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1 IntrodutionMany networks, inluding the Internet, are developed, built, and maintained by a large numberof agents (Autonomous Systems), all of whom at sel�shly and have relatively limited goals. Thisnaturally suggests a game-theoreti approah for studying both the behavior of these independentagents and the struture of the networks they generate. The stable outomes of the interationsof non-ooperative sel�sh agents orrespond to Nash equilibria. Typially, onsidering the Nashequilibria of games modeling lassial networking problems gives rise to a number of new issues. Inpartiular, Nash equilibria in network games an be muh more expensive than the best entralizeddesign. Papadimitriou [15℄ uses the term prie of anarhy to refer to this inrease in ost ausedby sel�sh behavior. The prie of anarhy has been studied in a number of games dealing withvarious networking issues, suh as load balaning [5, 6, 13, 18℄, routing [17, 19, 20℄, faility loation[22℄, and ow ontrol [2, 7, 21℄. In some ases [17, 19℄ the Nash equilibrium is unique, while inothers [13℄ the best Nash equilibrium oinides with the optimum solution and the authors studythe quality of the worst equilibrium. However, in some games the quality of even the best possibleequilibria an be far from optimal (e.g. in the prisoner's dilemma). The best Nash equilibrium anbe viewed as the best solution that sel�sh agents an agree upon, i.e. one the solution is agreedupon, the agents do not �nd it in their interest to deviate. Papadimitriou [15℄ de�nes the prieof anarhy to study the question of how bad an equilibrium an be. We study the omplementaryquestion of how good an equilibrium an be in the ontext of a network design game. Shultz andStier [20℄ study the ratio of the best equilibrium to the optimum, in the ontext of a apaitatedrouting game. We all this ratio the optimisti prie of anarhy.In this paper we onsider a simple network design game where every agent has a spei� on-netivity requirement, i.e. eah agent has a set of terminals and wants to build a network in whihhis terminals are onneted. Possible edges in the network have osts and eah agent's goal is topay as little as possible. This game an be viewed as a simple model of network reation. Alter-natively, by studying the best Nash equilibria, our game provides a framework for understandingthose networks that a entral authority ould persuade sel�sh agents to purhase and maintain,by speifying to whih parts of the network eah agent ontributes. An interesting feature of ourgame is that sel�sh agents will �nd it in their individual interests to share the osts of edges, andso e�etively ooperate.More preisely, we study the following network game for N players, whih we all the onnetiongame. For eah game instane, we are given an undireted graph G with non-negative edge osts.Players form a network by purhasing some subgraph of G. Eah player has a set of spei�edterminal nodes that he would like to see onneted in the purhased network. With this as theirgoal, players o�er payments indiating how muh they will ontribute towards the purhase of eahedge in G. If the players' payments for a partiular edge e sum to at least the ost of e, then theedge is onsidered bought, whih means that e is added to our network and an now be used by anyplayer. Eah player would like to minimize his total payments, but insists on onneting all of histerminals. We allow the ost of any edge to be shared by multiple players. Furthermore, one anedge is purhased, any player an use it to satisfy his onnetivity requirement, even if that playerontributed nothing to the ost of this edge. Finding the entralized optimum of the onnetiongame, i.e. the network of bought edges whih minimizes the sum of the players' ontributions, isthe lassi network design problem of the generalized Steiner tree [1, 10℄.
