
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Question: How can we sample uniformly from Sn,d ?
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It is easy to sample uniformly from the set of all graphs on vertex
set [n], using the Erdös-Rényi model.

For 1 ≤ i < j ≤ n, independently flip a fair coin, and let

{

{i , j} ∈ E (G ) if heads,

{i , j} 6∈ E (G ) if tails.
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This sampling procedure takes O(n2) time.
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Configuration model (Bollobás 1980, inter alia)

Take dn points in n classes of d points each. Choose a
perfect matching of these points uniformly at random. Shrink the
classes to vertices. This gives a d-regular multigraph on n vertices,
which may have loops or multiple edges. If the multigraph is
simple, accept it, otherwise try again.
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This gives

|Sn,d | =
(dn)!

(dn/2)! 2dn/2 (d !)n
Pr(simple).

Moreover,

Pr(simple) ∼ exp

(

1 − d2

4

)

as n → ∞.

Conditioned on being simple, the output of the configuration
model has uniform distribution on Sn,d . Hence this gives an
expected polynomial-time uniform sampling algorithm so long as
d = O(

√
log n).
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Other uniform sampling algorithms

Wormald (1984): algorithms for d = 3 and d = 4.

Frieze (1988): expected polynomial time if d = o(n1/5).

McKay and Wormald (1990): expected time O(nd3) if

d = O(n1/3). Algorithm uses switchings.

For larger d , or general degree sequences, this is a difficult

problem, and some of the algorithms are quite complicated.

A simpler approach is to relax the uniformity condition and

try to generate graphs which are only approximately uniform.
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Approximately uniform sampling

Ideally we want an algorithm such that, given a constant ε > 0, the
probability Pr(G ) that a given graph G ∈ Sn,d is output satisfies

|Sn,d |−1 (1 + ε)−1 ≤ Pr(G ) ≤ |Sn,d |−1 (1 + ε).

The algorithm is considered efficient if it runs in time polynomial in
n, d and log(ε−1).

Tinhofer (1979): described an algorithm but no analysis of runtime
or output distribution.

Jerrum and Sinclair (1990): approximate uniform sampler. Uses a
Markov chain to sample matchings of a related graph. Polynomial
time for “P-stable” degree sequences, or for all bipartite graphs
(Jerrum, Sinclair and Vigoda, 2000).
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Steger-Wormald (1999): algorithm which produces graphs with
asymptotically uniform distribution, when d is a small power of n.
Can be thought of as a modification of the configuration model.
Expected runtime O(nd2).

Kannan, Tetali and Vempala (1999): Markov chain for
approximately uniform sampling of regular bipartite graphs.
Polynomial time for regular bipartite graphs.

Analysis involves canonical paths. Arguments do not seem to work
for general (non-bipartite) regular graphs.
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Cooper, D and Greenhill (2005): analysed the switchings Markov
chain for general regular graphs.
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From G ∈ Sn,d do
choose two nonadjacent distinct edges ij , kℓ, u.a.r.,
choose a perfect matching M of {i , j , k, ℓ} u.a.r.,
if M ∩ E (G ) = ∅ then

delete the edges ij , kℓ and add the edges of M,
otherwise do nothing;
endif;

end;

This Markov chain is irreducible and aperiodic on Sn,d with
uniform stationary distribution.
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The analysis uses canonical paths (Jerrum and Sinclair) and the
multicommodity flow argument of Sinclair (also Diaconis and
Stroock). Cooper, D and Greenhill use different canonical paths
from those used by Kannan, Tetali and Vempala. (The canonical
paths we use were suggested by Goldberg and Jerrum.)

Idea is to show that the Markov chain can move freely around the
state space Sn,d so that it quickly approaches its uniform
stationary distribution.

X

Y
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Given X , Y ∈ Sn,d , define a path γXY from X to Y , where each
step in the path corresponds to a move of the Markov chain.
If we can define the paths

{γXY | X ,Y ∈ Sn,d}

such that no edge is too badly overloaded, then this shows that
there are no constrictions in the state space.

The paths transform graph X to graph Y by using a “canonical”
procedure of flipping edges. First we construct “circuits” in the
symmetric difference.

v
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Canonical paths

We “unwind” cycles using a fixed vertex and a single non-edge.

v v

Nonbipartiteness causes additional complications.

These can be overcome by using one more non-edge.
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Multicommodity flow

The multicommodity flow approach generalises these ideas by
using a weighted sum of canonical paths.

Putting all this together, we could show that the Markov chain will
produce a sample with distribution within variation distance ε from
uniform after at most

d17 n7 log(dnε−1)

steps.

