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ABSTRACT

In noncooperative networks users make control decisions that optimize their own
performance measure. Focusing on routing, we devise two methodologies for
architecting noncooperative networks, that improve the overall network perfor-
mance. These methodologies are motivated by problem settings arising in the
provisioning and the run time phases of the network. For either phase, Nash

equilibria characterize the operating point of the network.

The goal of the provisioning phase is to allocate link capacities that lead to sys-
temwide efficient Nash equilibria. In general, the solution of such design problems
is counterintuitive, since adding link capacity might lead to a degradation of user
performance. We show that, for systems of parallel links, such paradoxes cannot
occur and the optimal solution coincides with the solution in the single-user case.

We derive some extensions to general network topologies.

During the run time phase, a manager controls the routing of part of the network
flow. The manager is aware of the noncooperative behavior of the users and
makes its routing decisions based on this information while aiming at improving
the overall system performance. We obtain necessary and sufficient conditions
for enforcing an equilibrium that coincides with the global systemwide optimum,

and indicate that these conditions are met in many cases of interest.
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1. Introduction

Control decisions in large scale networks are often made by each user independently, ac-
cording to its own individual performance objectives. Such networks are henceforth called
noncooperative, and game theory [MYE91, FUD92] provides the systematic framework to
study and understand their behavior. Game theoretic models have been employed in the
context of flow control [HSTA91, MAZ91, ZHA92, ALT93, ORD93, KOR93, ALT94], routing
[ECO91, ORD93], and pricing [COC93] in modern networking. These studies mainly investi-
gate the structure of the network operating points, i.e., the Nash equilibria of the respective
games. Such equilibria are inherently inefficient [DUBS86] and, in general, exhibit suboptimal
network performance.

The goal of this paper is to demonstrate that, while users make noncooperative decisions,
there is still room for improving network performance. Improvements can be achieved both
during the provisioning phase, i.e., when the network parameters are sized, and during the
run time phase, i.e., during the operation of the network. Focusing on routing, we give a
uniform methodology for achieving such improvements. This methodology is based on archi-
tecting the network equilibria. The related analysis involves comparisons among operating
points of different games. Such comparisons are scarcely attempted in the game theoretic
literature, mainly due to the complex structure — or lack thereof — of the underlying game.
One exception is [SHE94] which addresses the problem of designing the service discipline of
a switch shared by users performing flow control.

In the provisioning phase, the designer allocates link capacities, i.e., architects the capac-
ity configuration of the network, so that the resulting equilibrium is systemwide “efficient”
or “optimal.” We consider several efficiency criteria for the designer, such as the “price”
(marginal cost) as seen by each user, the total cost of each user, or some combination of the
above. The designer has to decide how much capacity should be allocated to each link, while

satisfying lower bounds specified per link and an upper bound on the total capacity. The
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designer seeks an allocation of capacities that achieves the best performance, according to
the chosen efficiency criterion. The immediate question that arises is whether the designer
should attempt to employ all the available resources. Surprisingly, in general, the answer
is no! To illustrate this counterintuitive behavior of noncooperative networks, we adapt the
Braess paradox [ZAN81, COH90] to our setting and show that addition of resources may

result in a degradation of user performance.

Example: Consider the network depicted in Figure 1. Links (1,2) and (3,4) have each capacity
¢1. Link (1,3) represents a path of n tandem links, each with capacity c¢;. Similarly, links (2,4)
and (2,3) are paths of n consecutive links each with capacities ¢ and cs, respectively. There are I
users, each with an average throughput demand r, sending flow from node 1 to node 4. Each user
aims to route its demand r over the available paths, so as to minimize its total cost defined as the
sum of its delays over all links. The delay per unit of flow on each link is given by the M/M/1
delay formula. Prices (marginal costs) represent derivatives of the cost with respect to user flows.
In [ORD93] it has been shown that for this system there exists a unique and symmetrical Nash
equilibrium, i.e., the flows (and thus, the costs and prices) of the users at equilibrium are equal.
Figures 2 and 3 show, correspondingly, the user price and cost as functions of ¢3 (for ¢; = 2.7,
3 =27, n=>54,1 =10 and r = 0.2). The figures indicate that, for any ¢z > 0, both the price
and the cost of each user are higher than for ¢35 = 0, i.e., eliminating the path (2,3) leads to an
improvement of performance for all users. More surprisingly, this paradoxical behavior persists

even if ¢z = oo.

Figure 1: Network Paradox

For a system of parallel links we show that the Braess paradox cannot occur, that is,
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addition of capacity improves the network performance. We then consider the problem of
allocating such additional capacity to links in an optimal way. We show that the best design
strategy is to allot the additional capacity exclusively to the link with the originally highest
capacity. This solution coincides with the optimal capacity allocation in a network where
routing is centrally controlled. We extend some of these results to general network topologies.

In the run time phase, we assume that, apart from the noncooperative users, there is also
a manager, that attempts to optimize the system performance, by deciding upon the routing
of an additional, network-controlled flow. The manager is aware of the noncooperative
behavior of the users, and thus it can predict their reaction to any routing strategy that it
chooses. This information enables the manager to implement a routing strategy that drives
the users to the “best” Nash equilibrium in terms of system performance, architecting, this
way, the flow configuration of the network. This is the typical scenario of a Stackelberg
game [MYE91], in which the manager acts as a leader and imposes its strategy on the users
which behave as followers. Stackelberg strategies have been investigated in the context of
flow control in [DOU8Y]. In that reference, however, the leader was a selfish user concerned
about its own, rather than the system’s, performance.

For the parallel links model, we derive necessary and sufficient conditions that guarantee
that the manager can enforce an equilibrium that coincides with the global systemwide
optimum.! Moreover, we indicate that these conditions are met in many practical cases. In
other words, the manager is often able to obtain, through limited control, the same system
performance as in the case of centralized control.

The outline of the paper is the following. In Section 2, we present the noncooperative
parallel links model, and explain that it is well-suited for modeling typical configurations in
modern networking. The design issues arising in the provisioning phase are investigated in
Section 3, which is organized as follows. After formulating the problem in Subsection 3.1,
we outline the main results in Subsection 3.2. The rest of the section consists of a detailed
description of the solution. In Subsection 3.3, we explore the structure of the underlying
Nash equilibria. In Subsection 3.4, we establish that addition of capacity to a network
of parallel links cannot degrade performance. With this result at hand, we investigate, in
Subsection 3.5, the optimal strategy for adding capacity to networks of parallel links. In
Subsection 3.6, we extend some of these results to general topologies. The design issues
arising in the run time phase are considered in Section 4. Finally, Section 5 summarizes the

main results and delineates their practical implications. Due to size constraints, most of the

!The global systemwide optimum is the optimal solution of the routing problem when all the flow in the
network is centrally controlled.
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formal proofs are omitted; for these proofs the reader is referred to [KOR94, KOR94b)].

2. The Model

We consider a set Z = {1,...,1} of users, that share a set £ = {1,..., L} of communication
links, interconnecting a common source to a common destination node (Figure 4). Let ¢; be
the capacity of link [, and C' = 37, ¢; be the total capacity of the system of parallel links.
Each user 7 has a throughput demand that is some ergodic process with average rate r* > 0.
We assume that 71 > 72 > ... > rl. Let R = ¥ ,c7 7" denote the total throughput demand of
the users. Throughout this paper, we consider only capacity configurations ¢ = (¢1,...,¢r)
that can accommodate the total user demand, i.e., configurations with C' > R.

User 7 ships its flow by splitting its demand r* over the set of parallel links, according
to some individual performance objective. Let f; denote the expected flow that user ¢ sends
on link {. The user flow configuration f* = (f{,..., fi) is called a routing strategy of user i
and the set F'={f' € RV : f{ >0, l € L; e = r'} of strategies that satisfy the user’s
demand is called the strategy space of user ¢. The system flow configuration f = (f1,..., f7)

is called a routing strategy profile and takes values in the product strategy space F' = ®;e7F".

Figure 4: The system of parallel links

The performance objective of user i is quantified by means of a cost function J'(f). The
user aims to find a strategy f' € F' that minimizes its cost. This optimization problem
depends on the routing decisions of the other users, described by the strategy profile f~* =
(fL,... f 7L it fT) since J¢ is a function of the system flow configuration f. A Nash

equilibrium of the routing game is a strategy profile from which no user finds it beneficial to
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unilaterally deviate. Hence, f € F'is a Nash equilibrium if:

f' € arg min J'(g',f™"), i€ T (2.1)

g’LeFl
The problem of existence and uniqueness of equilibria of the routing game has been
investigated in [ORD93] for certain general classes of cost functions. In the present paper,

we consider cost functions that are the sum of link cost functions:

JUE) =D Ji(E), Jif) = [T(f), 1€L, i€, (22)

lel

where f; = (f},..., f{), and Ti(f;) is the average delay per unit of flow on link / and depends
only on the total flow f; = 3_,c7 f/ on that link. In particular, we concentrate on the M/M/1

delay function:

1
T(fi)) = Q—ﬁ’ﬁ<q. (2.3)
o0, fiza
Note that the stability constraint f; < ¢ of link [ is manifested through the definition of
T;. In particular, since the total user demand R does not exceed the total capacity C of the
network, egs. (2.1) and (2.3) guarantee that at any Nash equilibrium f; < ¢, for all [ € £
and the costs of all users are finite.

Given a strategy profile = of the other users, the cost of user i, as defined by eqs. (2.2)
and (2.3), is a convex function of its strategy f’. Hence, the minimization problem in (2.1)
has a unique solution. The Kuhn-Tucker optimality conditions [LUES84], then, imply that f*
is the optimal response of user 7 to =% if and only if there exists a (Lagrange multiplier) \’,

such that: _
a.J!

No=Z2(f),if ff >0, leL 2.4

Wﬂ) Ji (2.4)
O .

N< (), if fi=0, leL 2.5
_W%) i (2.5)

Yo fi=r =0, (2.6)

i.e., a strategy profile f € F is a Nash equilibrium, if and only if there exist A, [ € £, such
that the optimality conditions (2.4)—(2.6) are satisfied for all ¢ € Z. The above conditions
imply that the Lagrange multiplier A* is in fact the marginal cost of user i at the optimality
point. In accordance with the economics terminology, A* will be referred to as the price of

user ¢.
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For the cost function Ji(f) given by egs. (2.2) and (2.3), we have:

0.Ji
afi

a—f

(cr — f)?

