
Query Incentive Networks

Jon Kleinberg ∗ Prabhakar Raghavan †

Abstract

The concurrent growth of on-line communities exhibiting large-scale social structure, and
of large decentralized peer-to-peer file-sharing systems, has stimulated new interest in under-
standing networks of interacting agents as economic systems. Here we formulate a model for
query incentive networks, motivated by such systems: users seeking information or services can
pose queries, together with incentives for answering them, that are propagated along paths in
a network. This type of information-seeking process can be formulated as a game among the
nodes in the network, and this game has a natural Nash equilibrium.

In such systems, it is a fundamental question to understand how much incentive is needed
in order for a node to achieve a reasonable probability of obtaining an answer to a query from
the network. We study the size of query incentives as a function both of the rarity of the
answer and the structure of the underlying network. This leads to natural questions related to
strategic behavior in branching processes. Whereas the classically studied criticality of branching
processes is centered around the region where the branching parameter is 1, we show in contrast
that strategic interaction in incentive propagation exhibits critical behavior when the branching
parameter is 2.

1 Introduction

A growing number of on-line information systems are adopting a model in which, rather than
posing queries to a centralized index of the system, users in effect pose queries to the network
itself. Requests for information are propagated along paths through the network, connecting those
with information needs to those with relevant answers. Two recent settings in which this model
has arisen are decentralized peer-to-peer file-sharing systems, and the current generation of social-
networking services. While these types of systems differ in their specifics, the fundamental issues
underlying them are in a number of respects similar.

Mechanisms to propagate queries through peer-to-peer systems have been the subject of con-
siderable recent interest. Early systems such as Gnutella and Freenet, as well as research systems
including Chord, CAN, Tapestry, and Pastry, proposed algorithms for distributing information
across a network of peers, and then allowing decentralized searches to proceed by routing queries
to the appropriate content [16].

In a different direction, social-networking systems are among the recent arrivals on the landscape
of Internet media and information systems [1, 27]. Systems such as Friendster, Orkut, LinkedIn,

∗Department of Computer Science, Cornell University. Email: kleinber@cs.cornell.edu. Supported by a David and
Lucile Packard Foundation Fellowship and NSF grants CCF-0325453, IIS-0329064, and CCR-0122581; work done in
part while on sabbatical leave at Carnegie Mellon University.

†Yahoo Research. Email: pragh@yahoo-inc.com. Work done in part while at Verity, Inc.

1

b c

d e

g

rew. 2

answer f answerrew. 1

rew. 0

initial utility 9

rew. 5

rew. 2

v* If root chooses to pass
reward to node d, then
 b receives 5−2 = 3.
 d receives 2.
 root payoff is 9−5 = 4.

Figure 1: The propagation of a query with rewards. Each node is offered a reward by its parent,
and offers a (smaller) reward to its children for continued propagation. The search down each
branch stops when the reward reaches 0, or when a node with an answer is reached.

and Ryze are designed to maintain an explicit social network on their members. New users join by
linking to friends who already belong to the system, and this leads over time to a potentially large
on-line community built around friendships in the off-line world. The basic motivation behind such
systems is to use the underlying network as a way to help find information and services; tasks such
as finding a new job, or a new apartment, can be facilitated by seeking help from one’s friends,
who in turn can ask their friends, and so forth, providing indirect access to the large set of people
connected through multi-step chains of acquaintances. A number of research systems have sought
to use social networks for referral in similar ways (e.g., [13, 28, 30]).

In this way, social-networking services are also based on a model of posing queries that are
propagated through a network — in this case, a network defined by friendships. The propagation
along chains of friends is crucial in this context, because it provides a powerful way of vetting the
answers one gets. You trust your friends, who in turn trust their friends, and so on; thus, when
an answer to a question emerges from a chain of referrals in the network, it is endowed with a
corresponding chain of trust.

Networks as marketplaces. As these types of systems grow in scale and complexity, their
potential as marketplaces for information and services becomes more compelling. As one article
in the popular press described the situation for social-networking services, “Essentially, [Friendster
is] an attempt to apply the economic theory behind eBay – bringing buyers and sellers together to
create commerce – to a far more complex social phenomenon” [21].

The attempt to model networks of information resources as marketplaces raises a range of issues.
In particular, how do members of such a network extract utility from their interactions with other
members, and what is the overall system’s behavior when individual members interact strategically
so as to maximize their utilities? While early work on peer-to-peer and social-networking systems
was motivated primarily by the structural considerations underlying large networks — in particular,
that such networks should have short, easily findable paths joining queriers and answerers — the
considerations above highlight the fundamental incentive issues at work in the operation of such

2

networks. A growing line of work in the peer-to-peer community has begun investigating such issues
(e.g., [3, 12, 14, 15, 19, 25, 29]). In turn the analysis of incentive propagation in such networks
speaks to the process by which people discover tangible goods and services, beyond information.

Here we consider the effect of incentive issues on the performance of these types of systems, in
the spirit of recent work on the price of anarchy and price of stability [18, 23], but with somewhat
different types of guarantees. We formulate a simple model of query propagation on a random
network, and our main result has the following general form (to be made precise below). Suppose
that n is the rarity of the answer to a query: on average, one out of n nodes possesses the answer.
When the “effective branching factor” of the network — essentially the average number of new
neighbors per node encountered in a breadth-first search – is greater than 1, then (by well-known
results) there is a giant component in which the node v∗ originating the query has a path of
length O(log n) to a node w with the answer. However, if nodes must be compensated for their
participation in propagating the query, then under strategic behavior, the originating node v∗

must invest an enormous amount in order to receive an answer with constant probability when the
effective branching factor is less than 2, while it need only invest O(log n) when this branching
factor is greater than 2. Thus, while an effective branching factor of at least 1 is the threshold
for achieving purely structural robustness (in the form of short paths to the answer), an effective
branching factor of at least 2 is needed to make searching feasible in the presence of incentives.
The region between 1 and 2 represents a case in which the short paths that exist are unusable due
to the large investments required.

We now proceed to formulate a basic model that captures this phenomenon in a clean and
tractable manner. Before doing so, we note that questions like this also belong to a broader
context concerned with the economic properties of networks, and we refer the reader to [10] for
work on network formation, and [11] for work on buyer-seller networks.

1.1 Formulating a Model

Since there are a number of issues that should be taken into account in the development of a model
for these phenomena, we undertake it via a sequence of steps.