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Our ResultsWe are most interested in deterministi Nash equilibria of the onnetion game, and in the optimistiprie of anarhy, as the pessimisti prie of anarhy in our game an be quite bad. In a gametheoreti ontext it might seem natural to also onsider mixed Nash equilibria when agents anrandomly hoose between di�erent strategies. However, sine we are modeling the onstrutionof large-sale networks, randomizing over strategies is not a realisti option for players. We alsoexplore the notion of an approximate equilibrium, and study the question of how far from a trueequilibrium one has to get to be able to use the optimum solution, i.e. how unhappy would theagents have to be if they were fored to pay for the soially optimal design. We view this as a twoparameter optimization problem: we would like to have a solution with ost lose to the minimumpossible ost, and where users would not have large inentives to deviate. Finally, we examine howdiÆult it is to �nd equilibria at all.� In Setion 3 we onsider the speial ase when the goal of eah player is to onnet a singleterminal to a ommon soure. We prove that in this ase, there is a Nash equilibrium, the ostof whih is equal to the ost of the optimal network. In other words, with a single soure andone terminal per player, the optimisti prie of anarhy is 1. Furthermore, given an " > 0 andan �-approximate solution to the optimal network, we show how to onstrut in polynomial timean (1 + ")-approximate Nash equilibrium (players only bene�t by a fator of (1 + ") in deviating)whose total ost is within a fator of � to the optimal network.We generalize these results in two ways. First, we an extend the results to the ase when thegraph is direted and players seek to establish a direted path from their terminal to the ommonsoure. Note that problems in direted graphs are often signi�antly more ompliated than theirundireted ounterparts [4, 9℄. Seond, players do not have to insist on onneting their terminalsat all ost, but rather eah player i may have a maximum ost max(i) that he is willing to pay, andwould rather stay unonneted if his ost exeeds max(i).� In Setion 4 we onsider the general ase, when players may want to onnet more than 2terminals, and they do not neessarily share a single soure node. In this ase, there may notexist a deterministi Nash equilibrium. When deterministi Nash equilibria do exist, the osts ofdi�erent equilibria may di�er by as muh as a fator of N , the number of players, and even theoptimisti prie of anarhy may be nearly N . However, in Setion 4 we prove that there is alwaysa 3-approximate equilibrium that pays for the optimal network. Furthermore, we show how toonstrut in polynomial time a (4:65 + ")-approximate Nash equilibrium whose total ost is withina fator of 2 to the optimal network.� Finally, in the Appendix we show that determining whether or not a Nash equilibrium exists isNP-omplete when the number of players is part of the input. We also show that the same problemis poly-time solvable for 2 players that have two terminals eah. Sine there is only a polynomialnumber of Nash equilibrium strutures, the algorithm simply enumerates these.Related WorkWe view our game as a simple model of how di�erent servie providers build and maintain theInternet topology. We use a game theoreti version of network design problems onsidered inapproximation algorithms [10℄. Fabrikant et al [8℄ study a di�erent network reation game. Networkgames similar to that of [8℄ have also been studied for modeling the reation and maintenane ofsoial networks [3, 11℄. In the network game onsidered in [3, 8, 11℄ eah agent orresponds to asingle node of the network, and agents an only buy edges adjaent to their nodes. This model of2



network reation seems extremely well suited for modeling the reation of soial networks. However,in the ontext of ommuniation networks like the Internet, agents are not diretly assoiated withindividual nodes, and an build or be responsible for more omplex networks. There are manysituations where agents will �nd it in their interest to share the osts of ertain expensive edges.An interesting feature of our model whih does not appear in [3, 8, 11℄ is that we allow agents toshare osts in this manner. To keep our model simple, we assume that eah agent's goal is to keephis terminals onneted, and agents are not sensitive to the length of the onneting path.Jain and Vazirani [12℄ study a di�erent ost-sharing game related to Steiner trees. They assumethat eah player i has a utility ui for belonging to the Steiner tree. Their goal is to give a truthfulmehanism to build a Steiner tree, and deide on ost-shares for eah agent (where the ost hargedto an agent may not exeed his utility). They design a mehanism where truth-telling is a dominantstrategy for the agents, i.e. sel�sh agents do not �nd it in their interest to misreport their utility(in hopes of being inluded in the Steiner tree for smaller osts). Jain and Vazirani give a truthfulmehanism to share the ost of the minimum spanning