(f) = fiT/(f) + Tu(f) = (2.7)
where T} is the derivative of T; with respect to fi, and f;* = 2t fl] is the total flow that
all users except the 2-th send on link /.

In [ORD93] it has been shown that the routing game described above has a unique Nash

equilibrium.

2.1 Special Cases

At times we will concentrate on special types of users, defined in the following.

Definition 2.1 Identical users: we say that users are identical if their demands are all

equal, that is, v =1’ for alli,j € T.

The Nash equilibrium of identical users is symmetrical, i.e., ff = fl] = fi/I for all 1,5 € T
[ORDY3].

Definition 2.2 Simple users: we say that a user is simple if it routes all of its flow through

links (or paths) of minimal delay.

In general, routing of simple users does not satisfy the optimality conditions (2.4)—(2.6).
However, many times users route according to the “simple” scheme due to practical reasons.
In fact, many typical routing algorithms send flow through shortest paths, without getting
into the trouble of accounting for derivatives (7)) and bifurcating flow. The Nash equilibrium
of simple users in a system of parallel links is unique with respect to the total link flows
[ORD93], and the corresponding necessary and sufficient conditions are, the existence of

some A, such that:

)\:Tl, iffl>0, le L (28)
)\ST], iff;zO, le l (29)

Do li=R fiz0 (2.10)

We shall refer to the value of A as the price of the simple users. From (2.8)—(2.10), it is easy
to see that users that route according to the optimality conditions (2.4)—(2.6) become simple
as their population grows to infinity and their individual demands become infinitesimally
small, while their total demand remains R. This is the typical scenario in a transportation

network.
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Definition 2.3 Consistent users: we say that users are consistent (for a given capacity

configuration) if, at the Nash equilibrium, they all use the same set of links.

Due to the structure of their Nash equilibrium, identical users are consistent. It is easy to
verify that simple users are also consistent. Finally, consistent users are typical of systems
with heavy traffic, i.e., when R gets close to C, in which case all users will use all links in

the network.

2.2 Validity of the Model

We note that systems of parallel links represent an appropriate model for seemingly unrelated
networking problems. Consider, for example, a network in which resources are pre-allocated
to various routing paths that do not interfere. Such scenaria are common in modern network-
ing. In broadband networks bandwidth is separated among different virtual paths, resulting
effectively in a system of parallel and non-interfering “links” between source/destination
pairs. Another example is that of internetworking, in which each “link” models a different

sub-network.

3. Architecting the Capacity Configuration in the Provisioning
Phase

3.1 Problem Formulation

Consider a network of parallel links with initial capacity configuration ¢ and total capacity
C° > R. We assume, without loss of generality, that ¢ > ... > ¢ > 0. Suppose that
there exists some additional capacity allowance of at most A, which the network designer
can distribute among the network links. The aim of the designer is to implement a capacity
configuration ¢, with ¢, > ¢} for all links [ € £, that results in a network, with a total capacity
of at most C°+ A, that is “efficient” at the corresponding Nash equilibrium. Without loss of
generality, we can concentrate on capacity configurations ¢ that preserve the initial link order,
i.e., configurations with ¢; > ... > cy.? Therefore, the set of all capacity configurations that

can be implemented by the designer can be described by:

CA:{CERilclz...ZCL;C]ZC?,ZE/:,;Z — ) <A}

leﬁ(cl

2The properties of the Nash equilibrium in a system of parallel links with capacity configuration ¢ depends
on the actual link capacities and not on the link “labels,” that are determined by the initial configuration c°.
Hence, renaming the links, so that ¢; > ... > c¢r, does not affect the characteristics of the resulting

equilibrium.
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Each capacity configuration in Ca induces a routing game that has a unique Nash equi-
librium. Therefore, we can define a function N : Co — IR'%, that assigns to each ¢ € Ca
the Nash equilibrium A (c) of its respective routing game. N will be referred to as the Nash
mapping. The set Co will be called the space of routing games.

The designer may have different measures to characterize the efficiency of a capacity
configuration. In this work, we shall concentrate on measures that are expressed by means
of either the user prices or costs. We mention that, although the user’s cost is a direct
measure of its level of satisfaction, prices may be a more important measure from a system’s
point of view, since they account for the level of congestion as seen by users and are the
direct indication of how each user could accommodate fluctuations in the system’s state.
The designer can consider various ways of combining either the prices or the costs of the
users. We shall consider the following two: userwise optimization, i.e., trying to reduce the
price or cost of each and every user, and total optimization, i.e., trying to reduce the sum of
all prices or costs.

The various performance measures of the designer are formally stated in the following

definitions:

Definition 3.1 Userwise/total efficiency: Consider two capacily configurations ¢ and ¢ and
let X' and X (correspondingly, J' and JAZ) be the price (correspondingly, cost) of user i at the

respective equilibria. Then:

1. Configuration € is said to be userwise price (correspondingly, cost) efficient relative to
configuration c, if, for all © € I, it holds that A< N (correspondingly, Ji < J).

2. Configuration ¢ is said to be totally price (correspondingly, cost) efficient relative to
configuration c, tf it holds that Y ;cr A< Sier A' (correspondingly, 3;cr Ji < Sierd).

Definition 3.2 Userwise/total optimality: Given a set of capacity configurations C, a ca-
pacity configuration c* € C is said to be:

1. userwise price (correspondingly, cost) optimal, if it is userwise price (correspondingly,

cost) efficient relative to any c € C,

2. totally price (correspondingly, cost) optimal, if it is totally price (correspondingly, cost)
efficient relative to any c € C.

Obviously, userwise efficiency (optimality) implies total efficiency (optimality). However,

price and cost efficiency (optimality) do not imply each other in either direction. Note also
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that, in general, existence of userwise optima cannot be guaranteed even if total optima do
exist.
The optimal capacity allocation problem, corresponding to the various designer’s perfor-

mance measures, is described as follows:

Given a system of parallel links £ with users 7, an (initial) capacity configuration
c? and an additional capacity allowance A, find a capacity configuration c¢* that

is userwise/totally price/cost optimal with respect to Ca.

By definition , the initial capacity ¢ of every link [ is positive, in other words, the designer
can only add capacity to existing links. Nonetheless, as shown in [KOR94], the results of
the following subsections can be easily extended to the case where ¢ = 0 for some links
[ € L, i.e., when the designer is also allowed to add a (finite) number of links to the network.
Although the problem is formulated as allocating additional capacity to an existing network,
this formulation is equivalent to the typical capacity allocation problem, where the capacity
of each link has to be higher than a lower bound.

Solving the optimal capacity allocation problem in a network shared by noncooperative
users amounts to comparing the Nash equilibria of the routing games induced by different
capacity configurations in Ca. Comparing the outcomes of different games is, in general,
a highly complex task and is feasible only if an explicit characterization of the respective
equilibria is available. The structure of the unique Nash equilibrium of the routing game is
investigated in subsection 3.3. Before we proceed, let us first summarize the main results of

this section.

3.2 Outline of Results

Following is an informal summary of the main results on the design problem. Unless other-

wise stated, the results apply to the model formulated in Section 2.

1. Addition of (any amount of) capacity to any link decreases the price of all users, i.e.,

it results in a configuration that is userwise (thus, totally) price efficient.

2. Addition of capacity to the link with the initially highest capacity (i.e., to link 1)

results in a totally cost efficient configuration.

3. For consistent users (thus, in particular, for identical or simple users), addition of

capacity to any link results with a userwise cost efficient configuration.
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4. The capacity configuration that results from allocating the entire additional capacity
allowance A to the link with the initially highest capacity (i.e., to link 1) is userwise
(thus, totally) price optimal in Ca.

5. Cost optimality of the above configuration is shown when users are consistent (thus,

in particular, when they are identical or simple), and also in the case of two users.

6. Considering general topologies (i.e., not necessarily systems of parallel links), we obtain

methods for adding capacity to links so the Braess paradox does not occur.

3.3 Structure of the Nash Equilibrium

In this subsection we study the structure of the Nash equilibrium of the routing game in
a network of parallel links with capacity configuration ¢. In [ORD93] it has been shown
that the Nash equilibrium of the routing game exhibits a number of intuitive monotonicity

properties that are summarized in the following:

Lemma 3.3 Letf be the unique Nash equilibrium of the routing game in a network of parallel

links with capacity configuration c. Then:

1. For every user i € I, we have ft > fi > ... > ft. In particular, for fi > 0, we have
=1 if and only if ¢; = c,p.

2. For every link | € L, we have ft > f2 > ... > fL. In particular, for fi > 0, we have
i = fz] if and only if r* = r7.

3. c1—fizea—fi>...>2c.— [, or equivalently, T < Ty, < ... < Tp. In particular,
T, =T, if and only if ¢; = c,p.

4. For every user i € I, define ¢ = ¢; — fl_i, l € L. Then, ¢t > ¢, > ...>c. In

particular, ¢ = ¢, if and only if ¢; = c,,.

Note that ¢} = ¢; — fl_i is the residual capacity of link [ as seen by user ¢, given that the
strategy profile of the other users is f=°.

Let £ denote the set of links that receive some flow from user i, and Z; denote the set
of users that send flow over link [. The first statement in Lemma 3.3 implies that for every
user 7, there exists some link L¢, such that fi > 0 for all [ < L!, and f} = 0 for [ > L*, that
is, L' = {1,2,...,L'}. Similarly, the second statement in the Lemma implies that for every
link /, there exists some user [;, such that f/ > 0 for all : < [}, and fj = 0 for i > I}, that is,
I ={1,2,....1;}.
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Consider now the best reply f* of user i to a fixed strategy profile f=% of the other users.
This is the unique solution to the optimal routing problem in a network of parallel links with
capacities ¢}, [ € £, and is determined by the Kuhn-Tucker optimality conditions (2.4)-(2.6).
Note that conditions (2.4) and (2.5) can be written as:

i
G

N=—— 1
(e — f)?