1. General Considerations. The basic type of operation we study is the following: a node
v∗ belonging to the network is seeking a particular service or piece of information held by certain
other nodes; abstractly, we think of v∗ has posing a query that it wishes to have answered. v∗ offers
a reward to its neighbors, which it will pay when it receives the answer; each neighbor of v∗, if
it does not have the answer, can offer a (smaller) reward to its neighbors (hoping to pocket the
difference), effectively using them as “sub-contractors” in producing the answer. In this way, the
query propagates along paths, eventually reaching (possibly several) nodes that hold the answer.

2. A Tree Model. A model of this general form was proposed by Li et al. [15] in the setting of
peer-to-peer systems. As the model in [15] has a number of features that are not important for us
here, we begin by describing a variant that is related, but somewhat different in its details.

We model the underlying network as a (finite or infinite) tree T . The root v∗ of T has a query
for which it has a utility of r∗, and each node holds the answer with some probability 1−p > 0. The
node v∗ offers a reward for the answer, and the query thus propagates down the tree as outlined
above. Specifically, each node v has an integer-valued function fv; if v is offered a reward of r by its

3

parent, and v does not possess the answer to the query, then it in turn offers a reward of fv(r) < r
to its children. (The root follows the analogous rule at the outset, offering an initial reward of
fv∗(r

∗).) The propagation of the query stops along a particular path in T when the offered reward
shrinks to 0 or when a node w is reached who holds the answer. In the latter case, the identity of
w is propagated back up to the root. From among all answer-holders that are discovered by this
process, v∗ selects one, say w, by an arbitrary (potentially randomized) procedure, and propagates
the reward down to w. Each intermediate node on the path to w keeps its “share” of this reward,
paying out the amount it offered to its child on the path to w. An example of this process is
illustrated in Figure 1.

If nodes are behaving strategically, then each will choose how to offer a reward so as to maximize
its payoff. We thus view each node v as a player in a game, selecting a strategy in the form of a
function fv. As a useful device in defining the payoffs, we assume that the root’s utility r∗ is drawn
from an arbitrary distribution that puts positive probability on each positive integer. The form of
this distribution is immaterial; its purpose is simply to make the formulation cleaner, encoding the
notion that any utility can arise at the root. With respect to a set of strategies {fv}, the payoff to
a node v is the expected reward it retains over the random choice of r∗ and the random selection
of which nodes possess the answer.

It is not difficult to prove that this game possesses a Nash equilibrium that is (subject to some
technical conditions) unique. Such a result was shown by Li et al. [15] in the context of their related
model. Our interest here is in going beyond the existence question to investigate how the behavior
of nodes under a Nash equilibrium affects the performance of the system — in other words, how it
affects nodes’ abilities to cheaply find answers to queries.

3. A Branching Process Model. For studying the dynamics of query propagation and the
structure of its Nash equilibria, the general tree model has two drawbacks. First, computing the
Nash equilibrium requires knowledge of the tree, so positing that nodes play Nash equilibrium
strategies comes with a tacit assumption that they know the entire tree. It would be preferable
to assume that each node simply had an estimate of the average “branching factor” of the tree,
and based its choice of strategy only on this. Second, it is hard to discuss how the behavior of
query propagation varies over the space of all possible trees; for such an investigation, it would be
more useful to have a single tunable parameter, like the “branching factor,” that characterizes the
network topology. In this way, we could study the behavior in a rich family of network structures
that arise as a function of this parameter.

For both these reasons, it becomes very natural to consider the following variant of the tree
model, based on branching processes. We start with an infinite complete d-ary tree T rooted at
node v∗; this tree represents the set of all nodes who might take part in the propagation of the
query. Each node in T is declared to be active independently with probability q. The set of all
nodes reachable from the root using paths consisting entirely of active nodes is a random subtree
T ′ of T . We now run the tree model on T ′; the payoff to each node, as a function of the set of
strategies {fv}, is the expected amount of reward it retains under the random choice of r∗, the
random choice of tree T ′, and the random outcome of which nodes possess the answer. Note that
for a particular choice of T ′, nodes v ∈ T \ T ′ receive no reward.

In this stylized model, one could interpret T as the full peer-to-peer or social-networking system,
and the active nodes as the subset that are “on-line” and able to participate when the query is
issued. But for our purposes, the main point is that the model forms a very clean way to generate

4

a family of random networks whose structure varies based only on the two parameters q and d. We
can show that there exists a Nash equilibrium for this model (again, essentially unique, subject to
some technical conditions), and that nodes can compute their appropriate strategy using knowledge
of just q and d.

In the terminology of branching processes [2], T ′ is a Galton-Watson tree generated from an
offspring distribution that produces j children with probability

(d
j

)

qj(1− q)d−j. For such branching
processes, the crucial parameter is the mean number of offspring b per node: if b < 1 then the tree
T ′ is almost surely finite, while if b > 1 then there is a positive probability of obtaining an infinite
tree T ′. We will focus on the case b > 1; note that in our model b = qd, and we will have an infinite
tree with probability 1 − eq,d for some constant eq,d ∈ (0, 1).

1.2 Results

We are interested in studying the initial investment needed in order to obtain an answer to a query
with reasonable probability. In terms of the branching process model we have just defined, we can
phrase this as follows: how large a utility r∗ must the root v∗ have in order to achieve a fixed
constant probability σ of obtaining an answer from the network? We consider the utility needed
as a function of the rarity n of the answer, defined as n = (1 − p)−1; in other words, one of out of
every n nodes has the answer.

We seek to understand how this relationship between r∗ and n is affected by the underlying
network topology. The branching process model allows us to naturally study this simply by varying
b. Our main results are that a transition in this dependence happens when the branching factor b
passes 2.

• When b < 2, the utility required for v∗ to find the answer with constant probability σ is
Ω(nc), where c depends on 2 − b. (Theorem 4.6.)

• When b > 2, the utility required for v∗ to find the answer with constant probability σ < 1−eq,d

is O(log n), where the constant inside the O(·) depends on b− 2 and 1− eq,d −σ. (Recall that
eq,d is the extinction probability of the branching process.) (Theorem 4.10.)

So when b > 2, the utility is within a constant factor of a simple structural lower bound:
assuming we get an infinite random tree T ′, the distance in T ′ to the nearest answer is O(log n)
with high probability, and each node on the path will retain at least one unit of reward. Thus, for
a large branching factor, the propagation of queries is very efficient in its use of reward. On the
other hand, when 1 < b < 2, the distance to the nearest answer (for T ′ infinite) is still O(log n),
but now the utility needed by the root is exponential in the distance; thus query propagation has
become bogged down by the friction of multiple intermediaries.

