How Bad is Selfish Routing?

Tim Roughgarden Cornell University

joint work with Éva Tardos

Traffic in Congested Networks

Mathematical model:

- A directed graph G = (V,E)
- source-sink pairs s_i, t_i for i=1,...,k
- rate r_i ≥ 0 of traffic between s_i and t_i for each i=1,...,k
- For each edge e, a latency function I e(•)

Example

Traffic rate: r = 1, one source-sink

Total latency = $\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 = \frac{3}{4}$

But traffic on lower edge is envious. An envy free flow:

Total latency = 1

Tim Roughgarden, Cornell University

Flows

Traffic and Flows:

- f_P = amount routed on s_i-t_i path P

flow vector f ⇔ traffic pattern at
steady-state

Cost of a Flow

Latency along path P:

I_P(f) = sum of latencies of edges in P

The Cost of a Flow f: = total latency

• $C(f) = S_P f_P \cdot I_P(f)$

Flows and Game Theory

- flow = routes of many noncooperative agents
- Examples:
 - cars in a highway system
 - packets in a network
 - [at steady-state]
- cost (total latency) of a flow as a measure of social welfare
- agents are selfish
 - do not care about social welfare
 - want to minimize personal latency

Flows at Nash Equilibrium

Defn: A flow is at Nash equilibrium (or is a Nash flow) if no agent can improve its latency by changing its path

Assumption: edge latency functions are continuous, nondecreasing

Lemma: a flow f is a Nash flow if and only if all flow travels along minimum-latency paths (w.r.t. f).

Nash Flows and Social Welfare

Central Question:

 What is the cost of the lack of coordination in a Nash flow?

- Cost of Nash = 1
- min-cost = $\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot 1 = \frac{3}{4}$

Analogous to IP versus ATM:

- ATM ≈ central control ≈ min cost
- IP \approx no central control \approx selfish

What Is Know About Nash?

Flow at Nash equilibrium exists and is essentially unique [Beckmann et al. 56], ...

Nash and optimal flows can be computed efficiently [Dafermos/Sparrow 69], ...

Network design: what networks admit "good" Nash flows? [Braess 68], ...

The Braess Paradox

Better network, worse delays:

• Cost of Nash flow = 1.5

Cost of Nash flow = 2

All the flow has increased delay!

Our Results for Linear Latency

latency functions of the form $I_e(x)=a_ex+b_e$

the cost of a Nash flow is at most 4/3 times that of the minimum-latency flow

Tim Roughgarden, Cornell University

General Latency Functions?

Bad Example: (r = 1, i large)

Nash flow cost =1, min cost ≈ 0

Nash flow can cost arbitrarily more than the optimal flow

Our Results for General Latency

- In any network with latency functions that are
- continuous,
- non-decreasing
- the cost of a Nash flow with rates r_i for i=1,...,k
- is at most the cost of a minimum cost flow with rates 2r_i for i=1,..,k

Morale for IP versus ATM?

I P today no worse than ATM a year from now ...

Instead of

- building central control
- build networks that support twice as much traffic

What Is the Minimumcost Flow Like?

Minimize

$C(f) = S_e f_e \cdot I_e(f_e)$

- by summing over edges rather than paths
- f_e amount of flow on edge e
- Cost C(f) usually convex
 - e.g., if $I_e(f_e)$ convex

- if $I_e(f_e) = a_e f_e + b_e$ $\Rightarrow C(f) = \mathbf{S}_e f_e \cdot (a_e f_e + b_e)$ convex quadratic

Why Is Convexity Good?

- A solution is optimal for a convex cost if and only if
 - tiny change in a locally feasible direction cannot decrease the cost

Characterizing the Optimal Flow

Direction of change: moving a tiny flow from one path to another

flow f is minimum cost if and only if cost cannot be improved by moving a tiny flow from one path to another

Characterizing the Optimal Flow

Cost f_e• l_e(f_e) **>** marginal cost of increasing flow on edge e is

Key Lemma: a flow f is optimal if and only if all flow travels along paths with minimum marginal cost (w.r.t. f).

Min-cost Is a Socially Aware Nash

flow f is minimum cost if and only if all flow travels along paths with minimum marginal cost

Marginal cost: $I_e(f_e) + f_e \cdot I_e'(f_e)$

flow f is at Nash equilibrium if and only if all flow travels along minimum latency paths

Latency: I_e(f_e)

Consequences for Linear Latency Fns

Observation: if $I_e(f_e) = a_e f_e + b_e$ **P** marginal cost of P w.r.t. f is: $S_{e \in P} 2a_e f_e + b_e$

Corollaries

- if a_e = 0 for all e, Nash and optimal flows coincide (obvious)
- if b_e = 0 for all e, Nash and optimal flows coincide (not as obvious)

Example

Edge cost = x^2 **P** marginal cost = 2x

- Nash flow of rate 1, latency L=2
- Note: Same flow for rate ½,
 All paths have marginal cost = 2
 ⇒ it is min-cost for rate ½,

Key Observation

- Nash flow f for rate r – all flow paths have latency L $\Rightarrow C(f) = rL$
- \Rightarrow f/2 is optimal with rate r/2 and
 - all flow paths have marginal cost L

Bound for Nash: Linear Latency

Goal: prove that cost of opt flow is at least 3/4 times the cost of a Nash flow f

Nonlinear Latency

Goal: cost of a Nash flow with rate r is at most the cost of the optimal flow with rate 2r

Analogous proof sketch??

Tim Roughgarden, Cornell University

Other Models?

- An approximate version of Theorem for non-linear latency with imprecise evaluation of path latency
- Analogue for the case of finitely many agents (splittable flow)
- Impossibility results for finitely many agents, unsplittable flow, i.e.,
 - if each agent i controls a positive amount of flow $r_i \ge 0$
 - flow of a single agent has to be routed on a single path

Other Games?

Koutsoupias & Papadimitriou STACS'99

- scheduling with two parallel machines
- Negative results for more machines
- First paper to propose quantifying the cost of a lack of coordination
- What other games have good Nash equilibrium?

More Open Questions

- Is there any model in which positive results are possible for unsplittable flow?
- Consider models in which agents may control the amount of traffic (in addition to the routes)

- Problem: how to avoid the "tragedy of the commons"?