. if fi >0, (3.1)

A S W, if fl = 0, (32)

for any link [ € L.
In the sequel, we will give an explicit characterization of the structure of the user’s
equilibrium strategy f*, as a function of ¢' = (¢ci,...,¢c}), which depends on the capacity

configuration ¢ and the strategy profile f=* of the other users. To this end, let us define:

Gi=3""d a1 L, i€l (3.3)
qzm<%H:§iﬂ@:0—RﬂieL

where R~ = D ! is the total demand of all users except the i-th. Note that C — R~ is
the total (residual) capacity of the network as seen by user ¢. Then it is easy to verify that

¢; > ¢, (see Lemma 3.3) implies:
Gy <Gy, =2, L—1, (3.4)

with equality holding if and only if ¢; = ¢;41. We are now ready to state the following:

Proposition 3.4 The Nash equilibrium f of the routing game in a system of parallel links

with capacity configuration c is described by:

C? - (ETLniZI Cin - Ti)

0, L'<I<L
where, for every user i € I, the threshold L' is determined by:

o<t <G (3.6)
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The equiltbrium price and the equilibrium cost for user v are respectively:

. 2
e : Yt /d
N= {EL’L;\/CT} , szxi(q—fl)—y: {Lil—\/:l}—y. (3.7)

T o T ol
=16 —T =1 =16 —T

O

From Proposition 3.4, and especially the expressions for the equilibrium prices and costs
of the users, it is clear that the set of links over which each user sends its flow has a prominent
role in the properties of the Nash equilibrium of the routing game. In studying the capacity
allocation problem, we need to compare the equilibria of games that are induced by different
capacity configurations in Cax. If the resulting equilibria are such that the sets of links
over which each user sends its flow do not coincide at both equilibria, such comparisons
are extremely complex, if possible at all. In [KOR94|, we exploit the structure of the Nash
equilibrium of the routing game, given by Proposition 3.4, to show that the Nash mapping
N, that assigns to each capacity configuration in Co the unique equilibrium of the induced
routing game, is continuous. In the same reference, we show that this fundamental property
allows us to investigate the optimal capacity allocation problem based on comparisons of
capacity configurations whose “distance” in Cp is sufficiently small, so that each user sends
its flow over the same links under both configurations. The related results from [KOR94]

are summarized in the Appendix.

3.4 Efficiency of Capacity Addition

In Section 1 we demonstrated by way of examples that, in general, addition of capacity to a
network may increase both the user prices and costs. In this subsection we investigate the
addition of capacity to systems of parallel links and show that, under various conditions, the
paradoxical behavior of general topology networks cannot occur in this setting.

We say that a capacity configuration € is an augmentation of a capacity configuration ¢
if ¢ > ¢ for all [ and 37, ¢ > 37, ¢;. Throughout this subsection we shall compare the Nash
equilibrium of a capacity configuration ¢ to that of some augmentation ¢. The “hat” values
will refer to configuration ¢, while the “non-hat” values to c¢. For example, A and A are the
prices of user 7 under ¢ and c, respectively.

The first lemma shows that addition of capacity is always efficient as with respect to

prices.

Lemma 3.5 If a capacity configuration ¢ is an augmentation of a capacity configuration c

then € is userwise price efficient relative to c, that is, X< A, for all i € I. Moreover, the
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equilibrium delay of each link 1 is lower (not higher) under configuration €, i.e., T < 1y, for
alll e L.

Proof: See the Appendix.

O

Due to the results presented in the next subsection, we are particularly interested in
augmentations in which capacity is added to link 1 solely. The second lemma shows that,

for such augmentations, the resulting configuration is totally cost efficient.

Lemma 3.6 Let ¢ and ¢ be two capacity configurations such that ¢, = ¢; for all l > 1 and

¢4 > ¢1. Then ¢ s totally cost efficient relative to c.

Proof: See the Appendix.

O

The following two lemmata establish userwise cost efficiency of capacity addition in some

cases of special interest.

Lemma 3.7 Let ¢ and ¢ be two capacity configurations such that ¢ is an augmentation of
c. Assume that users are consistent with respect to both ¢ and c. Then € is userwise cost
efficient relative to ¢, that is, Ji < Jt, foralli € T.

O

The above result applies, in particular, both to identical users and to simple users, since
they belong to the class of consistent users, under all capacity configurations. The next
lemma establishes userwise cost efficiency in the case of two users (I = 2) and for adding

capacity exclusively to link 1.

Lemma 3.8 Let ¢ and ¢ be two capacity configurations such that ¢, = ¢; for all 1l > 1 and

¢1 > c¢1. Then, for I =2, ¢ is userwise cost efficient relative to c.
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3.5 Optimal Capacity Allocation

Let us now proceed to investigate the optimal capacity allocation problem in a system of
parallel links, according to the various performance measures defined in Section 3.1. The
main result of this section, namely Theorem 3.14, asserts that the capacity configuration
c* = c® + Ae;,? that results from allocating the entire additional capacity to the link with
the initially highest capacity is userwise price optimal in Cao. Furthermore, ¢* will be shown
to be userwise cost optimal for a number of special cases of interest.

While this is a simple and intuitive result, its proof requires systematic analysis that
establishes some “order” in the complex structure of the underlying game. Although most
of the formal proofs are excluded from the main text, the lemmata presented in this section
delineate the methodology through which that task has been achieved. We note that, while
most of these results have a clear, intuitive appeal and a simple proof in the typical single-
user case, the proofs for the multi-user (game) case, considered here, demand a cautious and
rather tedious analysis.

We start by considering two capacity configurations ¢ and €, such that ¢ is derived from
c by a “transfer” of capacity from some link ¢ with ¢, < ¢; to link 1, and show that ¢ is
userwise price efficient with respect to c¢. Hence, if an additional capacity of exactly A is to
be allocated to the system, then ¢* is the optimal capacity configuration. By virtue of the

*

price efficiency of capacity addition (Lemma 3.5), ¢* is also userwise price optimal in the

entire space of games Cxa, that allows for addition of capacity not necessarily equal, but also
less than A.

Consider a system of parallel links with initial capacity configuration ¢ € Cx. Let € =
c+ A,(e; — e;) be the configuration that results by transferring capacity A, > 0 from some
link ¢ > 1, with c(qJ < ¢y < ¢q, tolink 1. As before, the “hat” values will refer to configuration
¢, while the “non-hat” values to the initial configuration c¢. Recall that £' = {1,..., L'} is
the set of links that receive flow from user ¢, while Z; = {1, ..., I;} is the set of users that send
flow to link [, both under configuration ¢. By virtue of the continuity properties presented in
the Appendix (Lemma A.2), we choose A, sufficiently small, so that this transfer of capacity
does not force any user to change the set of links over which it sends its flow, i.e., L= L,
for all 2 € Z. Then, 1, = 7,, for all links [ € L.

The comparison of capacity configurations & and c is carried out in the sequel, under the
assumption L= L', i € T, in a series of four lemmata. Lemma 3.9, examines the effect of

the transfer of capacity from link ¢ to link 1 on the equilibrium delays of these two links.

3e; is the vector in IR with the I-th component equal to 1 and all other components equal to 0.
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Lemmata 3.10 and 3.11 show that the transfer of capacity affects the prices of the users and
the equilibrium delays of the links in £\{1, ¢} in an “ordered” way - in a sense that will be
explained in the lemmata — and play a key role in the proof of the main result of this section.
Finally, userwise price efficiency of ¢ with respect to ¢ will be established in Lemma 3.12.
These results will be extended to the case of an arbitrary capacity transfer A,, that might
lead to L # L' for some user i, in Theorem 3.13.

The following lemma shows that, under capacity configuration ¢, the delay on link 1 is

lower, while the delay on link ¢ is higher.

Lemma 3.9 Consider two capacity configurations c, ¢ € Ca with ¢ = c+Ay(e1—e,). Then,
Tl S T1 and Tq > Tq.

Proof: See the Appendix.
O

The next lemma asserts that the transfer of capacity from link ¢ to link 1 affects the
prices of all users that send flow to link ¢ in the same way, that is, either A > A for all
1 € 1,, or A< M oforall i € Z,. Similarly, either all links with capacity lower than link ¢

increase their equilibrium delays with €, or else all of them decrease their equilibrium delays.

Lemma 3.10 Consider two capacity configurations ¢,é € Ca with ¢ = ¢ + Ay(e; — e,),
where Ay > 0 s such that L= L, for all i € I. Suppose that T, # . Then:

1 IF XY > AL, then X > N, for alli € T, and Ty > T, for all links | with ¢ <1< L',
2. If AL < AL, then N < X, for all i € T, and Ty < T}, for all links [ with ¢ <1< L*.
Proof: See the Appendix.
O

In the following lemma we show that if the delay of some link /in {2,...,¢— 1} is higher

under configuration €, then the same is true for all links in {{ +1,...,¢— 1}.

Lemma 3.11 Consider two capacity configurations c,é € Ca with ¢ = ¢ + Ay(e; — e,),
where A, > 0 is such that L= L, for all : € I. For any link | < q — 1, if Ty > T then
T, > T, for all links n € {{+1,...,9g—1}.

Proof: See the Appendix.
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Let us now proceed by showing that ¢ is userwise price efficient compared to ¢, under the
assumption L= L', for all : € Z. The proof is given in the following lemma, which asserts

also that the equilibrium delays on all links except link ¢ are lower under configuration €.

Lemma 3.12 Consider two capacity configurations ¢,& € Ca with ¢ = ¢ + Ay(e; — e,),
where A, > 0 s such that L= L, for all t € I. Then, for every user it € I, we have
X < X, Furthermore, for every link [ € L\{q}, we have T, < T

Proof: If no user sends flow to link ¢, i.e., if L' < ¢,* transferring capacity from link ¢ to
link 1 is, in fact, equivalent to adding capacity to the system of parallel links £’ = {1,..., L'},
and the result is immediate from the efficiency of capacity addition in Lemma 3.5. Thus, we
have to consider only the case Z, # ), i.e., L' > ¢. In particular, without loss of generality,
we will assume that user 1 (the one with the highest throughput demand) sends flow on all
links in the network, i.e., that L! = L.