We find this transition surprising, because the value b = 2 is not a critical point for the under-
lying branching process itself. Rather, for all b > 1, there is a positive probability of getting an
infinite tree, and this probability increases continuously in b. Moreover, in these infinite trees the
answer to the query is O(log n) steps from the root with high probability, again for all b > 1. It is
only once incentives are taken into account that b = 2 stands out as a critical value. This, then,
is the precise formulation of the qualitative finding that we described earlier: the network achieves
structural robustness (in the form of a positive probability of an infinite, exponentially growing tree
below the root) once b > 1, but it only becomes usable for efficient incentive-based queries once b
reaches 2.

5

Extensions. There are clearly many directions in which the model could be generalized; our goal
here is to explore some of the surprising phenomena that emerge already in a very simple model of
such processes. One can easily generalize the framework to assume that the branching factors and
probabilities of holding the answer are non-uniform, and the results on existence of Nash equilibria
extend to this setting. It is less clear how to find a comparably simple parametrization of this class
of models that, like the branching factor, exposes the sharp transition we have seen. For some
generalizations of the model, we have found through simulation that a transition in the necessary
reward is evident when a parameter based on the growth rate of balls in the graph metric passes
the analogue of the branching factor 2; we will describe this in more detail in the full version of the
paper.

Another significant direction lies in considering network models not based on trees. This requires
enhancing the game-theoretic basis of the model, since nodes may now be offered (possibly different)
rewards from multiple neighbors, and they must decide how to act on these. We discuss a more
general model for this setting briefly in the final section.

Placing a Value on Effort. Finally, we discuss an issue that will arise in working out the
payoff functions in the next section: the value nodes place on their own effort in taking part in the
protocol.

If nodes placed no value on their effort, then it would be hard to avoid the following type of
degenerate solution: the root offers an arbitrarily small initial reward ε and succeeds in getting
an answer anyway because intermediate nodes simply skim off a positive fraction of what they are
offered and pass the rest on. (This is a common type of “Zeno’s paradox” pathology.) Our condition
that rewards be integer-valued prevents this from happening; it requires each intermediate node to
retain at least one unit of reward, and it is motivated by the following model for valuing effort.

The detailed query propagation process can be viewed as consisting of three stages: (i) the query
is propagated outward from the root; (ii) the identities of nodes holding answers are propagated
inward to the root; and (iii) a single answerer w is chosen, and the desired “connection” from v∗ to
w is established along the path from v∗ to w. In keeping with the bulk of the recent work discussed
above (see e.g. [13, 28, 30]), we assume nodes treat stages (i) and (ii) as having negligible cost,
modeled as 0 (a node will forward a query even if there is only a small probability that it will lie
on the selected path to the answer); but nodes value their effort in stage (iii) at unit cost (a node
retains at least one unit of reward for the event in which it is on the path to the answer).

This distinction is a very natural one in the context of both peer-to-peer and social-networking
systems. For example, many proposals for social-network referral systems view steps (i) and (ii)
as being of negligible cost — and generally automatable by software agents — for people in the
system, since they involve simply forwarding search requests to lists of contacts [13, 28, 30]. On
the other hand, step (iii) – establishing the connection between root and answer – is where the role
of the social network for vetting comes into play; there is an underlying protocol in which people
on the path validate the relationship between the endpoints, and it is this effort that demands
compensation [30]. A closely analogous distinction arises in many peer-to-peer systems; in Freenet
[7], for example, step (iii) corresponds to the transfer of a file in which it is cached at every step
along the path, and so step (iii) involves considerably more effort than (i) and (ii). When the query
seeks a tangible good or service (as opposed to an information need), it is step (iii) that delivers
the “fulfillment” of the order placed at the root.1

1There is no technical obstacle to modeling settings in which nodes balance each of steps (i), (ii), and (iii) against a

6

2 The Nash Equilibrium

We begin by constructing the Nash equilibrium for query propagation in the branching process
model, argue why it is (essentially) unique, and then in subsequent sections study the growth rate
of rewards when players use this equilibrium strategy.

We first define the following auxiliary functions. Let f denote the set of all reward functions,
{fv : v ∈ T}. We define αv(f , x) to be the probability the subtree of T ′ below v yields the answer,
given that v offers reward x and that v does not possess the answer. Let βv(f , x) = 1 − αv(f , x).
These quantities can be defined using a recurrence relation as follows. Each child w of v is endowed
with a utility of x for the answer by the offered reward, so the subtree rooted at w fails to produce
the answer with probability pβw(f , fw(x)). Node w passes the answer to v if this failure does not
occur, and if it is active, for a probability of q(1− pβw(f , fw(x))). Finally, v fails to get the answer
if none of these successes occurs:

βv(f , x) =
∏

w child of v

[1 − q(1 − pβw(f , fw(x)))]. (1)

We now construct a Nash equilibrium g for this game, defining the functions in g inductively.
By definition we have gv(1) = 0 for all nodes v. Now, assume that gv(x) has been defined for all
v and all x < r. The crucial observation is that from these values, we have enough information
to determine the values of αv(g, x) for all v and all x < r. If v does not possess the answer, and
it offers a reward of x to its children, then if an answer emerges from the subtree below v (with
probability αv(g, x)), and if a node in its subtree is selected by the root for the reward, v will retain
a reward of r − x, minus a cost of 1 for its effort in establishing the connection to the root. We
thus define gv(r) to be the value x < r maximizing

(r − x− 1)αv(g, x). (2)

Note that by this construction, all functions gv are the same; we denote this common function by
g.

We now claim that g is a Nash equilibrium. The proof is somewhat technical, and provided
in the appendix; roughly, it expands the brief argument in the previous paragraph, relating the
expression in (2) to the payoff of node v.

Theorem 2.1 The set of functions g is a Nash equilibrium.

For the uniqueness of g, we note two caveats that prevent us from claiming this directly. First,
in the expression (2) defining gv(x), there might be two values of x that both achieve the maximum.
Second, based on the way g is defined, there are certain values r so that nodes v far down in the
tree will never be offered a reward of r. In these cases, we can define gv(r) arbitrarily and still have
a Nash equilibrium.

However, these turn out to be the only two issues to address, and so we formulate the uniqueness
result as follows. First, we note that a node receives a payoff of 0 regardless of how it sets the value

unit effort cost, but the resulting solutions are pathological. This is much like the “Zeno’s paradox” case, but extreme
in the opposite direction: in the Nash equilibrium the root needs to offer a reward of at least roughly n

k to get the
query to travel k steps, which dwarfs the payments even for the case of b < 2 discussed above. This suggest that the
whole underlying framework for incentive-based query propagation is much more suitable to settings in which steps
(i) and (ii) are viewed as having negligible effort cost.