This bound is polynomial, but probably very much larger than
necessary. Some improvements may be possible, but seem unlikely
to give anything close to the truth.
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A peer-to-peer network

Bourassa and Holt (2003) proposed the following peer-to-peer
network, called SWAN (Small-world Wide Area Networks).

Clients are arranged in a d-regular graph, where d is an even
constant. When a new client arrives, d/2 independent (i.e. sharing
no vertex) existing edges are chosen uniformly at random. This is
done by performing random walks in the network. The new client
then “pegs” these edges.
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If a client wishes to depart, a perfect matching of its d neighbours
is chosen and added to the graph.

Bourassa and Holt claimed that their network, started from an
arbitrary small d-regular graph (e.g. the complete graph Kd+1),
soon starts to behave like a random regular graph, and hence has
attractive properties such as high connectivity and low diameter.
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Connectivity and diameter

Random regular graphs have properties which are desirable for

communication networks. In particular:

With high probability (i.e. probability→ 1 as n → ∞),

1 They are d-connected, i.e. there are d vertex-disjoint paths

between any pair of vertices. This provides protection against

link or node failures and/or congestion in the network.

2 They have diameter∼ logd−1 n. No d-regular graph on n

vertices can have significantly smaller diameter. Low diameter

is desirable since communications need to traverse fewer links.
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For simplicity, let us consider d = 4 and write Sn = Sn,4. We
model the process as a Markov chain with state space

Ω =

∞
⋃

n=5

Sn.

Think of each set Sn as a level of the state space.

When there are n clients in the system, we assume that the
interarrival time is exponentially distributed with mean νn, and
residual service times for clients currently in the system are
identically and independently exponentially distributed with mean
µn. Then, at any event (arrival/departure), the probability that it
is an arrival is

pn =
1/νn

1/νn + n/µn

=
µn

µn + nνn

and qn = 1 − pn is the probability that it is a departure.
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Arrival: When a new client (vertex) arrives, we choose two

non-adjacent edges uniformly at random for the new vertex to peg.

Departure: If a client (vertex) wishes to leave, we choose a

perfect matching of its neighbours uniformly at random and only

allow the vertex to depart if none of these edges are present in the

current graph.

Since this conceptual chain must always have vertex set [n] for

some n, it must do some “conceptual relabelling” which is not

performed by the actual process.
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From G ∈ Sn do
with probability pn do

choose two distinct non-adjacent edges u.a.r.,
add vertex n + 1 on these edges,
swap labels of vertex n + 1 and a randomly chosen vertex,

else (with probability qn) do
choose i ∈ {1, . . . , n} u.a.r.,
choose a perfect matching M of the neighbours of i , u.a.r,
if M ∩ E (G ) = ∅ then

swap the labels of vertex i and vertex n,
delete vertex n and add M to the edge set,

else do nothing;
endif;

end;
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We want the stationary distribution π of the Markov chain to be

uniform when conditioned on a given level. If σn = π(Sn) then we

must set

π(X ) =
σn

|Sn|
for all X ∈ Sn.

Suppose that Y ∈ Sn+1 and that the Markov chain can move from

X to Y in one step. If π(X )P(X ,Y ) = π(Y )P(Y ,X ) for all such

pairs then detailed balance ensures that π is the stationary

distribution of the Markov chain. Use this to set the values of σn.
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Now
P(X ,Y ) =

pn

an(n + 1)
, P(Y ,X ) =

qn+1

3(n + 1)
,

where an = 2n2 − 7n is the number of unordered pairs of
non-adjacent edges in any 4-regular graph on n vertices. Detailed
balance is equivalent to

σn pn

|Sn| an

=
σn+1 qn+1

3 |Sn+1|
.

Since
|Sn+1|
|Sn|

=
an

3
(1 + O(1/n))

we must set
σn+1 =

σnpn

qn+1
(1 + O(1/n)) .
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Assumptions

The ratio between Pr(departure) and Pr(arrival) is nνn/µn. We
assume that this is a strictly increasing function of n. Hence pn is
a strictly decreasing function of n: this puts the brakes on growth
when the system gets large.

Also p0 = 1. Write p(n) = pn and suppose that there exists N > 0
such that p(N) = 1/2. If no such N exists then the system grows
indefinitely and there is no equilibrium behaviour.

Now write p(n) = f (n/N) and assume that f is twice-differentiable
on x ≥ 0 and that f ′′(x) is uniformly bounded by an absolute
constant on x ≥ 0. Then

f (0) = 1, f (1) = 1/2, f ′(1) = −α < 0

for some positive constant α.
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Example

If arrivals are a Poisson process with rate 1/ν and the departure of
each client is Poisson with rate 1/µ, then

pn =
µ

µ + nν

when there are n clients in the system. Here N = µ/ν and

pn =
1

1 + n/N
= f (n/N)

where f (x) = 1/(1 + x) satisfies our conditions.