Let us first show that A\! < Al. Assume by contradiction that AL > AL Then, by
Lemma 3.10, T, > T, for all links [ € {g+1,...,L}. Observe that an immediate consequence
of Lemma 3.11 is that there exists some link [y, 1 < [y < ¢, such that Tl < Tj for all
le{l,...,lh}, and Ty > Ty for all [ € {lo+1,...,q}. Therefore, the delay of all links in
{1,...,lo} is lower under configuration ¢, while the delay of all links in {lop + 1,..., L} is
(¢ — fl) — (e — fi)], I € L. Note that:

lo L .
PONNETED D2 (3.8)

since Y (& — fl) = Yieclae — fi) = C — R, and for any link [ € {1,...,ly}, we have
¢ — fi > ¢ — fi, while for [ € {lo +1,..., L} the opposite inequality holds. Recalling (from
Lemma 3.3) that ¢; — fi > ¢i41 — fi41, [ € £, we have:

higher. Let us now define: y; =

L L L

> o(a - fl)2 > (a—f)? = Z{ (a—f)+u}’ + E {(a—f) =y} =D (a—fH)
(=1 (=1 I=ly+1 =1
= E!/z +2{Z L=y = Y (Cl—fz)‘yz}
=1 {=ly+1

Y

lo L
Ey? +2 {(Clo — fi) Z‘yz — (Clo41 = fro41) Z ’yz}
=1 =1

I=lg+1

L Io
= Ey? + 2{(ct, — f1,) — (o1 — fig+1)} Zyl > 0, (3.9)
=1 =1

4Recall that L' > L for all i € 7.
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where the last equality is obtained using eq. (3.8). From eq. (3.1) and (3.9), we have:®

-1 -1
il = Yiecra— R Yiecra— R

N ; =\ 3.10
Sec(ér— )2 Tiecr(a— fi)? ’ ( )

since £! = £. But this contradicts the assumption AL > AL Therefore, A < Al. Lemma 3.10,
then, implies that Ty < Ty for all [ > q, and N < X forallie Z,. Thus, Y ez, X< YieT, A
As explained in the remark following the proof of Lemma 3.11 in the Appendix, this implies
that Tq_l < T,—;. Applying Lemma 3.11 inductively for [ = ¢ — 2,...,2, it follows that
T, < Ty, for every link [ in {2,...,9g—1}. In view of T, <1 (Lemma 3.9), this concludes
the proof of the second statement in the lemma.

It remains to be shown that A < A, for all users ¢ € Z. Assume by contradiction that
there exists some user j, such that o> M Then, j € T\Z,, since o< M oforall i € 1,.
Therefore, T) < T}, for all [ € £7. Since flel’ +T =X < N = fljffl' + T, this implies
that flj > fl] for all 1 € £7. Thus, 1’ = Y 1cp) fl] > Y lec fl] = 1/, which is a contradiction.
Therefore, for all : € 7, we have X< A*, and this completes the proof.

a

Let us now generalize the results in Lemma 3.12 to the case where the transfer of capacity
from link ¢ to link 1 forces some users to change the set of links over which they send
their flow. The general idea is to envision the capacity A, as being transferred in small
“steps” 64(1), 6,(2),... According to the continuity properties presented in the Appendix
(Lemma A.2), each capacity transfer 6,(n) can be chosen such that it does not cause any
user to change its set of links, but brings some user 7 exactly to the point where it is about
to either stop sending flow to its last link, or to start sending flow to the next one. At
that point, we appropriately redefine the set of links over which user ¢ sends its flow, and
choose the next transfer of capacity é,(n 4 1), such that it has the same properties with
6,(n). Proceeding this way, the entire capacity A, is eventually transferred after a (possibly
infinite) number of steps. Applying Lemma 3.12 to each step, the result follows.

Theorem 3.13 Consider two capacity configurations c,¢é € Ca with ¢ = ¢+ Ay(e1 — e,),

where 0 < A, < ¢, — cg. Then:

1. Configuration ¢ is userwise price efficient compared to c, i.e, X< A, foralli € T.

2. The delay of all links except link q is lower under &, while the delay of link q ts higher,
that is, Ty < T, for all 1 € £\ {q} and T, > T,.

SWriting (3.1) as M (¢; — fi)> = e; — fi + f}, and summing over [ € £, the equalities in (3.10) follow.
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Proof: See the Appendix.

O

We are now ready to prove the main result of this section, namely that the capacity
configuration that is obtained by allocating the entire additional capacity A to link 1 is

userwise and, therefore, totally price efficient in Ca.

Theorem 3.14 Consider a system of parallel links with initial capacity configuration c°,
shared by I noncooperative users, and an additional capacity allowance A. The capacity
configuration ¢* = c° + Aey, that results from allocating the entire additional capacity to
the link with the initially highest capacity (i.e., to link 1), is userwise (thus, totally) price

optimal in Cx .

Proof: Let Ds denote the subspace of routing games that is generated by allocating an
additional capacity of exactly 6, 0 < 6 < A, to a system of parallel links with initial
capacity configuration ¢. Then Cp = Uo<s<aDs. For every 6, define ¢*(6) = c? + fe;.
Theorem 3.13, then, implies that ¢*(6) is userwise price efficient in Ds. To see this consider
any ¢ € Ds. From Theorem 3.13, the capacity configuration ¢ + (cz, — ¢} )(e; — er), that is
obtained by reducing the capacity of link L to its lower bound and adding the excess capacity
(¢ —c}) to link 1, is userwise price efficient compared to ¢. Proceeding inductively, for every
m > 1, the configuration ¢ + 27 (c; — ¢)(e; — ;) is userwise price efficient compared to
¢+ Yl pi(c—c)(er —er). Hence, ¢ + e, = ¢+ S/ (c1 — ¢)(er — ;) is userwise price
efficient with respect to ¢, that is, ¢*(6) is userwise price optimal in Ds. From Lemma 3.5,
c* = c*(A) is userwise price efficient with respect to any ¢*(6) with 0 < 6 < A. Therefore,

c” is userwise price optimal in Cx.

O

The following two propositions establish that the userwise price optimal capacity config-

uration ¢ is also userwise cost optimal in some special cases of interest.

Proposition 3.15 Consider a system of parallel links with initial capacity configuration c°,
shared by I users, consistent at all capacity configurations in Ca, and an additional capacity
allowance A. The capacity configuration c* = c®+ Aey, that results from allocating the entire
additional capacity to the link with the initially highest capacity (i.e., to link 1), is userwise
(thus, totally) cost optimal in Ca.
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Note that the above result applies to the special cases of simple and of identical users.

Proposition 3.16 Consider a system of parallel links with initial capacity configuration c°,
shared by two users, and an additional capacity allowance A. The capacity configuration
c* = c + Aey, that results from allocating the entire additional capacity to the link with the
inttially highest capacity (i.e., to link 1), is userwise (thus, totally) cost optimal in Ca.

3.6 General Topologies

The example presented in the Introduction shows that adding capacity to a network, even
in infinite amounts, may result in an increase of both the price and cost of each and every
user. This indicates that an upgrade of a general network, in terms of capacity and link
addition, should be carried out in a cautious way. In this subsection we establish conditions
for the Braess paradox not to occur in any network topology. The terminology introduced
in previous subsections for the parallel links model, readily extends to the general case. Due
to space limits, we omit the details, which can be found in [KOR94].

We consider now a network G(V, L), where V is a finite set of nodes and £L C VYV x V is a
set of directed links. A set Z = {1,2,..., 1} of users share the network G. We shall assume
that all users ship flow from a common source s to a common destination ¢. As before,
each user 7 has a throughput demand that is some ergodic process with average rate r' (and
rt > 2 > ... > rl). User i ships its flow by splitting this demand through the various
paths connecting the source to the destination, according to its performance objective. The
terms of user flow f;, user routing strategy f', user strategy space F"' and system flow
configuration f, originally defined in the context of parallel links, readily apply to general
topologies, except that now the strategy space F* of user ¢ should account for the conservation
of flow at nodes [KOR94]. The cost function J* of user 7 is the sum of link cost functions
J}, taken over all network links [ € £. The concepts of Nash equilibria, Nash mapping and
optimality conditions are derived similarly as for parallel links. The various versions of the
design problem, as previously stated, apply also for the case of general topologies. We note
that, for a general topology, the price of a user 7 is its Lagrange multiplier (implied by the
optimality conditions) at the source node.

The class of problems investigated in this paper is well defined if the Nash equilibrium,
of any capacity configuration, is unique. Whether this property holds in general topologies
is an open question. Thus, we shall concentrate on cases for which uniqueness has been

established, such as those of identical users and simple users [ORD93].
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Consider an upgrade that is achieved by multiplying the capacity of each link by some
constant factor a > 1. That is, out of a capacity configuration ¢ = (¢;)icc we obtain a
capacity configuration & = (¢)eg, such that, for all [ € £, ¢ = a¢;. We say that € is an

a-product of ¢. We then have:

Proposition 3.17 In a general topology, consider two capacity configurations ¢ and c, such

that ¢ s an a-product of ¢, a > 1. Then:
1. If the users are simple, then € is userwise price and cost efficient relative to c.

2. If users are identical, then € is userwise price efficient relative to c; moreover, for

a > 1, ¢ is also userwise cost efficient.
O

What the above result suggests is that the potential danger of degradation in performance,
as manifested in the Braess paradox, can be avoided by upgrading the network uniformly.
Consider now an upgrade that is achieved by adding capacity to a link between the source
s and the destination ¢ (and, as a special case, adding a new link between s and ¢). Denote
by ¢ and &, respectively, the capacity configurations before and after this addition. We say

that ¢ is a direct augmentation of c. We then have:

Proposition 3.18 In a general topology, consider two capacity configurations ¢ and ¢, such

that ¢ is a direct augmentation of c. Then:
1. If the users are simple, then € is userwise price and cost efficient relative to c.

2. If users are tdentical, then € is userwise price efficient relative to c.
O

This result suggests that yet another way to avoid the paradox is to upgrade the network
through direct connections between source and destination. In fact, this result extends that
of Lemma 3.5, which has been obtained for parallel links. We conclude that upgrading direct
connections is always beneficial (at least for the classes of users considered), independently

of the topology and configuration of other possible connections.
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4. Architecting the Flow Configuration in the Run Time Phase

As explained in the Introduction, improvement of the systemwide performance of a nonco-
operative network can be performed not only in the provisioning phase, but also during the
actual operation of the network. In this section we demonstrate this approach based on the
noncooperative routing model described in Section 2. We assume that, apart from the flow
generated by the self-optimizing users, there is also some flow whose routing is controlled
by a central network entity, that will be referred to as the “manager.” Typical examples
of such flows are the traffic generated by signaling and/or control mechanisms, as well as
traffic of users that belong to virtual networks. The manager has the following goals and
capabilities: (i) it aims at optimizing the system performance, i.e., the average delay of all
flow in the network, and (ii) it is cognizant of the user throughput demands (‘) and of
the noncooperative structure of their routing. The first property makes the manager just
another user, whose cost function corresponds to the system (rather than its own) perfor-
mance. The second property, however, enables the manager to predict the response of the
noncooperative users to any strategy that it chooses, and hence to determine a strategy of
its own flow that would pilot them to a Nash equilibrium that minimizes the manager’s cost.
Therefore, instead of reacting to the routing strategies of the users, the manager fizes this
strategy and lets them converge to their respective equilibrium.