7

gv(2): if it defines gv(2) = 0, then the query is not propagated at all, and if it defines gv(2) = 1
then its retained reward of 1 is offset by its effort cost. As a tie-breaker (say, for example, that
the effort cost is really very slightly less than 1), we will assume that all nodes define gv(2) = 1.
Second, we say that p is generic with respect to q if (p, q) is not a zero of any bivariate polynomial
with rational coefficients, other than the polynomial that is identically zero. (For example, if q is
rational this is equivalent to saying that p is not a root of any non-trivial polynomial equation with
rational coefficients.) Finally, we say that a reward r is reachable at node v, with respect to a set
of functions f , if there is some initial utility the root may have with positive probability, so that
v will offer reward r if the query is propagated down to it. (Recall that the distribution on root
rewards is immaterial to our results; its function is to facilitate a game-theoretic formulation.)

Theorem 2.2 Let p be generic with respect to q, and f a Nash equilibrium in which fv(2) = 1 for

all nodes v. Then for all nodes v, and rewards r that are reachable at v with respect to f , we have

fv(r) = gv(r).

The proof, which appears in the appendix, is by induction on r: the functions fv and gv must
agree for r = 1, 2, and if they first differed on some larger reachable r, the fact that they both
maximize expression (2) would define a polynomial identity that contradicts the assumption that
p is generic with respect to q.

3 The Breakpoint Structure of Rewards

For an answer rarity n = (1− p)−1, a target success probability σ, and a branching factor b, we let
Rσ(n, b) denote the minimum utility needed by v∗ in order for the query process to yield an answer
with probability at least σ. The basic question raised in Section 1 can be phrased as follows: how
does Rσ(n, b) grow asymptotically in n, b, and σ? In this section, we fix values for n > 1 and b > 1,
and study how Rσ(n, b) depends on σ. In the next section we explore the dependence on n and b,
using the results of this section.

When n and b are fixed, Rσ(n, b) is characterized by a sequence of discrete breakpoint values:
the set of possible values for the success probability σ is partitioned into intervals, within each of
which Rσ(n, b) is constant. This follows simply because Rσ(n, b) takes integer values, but we will
find in fact that something stronger and less obvious is going on: between successive breakpoints,
Rσ(n, b) will in general increase by an integer difference that is greater than one. Intuitively, a
utility of r∗ at the root (and the resulting reward gv∗(r

∗)) propagates the query, under the strategic
behavior of nodes, out to some depth in the tree. As we increase the root’s utility beyond r∗, nodes
closer to the root have a growing incentive to “push reward” deeper into the tree, in the hope of
increasing the probability of finding the answer and thus compensating for the loss of the reward
that they push out. We will argue that the breakpoints occur precisely when the iteration of the
function g results in propagating the query down an extra level of the tree.

We define some quantities related to αv(g, r). First, let δ(r) denote the number of times we
have to iterate the function g to reduce an initial reward of r down to 0; the quantity δ(r) is thus
the number of levels the query would visit if the root had a utility of r, all nodes were active, and
no node possessed the answer. Then, an equivalent way to view the search process with initial
utility r is as follows: run the branching process until it either reaches level δ(r), dies out early, or
reaches a node with the answer.

8

In order to analyze this equivalent view, it is useful to consider the question: if we run the
branching process indefinitely (without rewards), what is the probability that no node in the first
j levels has the answer, given that the root does not?2 We denote this probability by φ̂j . There is

a simple connection between φ̂j and βv∗(g, r), the probability the root will not obtain the answer
given utility r, conditioned on v∗ not possessing the answer itself: since a reward of r will push the
query δ(r) levels into the tree, we have βv∗(g, r) = φ̂δ(r). For purposes of analysis later, it useful to

have a recurrence for φ̂j, directly parallel to Equation (1)), and justified by an analogous argument:

φ̂j+1 = (1 − q(1 − pφ̂j))
d.

Let uj be the minimum r for which δ(r) > j− 1. Note that if uj exists, then δ(uj) = j. Indeed,
δ(uj) > j−1, but by the minimality of uj, we have δ(f(uj)) ≤ j−1 and so δ(uj) = 1+δ(f(uj)) ≤ j.

We can prove the existence of uj for all j, and determine the values of all uj, by induction. We
define auxiliary quantities yj ; the role of these will become clear below. We start with u1 = 1 and
u2 = 2. Now, suppose that u1, u2, . . . , uj have been defined. For a given initial utility r, the only
possible optimal rewards have the form ui for some i; any other reward could be reduced to the
next largest ui without affecting the probability of success. For a reward r, define the following
linear functions of r: `i(r) = (r − ui − 1)(1 − φ̂i). This is the payoff to the root when it offers
reward ui with utility r. The functions `i can be viewed as a family of lines in the reward-payoff
plane. Thus at utility r, reward ui is preferable to uk if and only if `i(r) > `k(r).

Suppose by induction that the following holds for a given j: for all r ≥ uj−1, we have `j−1(r) >
`j−2(r) > · · · > `1(r). We now define uj+1 as follows. At r = 1 + uj , we have `j(r) = 0, and hence
`j(r) < `j−1(r). Thus, the point at which lines `j and `j−1 cross is to the right of 1 + uj , since the
slope of `j is greater than that of `j−1. This crossing point is at the value y for which

(y − uj − 1)(1 − φ̂j) = (y − uj−1 − 1)(1 − φ̂j−1). (3)

Define yj+1 to be this value of y. Once a node’s utility exceeds yj+1, it is preferable to offer a reward
that sends the query j more steps rather than j−1. We define uj+1 = dyj+1e; then uj+1 is the first
integer for which δ(uj+1) > j. Note that for all r ≥ uj+1, we have `j(r) > `j−1(r) > · · · > `1(r).

Now, we write ∆′
j = yj − uj−1 and ∆j = uj − uj−1. By Equation (3), we have

1 +
∆j

∆′
j+1 − 1

=
1 − φ̂j

1 − φ̂j−1

. (4)

This equation captures the growth rates of the breakpoints uj through the ratio of their successive
differences, and it will be important in the analysis in the next section.

