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Traffic in Congested 
Networks 

Mathematical model:
• A directed graph G = (V,E)
• source–sink pairs si,ti for i=1,..,k
• rate ri ≥ 0 of traffic between si

and ti for each i=1,..,k
• For each edge e, a latency 

function l e(•)
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Example 

Traffic rate: r = 1, one source-sink
x

s t
1

Flow = ½

Flow = ½ Total latency = 
½•½ + ½•1 =¾

But traffic on lower edge is envious. 

An envy free flow:
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Flow = 0

Flow = 1 Total latency = 1
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Flows

Traffic and Flows:
– fP = amount routed on si-ti

path P

flow vector f ⇔ traffic pattern at 
steady-state

fe = ½ + ½ =1
l e(f) =1
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Cost of a Flow

Latency along path P:
• l P(f) = sum of  latencies of edges in P

The Cost of a Flow f:
= total latency

• C(f) = ΣP fP • l P(f)

l P(f) = .5 + 0 + 1.5

P
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Flows and Game Theory

• flow = routes of many
noncooperative agents

• Examples:
– cars in a highway system
– packets in a network

• [at steady-state]

• cost (total latency) of a flow  
as a measure of social welfare

• agents are selfish
– do not care about social welfare
– want to minimize personal latency
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Flows at Nash 
Equilibrium

Assumption: edge latency functions are 
continuous, nondecreasing

Lemma: a flow f is a Nash flow if and 
only if all flow travels along 
minimum-latency paths (w.r.t. f).

Defn: A flow is at Nash equilibrium (or 
is a Nash flow) if no agent can improve 
its latency by changing its path
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Nash Flows and Social 
Welfare

Central Question: 
• What is the cost of the lack of 

coordination in a Nash flow?

s t

x

1
0

1 ½

½

Analogous to IP versus ATM:

• ATM ≈ central control ≈ min cost

• IP ≈ no central control ≈ selfish

• Cost of Nash = 1

• min-cost
= ½•½ + ½•1 =¾
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What Is Know About 
Nash?

Flow at Nash equilibrium exists 
and is essentially unique
[Beckmann et al. 56], …

Nash and optimal flows can be 
computed efficiently 
[Dafermos/Sparrow 69], …

Network design: what networks 
admit “good” Nash flows?
[Braess 68], …
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The Braess Paradox
Better network, worse delays:

• Cost of Nash flow = 1.5

• Cost of  Nash flow = 2

All the flow has increased delay!
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Our Results for        
Linear Latency

latency functions of the form 
l e(x)=aex+be

the cost of a Nash flow is at 
most 4/3 times that of the 
minimum-latency flow
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General Latency 
Functions?

Bad Example: (r = 1, i large)
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Nash flow cost =1, min cost ≈ 0 

⇒ Nash flow can cost arbitrarily 
more than the optimal flow
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Our Results for        
General Latency

In any network with latency 
functions that are 

• continuous, 
• non-decreasing

the cost of a Nash flow with 
rates ri for i=1,..,k

is at most the cost of a minimum 
cost flow with rates 2ri for 
i=1,..,k
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Morale for IP 
versus ATM?

IP today no worse than 
ATM a year from now …

Instead of 
• building central control 
• build networks that  

support twice as much 
traffic
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What Is the Minimum-
cost Flow Like?

Minimize
C(f) = Σe fe• l e(fe)

– by summing over edges 
rather than paths

– fe amount of flow on edge e

Cost C(f) usually convex 
– e.g., if l e(fe) convex

– if l e(fe) = ae fe + be 

⇒ C(f) = Σe fe • (ae fe + be)
convex quadratic
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Why Is Convexity 
Good?

A solution is optimal for a convex 
cost if and only if
– tiny change in a locally 

feasible direction cannot 
decrease the cost

feasible 
directions
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Characterizing the 
Optimal Flow

Direction of change: moving a tiny 
flow from one path to another 

flow f is minimum cost if and only 
if cost cannot be improved by 
moving a tiny flow from one path 
to another
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Characterizing the 
Optimal Flow

Cost fe• l e(fe) ⇒ marginal cost of 
increasing flow on edge e is

l e(fe) + fe • l e
’(fe) 

latency of 
new flow

Added latency 
of flow already 
on edge

Key Lemma: a flow f is optimal if   
and only if all flow travels along 
paths with minimum marginal 
cost (w.r.t. f).
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Min-cost Is a Socially 
Aware Nash

flow f is minimum cost if and only 
if all flow travels along paths 
with minimum marginal cost

Marginal cost: l e(fe) + fe•l e
’(fe) 

flow f is at Nash equilibrium if 
and only if all flow travels along 
minimum latency paths

Latency:    l e(fe) 
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Consequences for 
Linear Latency Fns

Observation: if l e(fe) = ae fe + be

⇒ marginal cost of P w.r.t. f is:
Σ 2ae fe + be

Corollaries
• if ae = 0 for all e, Nash and optimal 

flows coincide (obvious)

• if be = 0 for all e, Nash and optimal 
flows coincide (not as obvious)

e∈P
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Example

• Nash flow of rate 1, latency L=2

• Note: Same flow for rate ½,

– All paths have marginal cost = 2
⇒ it is min-cost for rate ½,

s t
x 1

x1
0 Edge cost = x2 ⇒

marginal cost = 2x
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Key Observation

Nash flow f for rate r
– all flow paths have 

latency L
⇒ C(f) = rL

⇒ f/2 is optimal with rate 
r/2 and

– all flow paths have 
marginal cost L
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Bound for Nash:
Linear Latency

Goal: prove that cost of opt flow 
is at least 3/4 times the cost 
of a Nash flow f

Cost of 
opt at 
rate r

=
Cost of 
increasing rate 
from rate r/2
to rate r 

Cost of 
opt at 
rate r/2

+

opt is f/2

C(f/2) ≥ ¼C(f) 
At least (r/2)•L
≥ ½C(f) 
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Nonlinear Latency

Goal: cost of a Nash flow with 
rate r is at most the cost of 
the optimal flow with rate 2r

Analogous proof sketch??

Troubles: Can be 
close to 
zero

What is opt at rate r? 
and what is its 
marginal cost?

= +
Cost of 
opt at 
rate 2r

Cost of 
opt at 
rate r

Cost of 
augmenting opt 
flow at rate r  to 
opt at rate 2r 
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Other Models?

• An approximate version of Theorem 
for non-linear latency with imprecise 
evaluation of path latency

• Analogue for the case of finitely 
many agents (splittable flow)

• Impossibility results for finitely 
many agents, unsplittable flow, i.e., 
– if each agent i controls a positive 

amount of flow ri ≥ 0
– flow of a single agent has to be 

routed on a single path
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Other Games?
Koutsoupias & Papadimitriou   

STACS’99
– scheduling with two parallel 

machines
– Negative results for more 

machines
First paper to propose quantifying the 

cost of a lack of coordination

– What other games have good 
Nash equilibrium?
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More Open Questions

• Is there any model in which 
positive results are possible for 
unsplittable flow?

• Consider models in which 
agents may control the amount
of traffic (in addition to the 
routes)
– Problem: how to avoid the 

“tragedy of the commons”?