This is the typical scenario of a Stackelberg game [MYE91] in which the manager plays
the role of the “leader,” and the noncooperative users play the role of the “followers”.® An
optimal strategy of the leader together with the respective Nash equilibrium of the followers
is a Stackelberg equilibrium. The presence of sophisticated users that can acquire information
about the demands and the cost functions of the other users and become Stackelberg leaders,
in order to optimize their own performance, is in general undesirable [SHE94]|. However, in
the problem considered here, the cost function of the manager is that of the system, and
therefore it plays a social, rather than a selfish role.

In this section we investigate the optimal strategy of the leader. In particular, we address
the following question: is it possible for the leader to impose a strategy that drives the system
into the global optimum, i.e., to the point that corresponds to the solution of a routing
problem, in which the leader has full control over the entire flow? Intuitively, one would
expect that the leader cannot enforce the global optimum, since it controls only part of the
flow, while the rest is controlled by noncooperative users. Rather surprisingly, the results

reported in the sequel show that in most cases the leader does have such capability. Due to

5The terms “manager” and “leader,” as well as “users” and “followers,”

this section.

will be used interchangeably in
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space limits, we confine ourselves to a general and brief overview of the results; details can
be found in [KOR94b]. The analysis of the special case of a leader and a single follower is

presented in the Appendix. We begin with an informal statement of the results.

1. In the special case of a single follower, the leader can always enforce the global optimum,

and we specify its optimal strategy.

2. In the general case of any (finite) number of followers, the leader can enforce the global
optimum if and only if its demand is larger than some specified threshold r°, in which

case we specify the leader’s optimal strategy.

3. The threshold r° is feasible, in the sense that the total demand of the followers plus
r? is lower than the total capacity of the network (assuming, of course, that the total
demand of followers itself is less than the total capacity). Thus, for every set of

(feasible) followers, there are feasible leaders that can enforce the global optimum.

4. In heavy loaded networks it is “easy” for the leader to enforce the global optimum (i.e.,
the threshold r° is small).

As the number of users increases, it becomes harder for the leader to enforce the global

(&3¢

optimum (i.e., the threshold r® increases).

6. The higher the difference in the throughput demand of any two followers, the easier
it becomes for the leader to enforce the global optimum. Conversely, the value of the

threshold of the leader is highest when all followers are identical.

7. In the case of an infinite number of followers (i.e., the case of simple followers), the
leader cannot, in general, enforce the global optimum. For this case, we derive the

structure of its optimal strategy and a simple algorithm to compute it.

We proceed with a more detailed description of these results. Consider a system of
parallel links £ = {1,..., L} shared by a set Z = {1,...,1} of noncooperative users (the
followers) and a leader, labeled as user 0, who aims at minimizing the total cost of the

system:

Jn =" smn=y" A (1.1)

=le —fi
where we use the notation introduced in Section 2. Each follower ¢ € 7 tries to minimize its

individual cost function given by eq. (2.2). Asin Section 2, let r* and F"* denote, respectively,

the throughput demand and the strategy space of user 7 € ZU {0}. Let r = ¥ ,c7 r* denote



Architecting Noncooperative Networks 24

the total demand of the followers and R = r° + r the total demand of all users. We assume
that R < C, so that the network is stable.

The leader has knowledge of the noncooperative behavior of the followers and makes its
routing decision based on this knowledge. More precisely, let N°(f°) denote the unique Nash
equilibrium of the followers, when the leader employs strategy f°.” The leader seeks a strategy
f° € F° that minimizes J(f°, N°(f?)). It is worth mentioning that this optimization problem
is similar to the optimal capacity allocation problem studied in the previous sections. Indeed,
the two problems are similar, in the sense that the manager modifies the link capacities that
are available to the users. They are different, in the sense that its routing decisions incur a
cost for the manager’s flow that has to be accounted for in these decisions.

Let f* denote the unique solution to the problem of optimally routing the total demand
R over the set of parallel links. f* will be referred to as the global optimum, and it is easy to
see that is determined from Proposition 3.4, by replacing ff with f, and ¢} with ¢;, [ € L.
In the sequel, we consider the problem of finding a strategy f° of the leader, such that, if
f = NO(f%), then Y0, fi = fr, 1 € L. Clearly, if such a strategy exists, it is an optimal
strategy of the leader.

Before we present the results of this section, let us first define:
-1 L. I i1 - .
Hl - En:l f” - C_[anl Cn, = 27"'7L7 (42)

L
HO = O, HL_|_1 == Zn:l f,;; == R

Then, as shown in the Appendix, we have H; < Hyyq, for all [ € L.

Consider first the case of a single follower. Except for being the simplest case of the
general Stackelberg problem, this case is of interest since it represents practical scenaria, in
which different types of traffic (say, “system” and “data”) are routed by different entities,

one of which is cognizant of the operation of the other, hence the leader-follower setting.

Theorem 4.1 In a single-follower Stackelberg routing game, consider the strateqy £° of the
leader described by:

o= Saien o , (4.3)
fl*7 l:N‘I_l,,L

where N s determined by:
HN < Tl S HN_|_1. (44)

“NO(£% can be determined from Proposition 3.4, by replacing ¢ with ¢ — £°.
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Denoting by ' the best reply of the follower to f°, we have that f + f! = [, for every
link 1 € L, i.e., T° is an optimal strategy of the leader, that achieves the global optimum.

Moreover, £° is the unique optimal strategy of the leader.

Proof: See the Appendix.

O

The above theorem indicates that, for a single follower, the leader can enforce the global
optimum, independently of the relative sizes, in terms of demands, of the leader and the
follower. In other words, it is enough to have control on just a nonzero portion of flow in
order to “tame” a single selfish user.

We now proceed to the general case of any (finite) number of users. The following lemma
describes the strategies of the leader and the followers, assuming that the leader can enforce
the global optimum. Later, we will present necessary and sufficient conditions that guarantee

that the leader can force the global optimum.

Lemma 4.2 In a multi-follower Stackelberg routing game, if the leader can enforce the global

optimum %, then its optimal strategy £° is unique and is given by:
f - ; )
R =a Z — (K =1f, leL, (4.5)
1€K; n= 1 Cn

where, for every i € I, N* is determined by:
Hpyi < T'i < HNi-i—b (46)

and for every | € L, K; = {i € T :1 < N} and K; = |K;|. In that case, the equilibrium
strategy £ of user i € T is described by:

fa—

: fr —cz - =1,...

i=9 SR | : (4.7)
0 L I=Nit1,....L

a

Note that if the leader employs strategy f° then eq. (4.7) implies that the set of links
used by follower ¢ is precisely {1,..., N'}, thus K; is the set of followers that send flow
on link /. In general, f° might fail to be an admissible strategy of the leader; however, if

it is admissible, then it follows from the theorem that it is also the optimal strategy. In
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[KOR94b], we show that f° is admissible, if and only if the demand of the leader is higher

than a threshold r°.® Therefore, we have the following:

Theorem 4.3 There exists some r°, with 0 < r® < C —r, such that the leader in a multi-
user Stackelberg routing game can enforce the global optimum £*, if and only if its throughput

demand r° satisfies 1° < r® < C —r.
O

From the theorem, it follows that, for any set of followers for which r < (|, there is a
(feasible) leader, with r® < 1% < C'—r, that can enforce the global optimum. Moreover, when
r — C, we have r® — 0, meaning that in heavily loaded networks it suffices to control just a
small portion of the flow in order to drive the network into the global optimum. It is worth
mentioning that even though this behavior might seem surprising, it has a rather intuitive
explanation. In the heavy load region, the average delay increases rapidly to infinity, thus
small changes in the flow configuration result in drastic changes of the average delay. There-
fore, although the leader controls only a small part of the total flow, it has the power to steer
the network to the desired global optimum. This result is quite encouraging, because it is in
heavily loaded networks where the presence of a manager/leader is particularly important.

The minimum throughput demand r° of the leader that guarantees it can enforce the
global optimum depends on the number and the throughput demands of the followers. This
dependence is summarized in the following two propositions. The first gives the dependence
of r’ on the number of followers when their total throughput demand r is fixed. To simplify
the formulation of the problem, we concentrate on the case of identical users. The proposition

shows that as the number of users increases, the harder it becomes for the leader to enforce

.

Proposition 4.4 Suppose that the followers are identical and their total throughput demand
r is fized. Then, the minimum throughput demand r° that enables the leader to enforce the

global optimum f* is nondecreasing with the number of followers.

O

Let us now concentrate on the dependence of r° on differences of the demands of the
followers, when their total throughput demand r is fixed. The following proposition shows
that the higher the difference in the throughput demand of any two followers, the easier it

becomes for the leader to enforce f*.

8The expression for determining r° can be found in [KOR94b].
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Proposition 4.5 Suppose that the total throughput demand r of the followers is fized. Then,
for any two followers j and k, the minimum throughput demand r° that enables the leader
to enforce the global optimum f* is nonincreasing with |r! — r*|. Therefore, r° attains its

maximum value when all followers are identical.

O

Let us now demonstrate the properties of r°, established in the previous propositions,
by means of a numerical example. We consider a system of parallel links with capacity
configuration ¢ = (12,7,5,3,2, 1), shared by [ identical followers with total demand r. Note
that the case of identical followers corresponds to the worst case scenario for the leader,
according to Proposition 4.5. The threshold r° of the leader is depicted in Figure 5 as a
function of r, for various values of I. We concentrate on total follower demands that exceed
half the total capacity of the network. In the same figure, we also show the saturation
line “r® + r = C7. From the figure, one can see that r’ always lies below the saturation

line, in accordance with Theorem 4.3. Furthermore, r°

increases with the number of users.
An important observation from the figure is that r° decreases as the total demand of the

followers increases, not only in the heavy load region, but also for moderate loads.
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Figure 5: Leader threshold as a function of total follower demand

Finally, let us consider an infinite number of followers, i.e., the case of simple followers.
In [KOR94b], we explain that in this case, the leader cannot enforce, in general, the global
optimum, i.e., its optimal strategy results with a cost that is higher than the global minimum.
Furthermore, we derive the structure of the leader’s optimal strategy and specify a simple

algorithm to compute it.
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5. Conclusions

In this paper we considered design strategies for improving the performance of noncoopera-
tive networks. A practical implication of this work is that, design rules for noncooperative
networks may follow the same simple patterns that apply to centrally controlled networks,
and limited controllability can be as powerful as full controllability.