4 The Growth Rate of Rewards

We now come to the central point, which is the asymptotic dependence of Rσ(n, b) on n and b. We
will see that the dependence on σ will tend to be hidden inside the asymptotic bounds, provided σ is
bounded away from the non-extinction probability of the underlying branching process, σ < 1−eq,d.
In general, it is also helpful to think of σ � n−1; the exact relationship among these quantities will
be made precise below.

2One can in fact describe this as a multi-type Galton-Watson process with an early stopping condition [22], but
it does not appear that these results are relevant to what we need here.

9

We also define some additional notation, for convenience: we let b = qd, and we define the
function t(x) = (1 − q(1 − px))d so that the recurrence defining φ̂j can be written φ̂j = t(φ̂j−1).

Our main result — the dichotomy between the cases where b < 2 and b > 2 — will hinge on
the rate at which φ̂j , the probability of failing to find an answer, decreases as a function of j. Due
to the way in which the search for an answer unfolds down the tree, aspects of the analysis are
similar in flavor to results on the evaluation of Boolean formulas with random inputs [4, 5, 17, 24],
although the technical issues here are sufficiently different that the results in this body of work do
not seem to be directly usable for our analysis.

In this section we obtain three generic bounds that are useful for estimating the decay rate of
φ̂j ; we then apply these to the two cases of interest in Sections 4.1 and 4.2. The first claim gives
bounds on t′(x), the second gives bounds on t(1), and the third combines these (together with the
Mean Value Theorem) to show that the gap between a number in [1 − γ, 1) and 1 (for small γ)
widens by a constant factor each time t is iterated. In particular, this will be used to show that
Θ(log n) iterations of t are needed to reduce a quantity that is 1 − Θ(n−1) to a quantity that is
1 − Θ(1).

Claim 4.1 Fix ε such that 1
dn
< ε < 1. If x ∈ [1 − ε, 1] then t′(x) ∈ [pb(1 − 2bdε), pb].

Proof. We first observe that t′(x) is monotone in x over [0, 1], so

t′(x) ≤ t′(1) = pqd(1 − q(1 − p))d−1 = pb(1 − q(1 − p))d−1 ≤ pb.

For the lower bound,

t′(x) ≥ t′(1 − ε) = pb(1 − q(1 − p(1 − ε)))d−1 = pb(1 − q(1 − (1 −
1

n
)(1 − ε)))d−1

≥ pb(1 − q(
1

n
+ ε))d−1 ≥ pb(1 − 2qdε)d−1 ≥ pb(1 − 2qd2ε) = pb(1 − 2bdε).

Claim 4.2 1 − b
n
≤ t(1) ≤ 1 − 1

dn
.

Proof. For the upper bound,

t(1) = (1 − q(1 − p))d = (1 −
q

n
)d ≥ 1 −

qd

n
= 1 −

b

n
.

For the lower bound,

t(1) = (1 − q(1 − p))d = (1 −
q

n
)d ≤ 1 −

q

n
,

and then we use the fact that qd > 1, and hence q > 1/d, to get t(1) ≤ 1 − 1/dn.

Claim 4.3 Suppose p, b, and ε are such that pb(1 − 2bdε) > 1, and let 0 < γ0 < γ1 ≤ ε. Let

N(γ0, γ1) denote the number of iterations of the function t needed to reduce 1 − γ0 to a quantity

that is ≤ 1 − γ1. Then N(γ0, γ1) = Θ(log(γ1/γ0)).

10

Proof. Since t(1) ≤ 1 − 1/dn, we may assume that γ0 ≥ 1/dn, since this may be achieved with
a single iteration of t. Consider some x = 1 − γ, where 1/dn ≤ γ ≤ ε. By the Mean Value
Theorem, we have t(1) − t(x) = t′(y)(1 − x) for some y ∈ [1 − ε, 1]; rearranging terms, we get
t(x) = t(1) − t′(y)γ. By Claim 4.1, we have t′(y) ∈ [pb(1 − 2bdε), pb]. Now,

t(x) = t(1) − t′(y)γ ≤ 1 − t′(y)γ ≤ 1 − [pb(1 − 2bdε)]γ

and

t(x) = 1 − t′(y)γ + (t(1) − 1) ≥ 1 − t′(y)γ −
b

n
≥ 1 − (t′(y) + db)γ ≥ 1 − (pb+ db)γ.

Hence, each iteration of t widens the gap between the current value and 1 by at least [pb(1−2bdε)] >
1 and at most pb + db. Thus, after k iterations of the function t, 1 − γ0 has been mapped to a
number that is at most 1 − [pb(1 − 2bdε)]kγ0 and at least 1 − (pb+ db)kγ0. For this to drop below
1 − γ1, we have

log(γ1/γ0)/ log (pb(1 − 2bdε)) ≤ N(γ0, γ1) ≤ log(γ1/γ0)/ log (pb+ db).

4.1 The case when b < 2

For a fixed b < 2, we consider the sequence of φ̂j values up to the point at which it drops below
1−σ0, for a small constant σ0 < σ. We show that in this sequence, there is a first phase of constant
length in which the ratio from the right-hand-side of Equation (4) may exceed 2; however, this
is followed by a second phase of length Θ(log n) in which the ratio is at most a constant b1 < 2.
We use this to show that the gaps between successive breakpoints grow geometrically for Θ(log n)
steps, yielding the lower bound in Theorem 4.6.

We choose a constant σ0 < σ small enough, and (since we are only concerned with asymptotics
in n) n large enough, so that pb(1 − 2bdσ0) > 1. We define the first segment of the sequence of φ̂j

to be the set I1 of indices j for which φ̂j ≥ 1 − κ0/n for a constant κ0 > b/(2 − b). (The need for
this bound on κ0 comes from the proof of Lemma 4.5.) We define the second segment to be the set
I2 of indices j for which 1 − κ0/n > φ̂j ≥ 1 − σ0. The third segment is everything else. Claim 4.3
implies

Lemma 4.4 The first segment has length O(1) and the second segment has length Θ(log n).

We will argue that for each of the Θ(log n) steps in the second segment, the gaps between
successive utility values increase by at least a constant factor greater than 1. To this end we
establish the following.

Lemma 4.5 There is a constant b1 < 2 such that for all j in the second segment we have

1 − φ̂j+1

1 − φ̂j

≤ b1.

11

Proof. Choose an index j in the second segment, and let x = φ̂j ∈ [1 − σ0, 1 − κ0/n]. Then

1 − φ̂j+1

1 − φ̂j

=
1 − t(x)

1 − x
=

1 − t(1)

1 − x
+
t(1) − t(x)

1 − x

=
1 − t(1)

1 − x
+ t′(y)

for some y ∈ [x, 1] by the Mean Value Theorem. Now, by Claim 4.1, we have t′(y) ≤ pb. Also,

1 − t(1)

1 − x
≤

1 − (1 − b
n
)

1 − (1 − κ0

n
)

=
b

κ0
.