This model was used by Pandurangan, Raghavan and Upfal (2003)
in the analysis of a different architecture for peer-to-peer networks.

24 / 33



Lemma 1:

The equilibrium distribution of the size n of the system is
approximately normal with mean N and variance N/4α.

Define the centre of the state space to be

Ω∗ =
⋃

|N−n|≤2N3/4

Sn.

Lemma 2:

The following statements fail with probability exponentially small
in N. If started from empty, the system reaches size N − 2N3/4 in
time O(N5/4). Thereafter the system size does not leave the range
[N − 2N3/4,N + 2N3/4] in any time polynomial in N.
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Analysis – multicommodity flow

We condition on always remaining in the centre Ω∗.

For each central state X ∈ Ω∗, we define a set of paths from

X to a set of states AX ⊆ SN in a canonical way.

To define a set of paths between central states X ,Y ∈ Ω∗ we

first route the flow from X to AX , then use horizontal moves

to route the flow from the set AX to the set AY , and finally

route the flow from AY to Y .
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Horizontal moves are performed on the levels SN ∪ SN+1. They
simulate moves of the switchings chain described
earlier, and implement the flow used to analyse that chain.

The edges with the greatest load are those between levels SN and
SN+1. We prove that the load on these edges is at most a factor
N3/4 higher than its load in the flow for the switchings chain.
Hence, after a polynomial number of steps, the distribution of the
Markov chain is almost uniform on each level.
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Transient behaviour

Our analysis says that, after some polynomial number of steps, a
snapshot of the SWAN process looks like a random regular graph.
This gives some justification to Bourassa and Holt’s claim that
these networks have the good properties of random regular graphs
(d-connected, logarithmic diameter).

But how do these desirable properties (high connectivity, low
diameter) evolve over time ? Do they hold (with high probability)
at every step ?

Can we model the behaviour of this network more closely ?

Yes, provided we suitably limit the number of steps in the
evolutionary phase.
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Bordewich, D and Greenhill (2007) analyse the behaviour

for the first κN lnN steps, for a small enough constant κ.

During this period, departures are relatively less frequent

than arrivals, and the network grows from constant size to

N − O(N1−ε) size, for some constant ε > 0.

This is close to the equilibrium size, and the analysis of

equilibrium behaviour applies after this period.

The analysis uses a completely different approach from the

equilibrium case. We compare the graphs produced by the

process directly with random regular graphs, and show that

their distributions remain “close” during the period.

The methods of analysis are based on random graph theory.
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Relationship to random regular graphs

Our analysis is based on the following two lemmas.

Let ωN be any sequence such that limN→∞ ωN = ∞.

Then, for ωN ≤ t ≤ κN lnN, with n = nt the size at time t,

1 Comparison Lemma: Any event E which has probability

Prrg(E) in the regular random graph model, and probability

Prsw(E) in our network model satisfies

Prsw(E) = O
(

n(d−1)2/2+1/6
)

Prrg(E).

2 Small Subgraphs Lemma: For any constants k, e, let H be

any graph with k vertices and e edges. Then

Prsw(H ⊆ Gt) = O
(

nk−e+1/6
)

.

Note that we cannot say anything about behaviour for constant t,

since then every graph has a constant probability of occurring.
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Connectivity

We can use these two lemmas to show that Gt is d-connected with
high probability throughout ωN ≤ t ≤ κN lnN, as follows.

If Gt is not d-connected, there is some vertex subset S of size at
most d − 1 whose removal disconnects Gt into subgraphs with
vertex sets V1,V2.

V V

S

Gt

1 2

If both V1 and V2 are “large”, the Comparison Lemma can be
used, since there are too far few edges between V1 and V2, say.

If (say) V1 is “small”, the Small Subgraphs Lemma can be used,
since there are too many edges in the V1 subgraph.
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Diameter (c.f. Bollobás & de la Vega, 1982)

We can also show that Gt has logarithmic diameter with high
probability throughout ωN ≤ t ≤ κN lnN.

v1 S
1

V

V

1

v
2S2V

2

For any two vertices v1 and v2, we use the Small Subgraphs
Lemma to show that Gt expands fast within a constant distance
of v1 and v2, giving subgraphs S1, S2.

The Comparison Lemma is then used to show that Gt expands fast
until we have subgraphs V1, V2 with |V1|, |V2| ∼

√
n log n.

The Comparison Lemma is then used again to show that there
must be an edge between V1 and V2.
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