Our first strategy called for devising proper design rules during the provisioning phase
of the network. The problem was formulated as one of allocating additional capacity to an
existing noncooperative network. In addition to being prohibitively complex and hard to
analyze, this problem exhibits, in general, paradoxical behavior, according to which added
resources might degrade the user performance.

For a system of parallel links we established that the addition of capacity guarantees
improved performance for all users. Given this result, we showed that the capacity allocation
problem has a simple and intuitive solution: the optimal allocation assigns the additional
capacity exclusively to the link with the (initially) highest capacity. It is worth noting that,
although the noncooperative setting makes the analysis complex and tedious, this solution
coincides with the optimal capacity allocation when routing is centrally controlled. For
general network topologies, we also derived a set of sufficient conditions that guarantee that
the Braess Paradox does not occur.

The second strategy called for improving the performance of the network during its actual
operation. This can be achieved by a management entity, that has control on only part of
the network flow, and is cognizant of the presence of noncooperative users. Specifically, we
considered a network manager that acts as a Stackelberg leader. Considering a system of
parallel links, we showed that, in a wide range of cases, by controlling just a small portion
of the network flow, the network operating point can be driven into the global optimum.
This result suggests that, even with limited controllability of network flows, proper run-time
actions can diminish considerably, or even avoid altogether, the inefficiency implicated by
noncooperative users.

Some conclusions can also be derived from our investigation of general topologies, for
which we provided ways to overcome the Braess paradox. One indication from our results is
that capacity should be added across the network, rather than on a local (e.g., single link)
scale. This fits well with common engineering practice, where common folklore suggests that
local improvement may only result in transferring the problem somewhere else in the system.
Another indication is that upgrades should be aimed at direct connections between the source
and the destination. Indeed, we have seen that, for any topology, the addition of capacity

to direct “links” is always efficient. This is yet a further indication of the potential benefit
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of decoupling complex structures in the network, so that the corresponding controllers (in

our context, the routing controllers) are presented with simple choices.
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APPENDIX

A. Continuity of the Nash Mapping

In this appendix we present the continuity properties of the Nash mapping that have been
established in [KOR94]. To this end, let us augment the definition of the Nash mapping, so
that to each capacity configuration ¢ € Cx it assigns the Nash equilibrium of the routing
game and the corresponding Lagrange multipliers A\, 7 € Z, i.e., N(c) = (f,(A)ier). In
[KOR94], we prove the following:

Theorem A.1 The Nash mapping N : Ca — IRV s continuous. Furthermore, let
O, : Cp — R{I— and ®y5 : Cp — ﬂ%f_ be such that for every ¢ € Ca, ®1(c) = (J, ..., J),
where J* is the equilibrium cost of user i € I under the capacity configuration ¢, and ®,(c) =
(T1,...,Ty), where T) is the equilibrium delay of link | € L under c. Then, ®; and ®y are

continuous.

The continuity of the Nash mapping is employed to establish that the analysis of the
optimal capacity allocation problem can be carried based on comparisons of capacity con-
figurations ¢, ¢ € Ca, which are such that each user sends its flow over the same set of links
under both configurations. More specifically, we compare configurations ¢ and €, such that ¢
results from ¢ by a transfer of capacity A, from some link ¢ to alink [, i.e., ¢ = c+A,(e;—e,).
In [KORY4], we show that if this transfer of capacity is sufficiently small, i.e., if the distance
of ¢ and ¢ in Cp is small, then each user sends its flow over the same set of links under both

configurations. The results are given in the following:

Lemma A.2 For any capacily configuration ¢ € Cax with ¢, > cg and ¢; < ¢j_1, there exists
some n, 0 < n < min{c, — cg, ¢i—1 — ¢}, such that if € is the configuration that results from a
transfer of capacity Ay < min{c,—c), cimy—er} from link g to link 1, i.e., if ¢ = c+ A (ej—e,),
then:

1. If Ay <, then each user v € T sends its traffic over the same links under both capacity

configurations ¢ and ¢.

2. If Ay > 1, then there exists some user 1 € I that changes the set of links over which i

sends its flow.

B. Proof of results in Subsection 3.4

Proof of Lemma 3.5
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Assume by contradiction that the set 77, defined as 7+ = {I : T > T;}, is nonempty.
Since the flow in each [ € T is higher under configuration ¢, there must be a user 7 and
links [ € 7% and n ¢ 77, such that ff > ff and ij < ft. Since T, > 1T, T, < T, and
ff > fl > 0, the optimality conditions (2.4)-(2.6) imply that f}ﬂqn +1, > fffl’ + 1, and
similarly, since f% > fAfI > 0, we have f*T! + T, < fiT! + T}, which, combined with T, <T,
and fé < f¢, yields fle’ +1, < 7+ T). Since ff > f and 1) > T}, this is a contradiction.
We, thus, conclude that the set 7T is empty, i.e., T, < T, for all links I. Since the demand of
each user 7 is r* in both capacity configurations, it cannot increase its flow on all links, thus
there must be a link [ for which fi > 0 and f; < f{. Therefore:

j\i S ]E;TJ/‘I‘TZ § f]iTl/‘I‘Tl = )‘ia

thus concluding the proof.

Proof of Lemma 3.6

From Lemma 3.5 we have that Tl < Tj for all links [. This means that, for all [ > 1, we
have f; < fi. Therefore, when “moving” from ¢ to ¢ we observe flow being “transferred”
from all links [ > 1 to link 1. Since Tl < T for all links [, the flow that remains (under
configuration €) in a link [ > 1, experiences a delay which is not higher than the previous
one. Moreover, since Tl < 17 < T}, we conclude that also the flow that moved to link 1

experiences a delay which is not higher than the previous one, and the lemma follows.

C. Proofs of results in Subsection 3.5

We begin by deriving an alternative expression for the user prices that will be used through-
out the following proofs. Noting that eq. (3.1) can be written as X(¢; — f1)? = ¢ — fi,

[ € £, and summing over any set of links A C L* that receive some flow from user 7, we get:

B EleA(cl _ fl—i) _ D leACl — R+ Elegl\A fz_i AC £i7 (C.l)

o= =
EIEA(CI - fl)2 EleA(Cl - fl)2 ’ B

since ) e 4 fii=R"— 2lena f7 . Note that, in the last summation, £\ A can be replaced
by L'\ A, because no user sends flow over links in £\ £!. Taking A = £’ in eq. (C.1), we
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have: ,
i Secicl — B0+ Yieong f17 (C.9)
Yieci(a — fi)?
since, for all [ € L1\ L', we have f{ = 0 and, therefore, ;" = f.
From eqgs. (2.4) and (2.7) it is also easy to see that:
>ier No= AT+ 1Ty, 1€ L. (C.3)

Let 7% (respectively, 77) denote the set of links in £\ {1, ¢} whose equilibrium delay is
higher (respectively, is not higher) under ¢, i.e., 7T = {l € £\ {1,q} : T > Ti} and
T-={leL£\{l,q}: T, < T,}. Since the capacity of any link in [ € £\{1,¢} does not change
(ct = &), eq. (C.3) implies that:

Forany [ € L\{l,q}: €T & fi>f & Ziezl A > >N (C.4)

ieIl ’
For any [ € L\{l,q}: €T~ & [<f & Ziezl o< Zieﬂ A (C.5)
We proceed with the following technical lemma:

Lemma C.1 Consider two capacity configurations ¢,é € Ca. For any usert € 1:
1. IFN > N then fi> fi, for all 1 € £F such that Ty < T).
2. If X< N then fi < fi, for all 1 € £ such that T) > T).
3. There cannot be two links m,n € L', such that Tn > T, Tm < T,, fé > f¢ and
fiu < P

Proof: Assume that there is a user : with Ai > A and a link [ € £ such that Tl < T) and
f; < ff. Then, \i= ffffl’—l— T, < fiT! + T, = X, which contradicts A > M. The proof of part
(2) is symmetric. For part (3), assume that there are such links n,m € £'. Since m € L,

we have X = fi 7" 4+ T, > fi 7" + T, > . Then part (2) implies that fi< i

We are now ready to prove the claims of Subsection 3.5.

Proof of Lemma 3.9

Assume by contradiction that Tl > T;. We have to consider two cases:
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(i) T, > T,
For any link [ € Tt U {1, ¢}, we have Ty > T;. Thus:

> a-f< X (a-f) = > i XY f

leT+tu{l,q} leTtu{l,q} leTtu{l,q} leTHu{l,q}

since ¢1 4+ ¢, = ¢1 + ¢, and ¢, = ¢, for all n € T+, This implies that there must be a user j

whose total flow in 7% U {1, ¢} is higher under &, i.e.:

Y i X s Y i<X R
leTHu{1,q} leTTU{1,9} leT- leT-
Thus, there must be links n € 7% U {l,q} and m € 7, such that fTJL > fI and fgl < fi.
Since 7, > T, and T, < T, this is a contradiction to part (3) of Lemma C.1.
(i) T, <T,
In this case fq < fy, since &, < ¢,. Using (C.5), we get 3 ie7-uqq) fz < Yier-ufq} Ji, thus

there must be a user j, such that:

> i< X i = X i X f
leT-u{q} leT-U{q} leT+u{1} leT+u{1}
This implies that there must be links m € 7~ U {g} and n € T+ U {1}, such that fi < fi
and fﬂb > f;fb Since Tn > T, and Tm < T, this is a contradiction to part (3) of Lemma C.1.

Therefore, the delay on link 1 cannot be higher under capacity configuration ¢, i.e.,
Ty < Ty. Let us now proceed to show the second part of the lemma, i.e., that Tq > T,
Suppose that Tq < T,. Let us first show that this implies that 7+t = ). Assume by
contradiction that 7% is nonempty. Then, the total flow sent over links in 7 is higher
under & — since ¢ = ¢ for all [ € 77 — and there must be a user j, such that:
>0 = X < X
leT+ leT* leT-u{l,q} leT—u{l,q}

Thus, there exist links n € 71 and m € 7T~ U {1, ¢}, such that ﬁ{ > fJ and fﬂn < fi. Since
Tn > T, and Tm < T, this contradicts part (3) of Lemma C.1. Therefore, 7t = (), and:

G—fi>ea—f, leL. (C.6)

Recalling that 3> ;c (¢ — fl) =Y ecla— fi) = C — R, (C.6) must hold as an equality for
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all [ € L, or equivalently:
Ti=T, leL. (C.7)

Note that this implies that no user can change its flow on any link in the network. To see
this, assume that there exists a user j such that fTJL > fJ and fjr < fi. for some links

m,n € L. Then, using eq. (C.7), we have:

No= i 4T, < fiT + T, =T +T, < fIT + T, = \.

n

Thus, no user modifies its flow configuration, and f; = f;, for all [ € £. But this contradicts
Tq < T, since ¢, < ¢, and fq = f,, and the result follows.