Now, define b1 = pb+ b
κ0

. Since b/κ0 < 2 − b, we have

1 − φ̂j+1

1 − φ̂j

≤ pb+
b

κ0
= b1

and

b1 = pb+
b

κ0
< b+ (2 − b) = 2.

Since the gaps between reward breakpoints grow multiplicatively for Θ(log n) steps, we have

Theorem 4.6 There is a constant c > 1, depending on b, so that if φ̂j < 1 − σ, then uj ≥ nc.

Hence Rσ(n, b) ≥ nc.

Proof. Recall that ∆j = uj − uj−1. We have

∆j =
∆j

∆j−1
·
∆j−1

∆j−2
· · · · ·

∆3

∆2
· u1.

By Equation (4), if j belongs to the second segment of indices, then

∆j+1

∆j

≥
∆′

j+1

∆j

≥
∆′

j+1 − 1

∆j

=
1

1−φ̂j+1

1−φ̂j

− 1
≥

1

b1 − 1
> 1.

Let c0 = 1
b1−1 . Now since the second segment has length ≥ τ log n for a constant τ > 0, we have

uj ≥ ∆j = u1

j
∏

i=3

∆i

∆i−1
≥

∏

i∈I2

∆i

∆i−1

≥ c
|I2|
0 ≥ cτ log n

0 = nτ log c0 .

12

4.2 The case when b > 2

For a fixed b > 2, we consider the sequence of φ̂j values up to the point at which it drops below
1 − σ. In this case, we show that there is a first phase of length O(log n) in which the utilities
increase by additive increments of constant size. Following this, there is a second phase of constant
length in which the gaps may grow geometrically. However, since this second phase has constant
length, it does not prevent us from obtaining an O(log n) bound on Rσ(n, b).

More concretely, we choose a constant σ0 < σ small enough, and n large enough, so that
pb(1 − 2bdσ0) > 2. We take the sequence of φ̂j (for j > 1) and divide the indices into three

segments: a first segment J1 of indices j for which φ̂j ≥ 1 − σ0, a second segment J2 of indices j

for which 1− σ0 > φ̂j ≥ 1− σ, and a third segment J3 consisting of everything else. By Claim 4.3,
we have

Lemma 4.7 The first segment has length Θ(log n).

Next we use the Mean Value Theorem to show

Lemma 4.8 There is a constant b2 > 2 such that for all j in the first segment we have
1 − φ̂j+1

1 − φ̂j

≥ b2.

Proof. Choose an index j ≥ 2 in the first segment, and let x = φ̂j ∈ [1 − σ0, 1 − 1
dn

]. We observe
that

1 − φ̂j+1

1 − φ̂j

=
1 − t(x)

1 − x
≥
t(1) − t(x)

1 − x
= t′(y)

for some y ∈ [x, 1] by the Mean Value Theorem. Now, by Claim 4.1, we have t′(y) ≥ pb(1−2bdσ0) >
2. The claim now follows with b2 = pb(1 − 2bdσ0).

We bound the length of the second segment by showing that the number of iterations of t
needed to reduce 1 − σ0 to 1 − σ is dominated by the convergence time of a certain branching
process parameter, which in turn can be bounded as a constant in terms of 1−σ0 and 1− eq,d − σ,
where we recall that eq,d is the extinction probability.

Lemma 4.9 The second segment has length O(1).

Proof. We first define a function closely related to t(x):

t(x) = (1 − q(1 − x))d = (qx+ 1 − q)d.

(It differs from t(x) only in the lack of a coefficient of p on x.) t(x) is the generating function for
the distribution of the number of children of a node in the branching process, and iterating it from
any x ∈ [0, 1) converges to the unique eq,d ∈ [0, 1) satisfying the fixed-point equation t(x) = x.
(Note that x = 1 is also a fixed point of t.) We have the following simple chain of inequalities for
x ∈ (eq,d, 1):

t(x) < t(x) < x. (5)

Now we define the following constants. For any x < 1, repeated iteration of t starting from x
converges to eq,d, and so for any ε, ε′ > 0, the value 1−ε′ will be reduced to ≤ eq,d +ε in a constant
number of iterations, where the constant depends on ε and ε′. Let η(ε, ε′) denote this constant.

13

The length of the second segment is the number of iterations of t required to reduce a number
x ≤ 1 − σ0 to a quantity that is ≤ 1 − σ. By Inequality (5), this is no more than the number of
steps required to reduce x to a quantity ≤ 1 − σ by repeated iterations of t. This latter number of
steps is at most η(1 − eq,d − σ, σ0).

Since the reward grows additively for Θ(log n) steps, and then multiplicatively for O(1) steps,
we have

Theorem 4.10 There is a constant c′, depending on b and σ, so that for some j with φ̂j < 1 − σ,
we have uj ≤ c′ log n. Hence Rσ(n, b) = O(log n).

Proof. Let j1 denote the index on which the first segment ends, and let j2 denote the index on
which the second segment ends. We first claim by induction that for all j in the first segment, we
have ∆j ≤ 2(b2 − 1)/(b2 − 2) = O(1). This holds for ∆2; and supposing by induction that it holds
up to ∆j , we have

∆′
j+1 − 1

∆j
=

1

1−φ̂j+1

1−φ̂j

− 1
≤

1

b2 − 1
,

whence

∆j+1 ≤ ∆′
j+1 + 1 ≤

∆j

b2 − 1
+ 2 ≤

2(b2 − 1)

b2 − 2
.

From Lemma 4.7, it follows that φ̂j1 < 1−σ0 and uj1 = O(log n). Now, for the second segment,
x− t(x) is positive on the closed interval [1 − σ, 1 − σ0], so by compactness it achieves a minimum
that is a positive constant µ (depending on σ and σ0). The second segment consists of a constant
number of iterations, in each of which ∆j can increase by at most a factor of

1 +
1

1−φ̂j+1

1−φ̂j

− 1
≤ 1 +

1

φ̂j2 − φ̂j2+1

= 1 +
1

φ̂j2 − t(φ̂j2)
≤ 1 + µ−1.

Thus, in the second segment, the gap between successive quantities uj is multiplied by a constant
for at most a constant number of iterations. Hence uj2 = O(log n) as well.