O

Remark: Lemma 3.9 does not rely on the assumption £¢ = £, for all i € Z, as can be seen

from the above proof.

Proof of Lemma 3.10

First we consider the case A\! > A!. Then eq. (C.2) for ¢ = 1 gives:

Siecrtt— RN Yepa— R
" — > 5
Eleﬁl(cl - fz)2 Zleﬁl(cl - fz)

Since Y, ¢ = Y1, ¢, for all m > ¢, we have:

(e — f? < > (a—f) (C.8)

lel? lel?

Let us start by proving that A2 > N2 If L2 = L', the result is immediate from (C.8):

A -2 -2
5\2_ Eleﬁl C]—R Eleﬁl C[—R

= _ — )\2'
Sect(ér— )2 Yiecr(a— fi)?

Therefore, we concentrate on the case £L\L£? # (). Since LI C ... L£? C L', user 1 is the only
user that sends flow on any link in £'\ £?. For any such link [, we have f; = f}, fl = fll,
and in view of egs. (2.4) and (2.7), AL > Al implies that:

fi= 1> fl=h e\ (C.9)
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From eq. (C.1) with A = £* and ¢ = 1, we have:

2ler? Gl — R 11 1 dlec2 €l — R™! n A2 9
——— =\ >\ = = (&—fi)y < ) _ (a—f)-.
EIEEQ(CI - fl)2 EIEEQ(CZ - fl)2 IEZE; l;:g

Therefore, eqs. (C.2) and (C.9) give:

j2 Yieczc — B2+ Yo fi - Yieczc — R+ Yo fi _

ez (6 — fi)? Siece(a — fi)? ’

which completes the proof for : = 2.

Proceeding inductively, let us assume that A> M for all i < k < I, and show that the
same holds for 7 = k + 1. If £L¥*! = L', the proof is immediate from (C.2) and (C.8):

Yiegr o — R > Sieer o — R
e (& — fi)? Yieci(cr — fi)?

Yk+1 _ _ vk+1
At = = \FH

thus, we only have to consider the case £\ L**! # (). Let Z, denote the set of users who
send flow on some link in £\ L5 ie., Iy = Ugnert1Zy. Note that user £ + 1 does not send
flow on any link in £\ £*¥*!. By Lemma 3.3, the same is true for all users : > k + 1. Thus,
Zo C{l,...,k} and by the inductive hypothesis we have: A > A, for all users 7 € Zy. Since
T, C Io, for all [ € £Y\ £F+Y, this implies:

SN S STON le s\ ot (C.10)
’iEIl ZEIZ
and (C.4) gives:
fi> fi, TeLh\LH (C.11)

Since k + 1 > 1, for all ¢ € Iy, we have that £¥*! C £¢ for all ¢ € Ty, i.e., any user
that sends flow on some link in £\ £**!, also sends flow on all links in £¥*1. Hence, taking

A = Ly ineq. (C.1), we get:

i_ Siecrr o — R4 Siecngrer (fi — I

A i € Io. C.12
Yiecr+i(er = fi)? e (€12)

From eq. (C.2), we have:
. Yiecr ¢ — RT3 pngnnn fi (C.13)

D leckt (Cl - fl)2
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Yiecr+r o — R™+ Srecner (fi — iy otk - DoleLngktt fi

- 3 1 € 1, 3
Siecr+i (e — fi)? Siecri(a — fi)? ’
where we have used R=F+1) = R=i 4 pi _ pht1 Egs. (C.12) and (C.13) give:
AR+ i Yieck Ji — ! — (C.14)
Yiecr+i(a— fi)?
Let us now assume that:
ARFL < \FHTL (C.15)

Since ¢ € Ly41, we have Yicr, & = Yieg,,, a- Egs. (C.13) and (C.15), then, imply:

Yiecrtr ¢ — R £ 57 o prn f < Yieprn c — BT 457 pnnnn fi
Yiecr (& — fi)? - Yiecrti(a — fi)? ’

and since )7 n x4t fi > Y iecngr+ fi, according to (C.11), we have:

So(a—f)P> Y (a- A (C.16)

le£k+1 lEEk'H

Using eq. (C.14) and (C.15) we have, for ¢ € Z:

D lerkt ff — it Y leck+ ff — it

Zleﬁk“(él - ]51)2 Ele£k+1(cl - fl)2

>N -\ >0,

since A > ¥, for all i € Zo. In view of (C.16), this implies:

i = Y fi< X i€l

lEEk'H lEEk‘H le£1\£k+1 lEEl\Ek'H

By the definition of set 7y, summing the last inequality over all ¢ € Zy, we get:

E fl< Z fis

leLN\Ck+1 leLN\Ck+1
which is a contradiction to (C.11). Hence ARHL > A+1and by induction:
Ao\ for all i € Z,.

For any link I > ¢, \* > A, for all ¢ € Z;, and (C.4) implies Ty > T;. This completes the

proof for case A > Al The proof for the case A<M s symmetric.
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Proof of Lemma 3.11

It suffices to show that for any link [ < ¢ —1,if [ € 7%, then [+ 1 € T*. Assume by
contradiction that there exists a link [ < ¢ — 1, such that [ € 7T and [+ 1 € 7~. Then
(C.4) and (C.5) give:

fin < fprand Y A< 3TN (C.17)

ieIl+1 iEIl+J
fi> frand 35X > 3TN (C.18)
’iEIl ZEIZ

If 7,y =7y, (C.17) and (C.18) lead to a contradiction. Thus, we need to consider only the
case T)\T;y1 # 0. Note that this is the set of users that send flow on link [ and do not
send flow on link [ + 1. For any such user 7, L' = [. Summing eq. (2.4) for link [ over all
¢ € Ziy1 C I; and using eq. (2.7), we get:

> f;Tll+]l+1Tl: > N < > A= > FT+ LT,

€141 1€7141 1€1141 1€2141

and since [ € 7T, this implies:

> i< YA (C.19)

1€7141 1€7141

Recalling that fz > f1, (C.19) implies:

SN fish= X fish=-3 = XY f

1€TN\L141 €114 €144 1€TN\L141

and since for any 7 € Z;\Z;;1, we have r* = ng:l L= Ein:l *  this implies:

XY <X X (C.20)

m<l i€\ 41 m< i€\ 11

From (C.17) and (C.18), we have that };c77,, A > Y €T\ M, and summing eq. (2.4)
over all ¢ € Z;\ 741, for any link m < [, it is easy to see that this implies:

SN AT (L - L) > Y T4 (L= Iy T, m <L (C.21)

1€TN141 €T\

Consider now any link m < [, such that m € 7 U {1}. Since T;n > T, and I} — [;;1 =
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1 Z:\Zi41| > 0, (C.21) implies that Y-;ez)g,, , fﬁn > eI\ fi . Hence, by (C.20), we have:

DORED DI RS DD DR i (C.22)

meT+t iEIl\Il+1 meTt iEIl\Il+1
m<l m<
Using a similar argument as in the proof of (C.19), one can see that (C.17) implies:

S f< Y L, meTt andm <.

1€T741 1€7741

Summing this inequality over all m € 7% and m < [, and adding it to (C.22), we have:

DD DN D DI D A8 (C.23)

For any link m € 7T+, fm > fm. Therefore, the total flow sent to the set of links
T*tnN{l,...,1—1} is higher under configuration &, and (C.23) implies:

)IRD DN AT DR D i

meTt (€\T; meTt {€I\T,
m<l m<

Therefore, there exists some user j € Z\Z;, such that:

E £ § J
fm > fm?
meT+ me7T+
m<i m<l

or equivalently:

Y > X S (C.24)

meT+ meT+

since 7 € Z\7Zy, i.e., user j does not send any flow to links m > [. Note that:
N> N (C.25)

since (C.24) implies that there exists some link m’ € 77, such that ﬁi&, > f;, Hence, by

Lemma C.1, we have:

fi> i meT nLi (C.26)

Since f;; = fg =0, from (C.24) and (C.26) we have:

== X f- X J5<o

meTtuT— meT+TuT—
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which together with Tl < T; (Lemma 3.9) implies that M < M. But this is a contradiction
to (C.25). Hence, it must be [+ 1 € T+,

We have, thus, shown that for any link [ < ¢ —1,if l € Tt then [+ 1 € T*. Proceeding
inductively, n € 77 for any link n € {{+1,...,¢ —1}.

a

Remark: In the proof of the lemma, we assumed that there exists a link [ < ¢ — 1, such
that [ € 77 and [ +1 € 7, and arrived at a contradiction. Note, however, that the only
implication of the assumption [ + 1 € 7~ that was used to arrive at the contradiction was
€T No< €T A'. Thus, the same proof can be used to show that if ¢ — 1 € 71, then
2ier, A > 2iet, X

Proof of Theorem 3.13

Note that Tq > T, has been established in Lemma 3.9, that does not rely on the assump-
tion £i = L', for all ¢+ € Z, thus we only have to prove the remaining statements in the
theorem.

We will construct inductively a sequence of capacity transfers {6,(n)} from link ¢ to
link 1, such that during each transfer é,(n) no user changes its set of links. Define 6,(0) = 0,
c(0) = c and A, (1) = A, Let 5(1), 0 < 5(1) < ¢,(0) — ¢}, be as in Lemma A.2. If
n(1) > A,(1), we can transfer the entire capacity A, to link 1 and terminate the process;
the result is immediate from Lemma 3.12. If n(1) < A, (1), we transfer capacity é,(1) = n(1)
from link ¢ to link 1, set A,(2) = A (1) —8,(1) as the capacity that remains to be transferred
and advance to the next step.