5 Extensions and Further Directions

Further Directions. By simulation, we have found that the transition at b = 2 is already
apparent for rarities n of moderate value. Analyzing the dependence of the reward on the rarity in
the neighborhood of the critical value b = 2 is an interesting open question. In the special case of
b = 2 when each node deterministically produces two offspring, we can show that utility O(log n) is
sufficient (as in the case b > 2), but this does not immediately suggest a conjecture for the general
case. Another question is the behavior of the lower bound as b approaches 1 from above. We can
show that for query propagation on an infinite path (the deterministic version of b = 1), the reward
needed grows as Ω(n!), but we do not have a detailed picture of the transition between this lower
bound and the one in Theorem 4.6.

14

There are a number of promising further directions for investigation, including the analysis of
query incentives for more complex queries (as Charikar et al. did for a single-player case [6]), and
models of interaction that incorporate response time (as Etzioni et al. did for a non-network setting
[8]). It is natural to conjecture that the transitional behavior at b = 2 in our model hints at a more
general phenomenon related to the growth rate of the underlying network.

Directed Acyclic Graphs and a Model of Competition. Finally, we briefly discuss the issue
of modeling query propagation on networks that are not trees. When queries are propagated on
a tree, there is an implicit form of competition among nodes in different parts of the tree to be
selected to receive the reward. For more general graphs, there is a further notion of competition,
due to the existence of multiple paths from the node that poses to the query to each node that
possesses the answer. We conclude by outlining a model to capture the effects of this type of
competition.

Let G be a (finite or infinite) directed acyclic graph with a single root node v∗: there are no
edges into v∗, and each other node is reachable by a path from v∗. By analogy with the terminology
for trees, for a given node w, we refer to the nodes with an edge to w as its parents, and the nodes
to which w has an edge as its children.

Suppose the root v∗ offers an initial reward for the answer to a query, where the answer is
held by each node independently with probability 1 − p. As before, the query and accompanying
rewards are propagated outward on paths from v∗. Now, in a general directed acyclic graph, a node
w may be offered (possibly different) rewards by multiple parents. Thus, in addition to deciding
what reward to offer, w must also decide which parent(s) to pass the answer back to in the event
that it receives an answer from a child. Moreover, in setting the reward it offers, w must take into
account that its children may be receiving offers of rewards from other parents as well, not just
from w. If we suppose that v∗ selects from among the responding answer-holders based purely on
their identities, and not based on the paths by which these identities were propagated back to v∗,
then it is not hard to argue by induction that, if there is any pure Nash equilibrium, then there is
one in which every node only replies to a single parent offering the highest reward (breaking ties
according to some fixed rule), rather than replying to multiple parents that offer rewards.

For this model, however, we do not know whether there exists a pure Nash equilibrium set of
strategies in every directed acyclic graph. While we can show the existence of pure Nash equilibria
for special cases, via specialized arguments, we believe that understanding the nature of equilibria
for this model in general — and the consequences for efficiency of query propagation — is an
interesting direction for further work.

References

[1] L. A. Adamic, O. Buyukkokten and E. Adar. A social network caught in the Web. First

Monday 8:6(2003).

[2] K.B. Athreya and P.E. Ney. Branching Processes. Springer, 1972.

[3] A. Blanc, Y-K. Liu and A. Vahdat. Designing Incentives for Peer-to-Peer Routing. 2nd Work-

shop on Economics of Peer-to-peer systems, 2004.

15

[4] A. Broder, R. Krauthgamer and M. Mitzenmacher. Improved Classification via Connectivity
Information. Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms, 2000.

[5] A. Brodsky and N. Pippenger. The Boolean Functions Computed by Random Boolean For-
mulas OR How to Grow the Right Function. UBC Computer Science Technical Report, TR-
2003-02, 2003.

[6] M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg, P. Raghavan and A. Sahai. Query Strate-
gies for Priced Information. Proc. 32nd ACM Symposium on Theory of Computing, 2000.

[7] I. Clarke, O. Sandberg, B. Wiley and T. Hong. Freenet: A Distributed Anonymous Information
Storage and Retrieval System. International Workshop on Design Issues in Anonymity and

Unobservability, 2000.

[8] O. Etzioni, S. Hanks, T. Jiang, R.M. Karp, O. Madani and O. Waarts. Efficient information
gathering on the Internet. Proc. IEEE Symposium on Foundations of Computer Science, 1996.

[9] M. Granovetter. The strength of weak ties. American Journal of Sociology, 78(6):1360-1380,
1973.

[10] M. Jackson. A Survey of Models of Network Formation: Stability and Efficiency. In Group

Formation in Economics: Networks, Clubs and Coalitions. G. Demange and M. Wooders, eds.
Cambridge, 2004.

[11] S. Kakade, M. Kearns, L. Ortiz, R. Pemantle and S. Suri. Economic Properties of Social
Networks. Proc. NIPS, 2004.

[12] S. Kamvar, B. Yang and H. Garcia-Molina. Addressing the Non-Cooperation Problem in Com-
petitive P2P Systems. 1st Workshop on Economics of Peer-to-peer systems, 2003.

[13] H. Kautz, B. Selman and M. Shah. ReferralWeb: Combining Social Networks and Collaborative
Filtering. Communications of the ACM, 1997.

[14] R. Krishnan, M. Smith and R. Telang. The Economics of Peer-to-Peer Networks. SSRN Work-
ing Paper, September 2003.

[15] C. Li, B. Yu and K. Sycara. An Incentive Mechanism for Message Relaying in Peer-to-Peer
Discovery. 2nd Workshop on Economics of Peer-to-peer systems, 2004.

[16] E-K Lua, J. Crowcroft, M. Pias, R. Sharma and S. Lim. A Survey and Comparison of Peer-
to-Peer Overlay Network Schemes, IEEE Communications Survey and Tutorial, March 2004

[17] M. Luby, M. Mitzenmacher and A. Shokrollahi. Analysis of Random Processes via And-Or
Tree Evaluation. Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998.

[18] C. H. Papadimitriou. Algorithms, Games, and the Internet. Proc. 33rd ACM Symposium on

Theory of Computing, 2001.

[19] B. Raghavan and A. Snoeren. Priority Forwarding in Ad Hoc Networks with Self-Interested
Parties. 1st Workshop on Economics of Peer-to-peer systems, 2003.

16

[20] P. Resnick, R. Zeckhauser, E. Friedman and K. Kuwabara. Reputation Systems. Communica-

tions of the ACM, 43(12):45-48, 2000.

[21] A. Salkever, in BusinessWeek, 28 October 2003.

[22] B.A. Sevastyanov. Asymptotic Behavior of the Extinction Probabilities for Stopped Branching
Processes. Theory Prob. Appl. 43(2):315-322, 1999.

[23] É. Tardos. Network Games. Proc. 36th ACM Symposium on Theory of Computing, 2004.

[24] L.G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5:363-
366, 1984.

[25] V. Vishnumurthy, S. Chandrakumar and E.G. Sirer. KARMA : A Secure Economic Framework
for P2P Resource Sharing. 1st Workshop on Economics of Peer-to-peer systems, 2003.

[26] A. Vivacqua and H. Lieberman. Agents to Assist in Finding Help. Proc. ACM SIGCHI Conf.

on Human Factors in Computing Systems, 2000.

[27] B. Wellman. The Three Ages of Internet Studies: Ten, Five and Zero Years Ago. New Media

and Society, 6(1):123-129, 2004.

[28] B. Yu and M. P. Singh. Searching Social Networks. Proc. 2nd International Joint Conference

on Autonomous Agents and Multi-Agent Systems, 2003.

[29] B.Yu and M.P. Singh. Incentive Mechanisms for Peer-to-Peer Systems. Proc. 2nd International

Workshop on Agents and Peer-to-Peer Computing, 2003.

[30] J. Zhang and M. Van Alstyne. SWIM: fostering social network based information search. Proc.

ACM SIGCHI Conf. on Human Factors in Computing Systems. 2004.

Appendix: Existence and Uniqueness Results for Equilibrium

Proof of Theorem 2.1. For arguing that this is a Nash equilibrium, we seek to establish that
the quantity (r−x− 1)αv(g, x) is essentially the payoff to node v when it chooses to offer a reward
of x. The proof is complicated by the fact that this is not quite true — the query might not make
it to v; the reward might not be given to v even when it finds an answer; and v receives a value
of r − 1 rather than r − x− 1 if it in fact holds the answer. The crux of the proof lies in the fact
that (r − x− 1)αv(g, x) is proportional to the portion of the payoff over which v “has control,” in
a certain sense.

Given the initial utility r∗ at the root, and a choice of functions f at each node, we can define
three events: C, that the query reaches v; B, that an answer is found in the subtree below v
(including v); and A, that the reward is propagated down to v. We also define an event D, that
v holds the answer. If Yf ,r∗ is a random variable denoting the payoff to v, given f and r∗, then
E [Yf ,r∗] can be computed by conditioning on all 24 Boolean combinations of outcomes for A, B,
C, and D, and taking the sum of these weighted by the probability of this combination. That is,

E [Yf ,r∗] =
∑

(A′,B′,C′,D′)

E
[

Yf ,r∗ | A′ ∩B′ ∩ C ′ ∩D′] · Pr
[

A′ ∩B′ ∩C ′ ∩D′] ,

17

where A′ denotes one of A or A, and likewise for B ′, C ′, and D′. Of these terms, we know that

E
[

Yf ,r∗ | A
]

= E
[

Yf ,r∗ | C
]

= 0,

and Pr
[

A ∩B
]

= 0, so the only terms for which E [Yf ,r∗ | A′ ∩B′ ∩ C ′ ∩D′] ·Pr [A′ ∩B′ ∩ C ′ ∩D′]

is non-zero are the Boolean combinations A ∩B ∩ C ∩D and A ∩B ∩ C ∩D. Thus we have

E [Yf ,r∗] = E [Yf ,r∗ | A ∩B ∩C ∩D] · Pr [A ∩B ∩ C ∩D]

+E
[

Yf ,r∗ | A ∩B ∩ C ∩D
]

· Pr
[

A ∩B ∩ C ∩D
]

.

Now,

Pr
[

A ∩B ∩ C ∩D
]

= Pr
[

A | B ∩ C ∩D
]

· Pr
[

B | C ∩D
]

· Pr
[

C ∩D
]

,

and hence

E [Yf ,r∗] = E [Yf ,r∗ | A ∩B ∩C ∩D] · Pr [A ∩B ∩ C ∩D]

+E
[

Yf ,r∗ | A ∩B ∩ C ∩D
]

· Pr
[

A | B ∩ C ∩D
]

· Pr
[

B | C ∩D
]

· Pr
[

C ∩D
]

.

Let ρv(f , r
∗) denote the reward that is offered to v if the set of reward functions is f , the root’s

utility is r∗, and the reward is propagated all the way to v. Suppose ρv(f , r
∗) = r. We then have

E [Yf ,r∗ | A ∩B ∩ C ∩D] = r − 1,

and
E

[

Yf ,r∗ | A ∩B ∩ C ∩D
]

= r − fv(r) − 1.

Also, by definition,

Pr
[

B | C ∩D
]

= αv(f , fv(r)).

It follows that our definition of the functions g above chooses gv(r) so as to maximize

E
[

Yg,r∗ | A ∩B ∩ C ∩D
]

· Pr
[

B | C ∩D
]

.

In the expression for E [Yg,r∗], the choice of fv(r) does not affect any of the remaining terms, each
of which is positive, and hence offering the reward gv(r) in fact maximizes E [Yg,r∗]. Thus, any
deviation by v from reward gv(r) to some other offered reward hi(r) cannot increase the payoff,
and hence g is a Nash equilibrium.

Proof of Theorem 2.2. By definition we must have fv(1) = 0 = gv(1), and by assumption we
have fv(2) = 1 = gv(2). Now, suppose by way of contradiction that the statement of the theorem
does not hold for f , and let r > 2 be the smallest reward that is reachable at v with respect to f ,
and for which fv(r) 6= gv(r).

In the proof of Theorem 2.1, we establish that the payoff to v from offering x in response to
r has the form ψ + ξ(r − x − 1)αv(f , x), where ψ and ξ are expressions that do not depend on x.
Since all functions in f agree with g on values below r, we can write this as ψ+ξ(r−x−1)αv(g, x).

18

We know that setting x = gv(r) maximizes this expression, so if f is also a Nash equilibrium then
fv(r) must also maximize this expression, since r is reachable. Thus if we view

(r − gv(r) − 1)αv(g, gv(r)) − (r − fv(r) − 1)αv(g, fv(r))

as a bivariate polynomial in variables p and q, then it has rational coefficients, it is not identically
zero (since fv(r) 6= gv(r), and neither is 0 for r > 2), and it has (p, q) as a zero. This contradicts
our assumption that p is generic with respect to q.

19