Proceeding inductively, consider the n-th step of the process, where the total capacity that
has already been transferred to link 1 is 3-7Z] ,(k) and the resulting capacity configuration
is ¢(n) = ¢(0) + 721 8,(k)(e; — e,). Let n(n) be as in Lemma A.2. If p(n) > A,(n),
we can transfer the entire remaining capacity A,(n) and terminate the process. If, on the
other hand, n(n) < A,(n), we transfer capacity é,(n) = n(n) from link ¢ to link 1, define
Ay(n+1) = Ay(n)—6,(n) and proceed to step n+1. Since 6,(n) < n(n), Lemma A.2 implies

that no user changes its flow during the n-th step and by Lemma 3.12 we have:
A(e(n)) < M(e(n—1)), i €T, (C.27)

Ti(c(n)) < Ti(c(n—1)), L€ L\ {q}. (C.28)

Suppose that the capacity transfer process terminates after a finite number of steps, i.e.,

that there exists some ng € IV, such that >2;%, 6,(k) = A,. Then, ¢ = c(ng) and, since
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(C.27)—(C.28) hold for all 1 < n < ng, we have:

A

3 = Xi(e(no)) < N(0) = N, i €T,

Tl = Tz(C(no)) < TZ(O) = T17 lel \ {q}a

and the result follows.

Let us now consider the case where the transfer process does not terminate after a finite
number of steps, i.e., 352, 6,(k) = A, < A,. Note that in this case &,(n) = 5(n), for all
n > 1. Hence, the convergence of the infinite series implies that n(n) — 0, as n — oco. If
A, = A,, then & = lim, c(n). Replacing ¢(n — 1) in the right-hand-side of each inequality
in (C.27)—(C.28) with ¢(0) = ¢ and then taking the limit as n — oo on the left-hand-
side, the result follows, due to the continuity of the Nash mapping and the equilibrium link
delays (Theorem A.1). If, on the other hand, A, < A,, consider the capacity configuration
¢ =c+ A,(e; —e,), that results by transferring (in a single step) capacity A, from link ¢
to link 1. Since A, < A, < ¢, — cy, we have ¢; = ¢, — A, > ¢y and there is some remaining
capacity that can be transferred from link ¢ to link 1. Note that lim, n(n) = 0 implies that
if we start from capacity allocation €, any (nonzero) transfer of capacity will cause at least

one user to change its set of links. This is a contradiction to Lemma A.2, hence we must

have Aq = A,.

D. Single-Follower Stackelberg Routing Game

In this appendix we present the proof of Theorem 4.1 that gives the optimal strategy of the
leader in the single-follower case. Let us first note that the global optimum f* is, in fact, the
Nash equilibrium of a degenerate single-user routing game, thus the analysis of Section 3.4 —
Proposition 3.4 and Lemma 3.3 — can be readily applied to determine its explicit structure.
In particular, the Lagrange multiplier \* associated with the global optimum is determined
by (3.1)-(3.2), by replacing ¢} by ¢; and f} by f;. Also, there exists some link L*, such that
f* routes flow only over the links in {1,...,L*}, and is determined by an expression similar
to (3.6), where R replaces ' and for every link [, GG is defined as in eq. (3.3).

Before presenting the proof of the theorem, we need to establish that, for every link [,
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we have H; < Hi41. Using eq. (3.1) in eq. (4.2), we get:

L R P
H ={ VAa : (D.1)

R, l=L*+1,...,L

and the result is immediate, since G < G4, and ¢; > ¢4, for all [ € L.

Since Hps+yy = R > r', (4.4) implies that N < L*. Note that, in view of eq. (4.3),
Theorem 4.1 implies that N is such that if the leader employs the strategy f°, then the
follower sends its flow over the links in {1,..., N}. Let us now proceed with the proof of the

theorem.

Proof of Theorem 4.1

In order to prove optimality of f°, we have to show the following:

(i) The strategy f° of the leader is an admissible flow configuration, i.e., that f > 0 for
all [ € £ and that 37, f2 = r°.

(ii) The set of links over which the follower sends its flow is precisely {1,..., N}.
(iii) For every link I € L: fP + f} = fr.

We begin by establishing property (i) above. Since Hy4q > 7', eq. (4.2) gives YN, f* >

r, therefore eq. (4.3) implies that f > 0, for { = 1,...,N. Nonnegativity of f for

[=N+1,..., L is immediate. Furthermore:

< 0 al Efzv—lf;_Tl L * al * 1 L * 0
Zfz:ZCl_N—‘|‘ Z fz:Efn—T + Z Ir=r
=1 =1

2 n=1Cn I=N+1 n=1 I=N+1

since Y1, ff = R =%+ r'. Thus f° is an admissible routing strategy for the leader.

In the sequel we will establish property (ii) above. Let ¢/ = ¢ — ff be the residual

capacity of link [ € £ as seen by user 1. Let us first show that:
a>cy, I=1,...,L-1 (D.2)

For all links [ > N, we have ¢ = ¢ — [}, since f? = f7. According to Lemma 3.3,
a— [ Zeap— fi, foralll=1,..., L —1. Thus, (D.2) holds for all [ = N +1,...,L — 1.
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Moreover, from eq. (4.3), we have:

1 25:1(%_](2)"1'711

Cl =

therefore, (D.2) holds for [ =1,..., N — 1. Finally:

C}V =CN — f]?f >cen— v 2 eng1 — fJ*V+1 =CN _fj(if-u = C}V+17

where the first inequality follows from f5 < f&, which can be easily derived from Hy < r'.
Thus, inequality (D.2) holds for all { = 1,...,L — 1. Hence, the best response f' of the
follower to % can be determined by means of Proposition 3.4. In particular, f! > f!,, and
there exists a link L' < L, such that f! > 0 for [/ < L' and f} =0 for { > L'. The threshold
L' is determined by equations (3.6) and (3.3).
We are now ready to prove the following:

Lemma D.1 If the leader implements the strategy £ described by eq. (4.3), then L' = N,
i.e., the follower sends its flow precisely over the links in {1,...,N}.

Proof: Let start by showing that:
rl < G}V-H' (D.4)

Using egs. (D.3) and (3.3), this is equivalent to showing:

S (en— fr)+ !
S ST L T i) L TR

En 1 Cn

\/En 1 Cn —I—Tl N
< \/CN41 — fN+1Z\/_ < Z(Cn - fr)

Zn 1Cn n=1
N B N

& < ! ” {E_( } e =D (en— 1) (D.5)
CN+1—fN+1 n 1 n=1 n=1

Since N < L*, eq. (3.1) implies that:

N o
VA = Zazg) (D.6)

therefore, (D.5) is equivalent to:

. 1 LN X Ve

r< -————7=—# Cp,
VA

eNy1 — [y At
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Suppose that fy,; > 0. Then, eq. (3.1) gives cyy1 — fryyr = yJen41/A%, and (D.7) is

equivalent to:

1
N \/)\_*«/CN-H

1

(Sl vam Tl val = et (D8)

which holds true in view of (4.4).

If fii1 =0, (3.2) implies cyy1 — fypr = envg1 < y/en1/A%, and to prove (D.7), it suffices
to show (D.8), which holds true. Thus, we have proven (D.4).

Let us now proceed to show that:
Gy <. (D.9)

Using eqgs. (3.3) and (D.3), this is equivalent to showing:

ZnN:1(Cn — )+ r!
ZnN:1 Cn

T e v X Ve

N N-1 N-1 N %
s rl/en En:l Cn > {Enzl Cn — \/CN anl \/a} anl(cn — .
Using eq. (D.6), this is equivalent to:

Gy
e

1
G

which holds true in view of (4.4). Therefore, we have proven that G < r' < Gy, which

= Hy, (D.10)

(E e v X Ve | =

implies that L' = N and the lemma follows.

O

In order to prove optimality of £, it remains to be shown that for every link [ € £, we
have f! + f = f;. In view of eq. (4.3), we have to show that the best reply f* of the follower
to fY is such that:

Zanf —r!
En 1 Cn

fl=fr=f=f—-q , I=1,...,N. (D.11)

It is easy to verify that SN, f = r', and f! > 0 for all [ = 1,..., N. Therefore, it suffices
to show that the strategy given by eq. (D.11) satisfies the optimality conditions (3.1)—(3.2)
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of the follower. In view of Lemma D.1, we only need to show (3.1), i.e., that:

o ct

(cf — 2~ (c, — fL)

~ Lme{l,... N} (D.12)

Using egs. (D.3) and (D.11), this is equivalent to showing:

&) Cm

(@ —f7)? (em — [

which holds due to the global optimality of £* and L* > V.

ILme{l,...,N},

Thus, we have established that f° is an optimal strategy for the leader, that achieves the

global optimum. To conclude the proof of Theorem 4.1, we have to show the following:

Lemma D.2 The optimal strategy of the leader in a single-follower Stackelberg routing game

1S unique.

Proof: It suffices to show that any strategy f° of the leader that enforces the network
optimal flow configuration f* has the structure described by eqs. (4.3) and (4.4). Let f° be
such a strategy and f' the best reply of the follower. Then:

R+A=Ff, 1eL (D.13)

Let us first show that for every link I, f! > fl ;. Assume by contradiction that, for some ,
0 < f < fl1. Then, the optimality conditions (2.4)-(2.5) for f' imply that:
1

+ <
Cl41 — fl*-}-l (cry1 — fl*+1)2 G — 1*7

which is a contradiction, since ¢; — f;* > ¢iy1 — i3y and f)y; > 0. Therefore, there exists
some link L', such that f! > 0 for I < L' and f}! = 0 for [ > L'. Then, it is easy to see
that the optimality conditions for f* imply (D.2), i.e., the residual link capacities as seen
by user 1 preserve the order of the link capacities themselves. Hence, the threshold L! is
determined by (3.6). Evidently, L' < L*, otherwise eq. (D.13) would be violated.

The optimality conditions for f* and f* imply:

1
G _i_{cl—fl*

cm_f:;e

2
} ’ lij{l,...,Ll},

1
Cr.  Cm
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and taking m = 1, this gives:
* c *
fl=fr— é(f1 — ), 1=1,..., L (D.14)

which, together with 3¢, fI' = r', gives:

Ll
Zn:l fg - rl

, (=1
251:1 Cn

f=f—-«qa U (D.15)
and in view of eq. (D.13), £ is given by an expression similar to eq. (4.3), with N replaced
by L'. Since N is uniquely determined by (4.4), in order to prove the lemma it suffices to
show that L' = NV, i.e., that:

Hp < rl < HL1+1- (D16)

Following precisely the proof of Lemma D.1, with N replaced by L', one can see that
(D.16) holds true and this concludes the proof.
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