tree, whih is a 2-approximation for theSteiner tree problem. This game is quite analogous to our single soure network reation gameonsidered in Setion 3. We an view the maximum payment max(i) of agent i as his utility ui.However, in our game there is no entral authority designing the Steiner tree or ost shares. Rather,we study Nash equilibria of our game. Also, in our game, agents must o�er payments for eah edgeof the tree (modeling the ooperation of sel�sh agents), while in a mehanism design framework,agents pay the mehanism for the servie, and do not are what edge they ontribute to.2 Model and Basi ResultsThe Connetion Game We now formally de�ne the onnetion game for N players. Let anundireted graph G = (V;E) be given, with eah edge e having a nonnegative ost (e). Eahplayer i has a set of terminal nodes that he must onnet. The terminals of di�erent players donot have to be distint. A strategy of a player is a payment funtion pi, where pi(e) is how muhplayer i is o�ering to ontribute to the ost of edge e. Any edge e suh that Pi pi(e) � (e) isonsidered bought, and Gp denotes the graph of bought edges with the players o�ering paymentsp = (p1; : : : ; pN ). Sine eah player must onnet his terminals, all of the player's terminals mustbe onneted in Gp. However, eah player tries to minimize his total payments, Pe2E pi(e).A Nash equilibrium of the onnetion game is a payment funtion p suh that, if players o�erpayments p, no player has an inentive to deviate from his payments. This is equivalent to sayingthat if pj for all j 6= i are �xed, then pi minimizes the payments of player i. A (1+ ")-approximateNash equilibrium is a funtion p suh that no player i ould derease his payments by more thana fator of 1 + " by deviating, i.e. by using a di�erent payment funtion pi0.Basi Results Here we present several useful properties of Nash equilibria in the onnetiongame. Suppose we have a Nash equilibrium p, and let T i be the smallest tree in Gp onneting allterminals of player i. It easily follows from the de�nitions that (1) Gp is a forest, (2) eah player ionly ontributes to osts of edges on T i, and (3) eah edge is either paid for fully or not at all.It is not always the ase that sel�sh agents an agree to pay for a network. There are instanesof the onnetion game whih have no deterministi Nash equilibria. In Figure 1, there are 2players, one wishing to onnet node s1 to node t1, and the other s2 to t2. Now suppose that thereexists a Nash equilibrium p. By Property 1 above, in a Nash equilibrium Gp must be a forest, soassume without loss of generality it onsists of the edges a, b, and . By Property 2, player 1 onlyontributes to edges a and b, and player 2 only ontributes to edges b and . This means that edges3



a and  must be bought fully by players 1 and 2, respetively. At least one of the two players mustontribute a positive amount to edge b. However, neither player an do that in a Nash equilibrium,sine then he would have an inentive to swith to the strategy of only buying edge d and nothingelse, whih would onnet his terminals with the player's total payments being only 1.
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Figure 1: A game with no Nash equilibria.We have now shown that Nash equilibria do not have to exist. However, when they exist, howbad an these Nash equilibria be? As mentioned above, the prie of anarhy often refers to theratio of the worst (most expensive) Nash equilibrium and the optimal entralized solution. In theonnetion game, the prie of anarhy is at most N , the number of players. This is simply beause ifthe worst Nash equilibrium p osts more than N times OPT, the ost of the optimal solution, thenthere must be a player whose payments in p are stritly more than OPT, so he ould deviate bypurhasing the entire optimal solution by himself, and onnet his terminals with smaller paymentsthan before. More importantly, there are ases when the prie of anarhy atually equals N , sothe above bound is tight. This is demonstrated with the following example. Suppose there are Nplayers, and G onsists of nodes s and t whih are joined by 2 disjoint paths, one of length 1 andand one of length N . Eah player has a terminal at s and t. Then, the worst Nash equilibrium haseah player ontributing 1 to the long path, and has a ost of N . The optimal solution here hasa ost of only 1, so the prie of anarhy is N . Therefore, the prie of anarhy ould be very highin the onnetion game. However, notie that in this example the best Nash equilibrium (whihis eah player buying 1N of the short path) has the same ost as the optimal entralized solution.We have now shown that the prie of anarhy an be very large in the onnetion game, but theoptimisti prie of anarhy remains worth onsidering, sine the above example shows that it andi�er from the (onventional) prie of anarhy by as muh as a fator of N .3 Single Soure GamesAs we show in the Appendix, determining whether or not Nash equilibria exist in a general in-stane of the onnetion game is NP-Hard. Furthermore, even when equilibria exist, they maybe signi�antly more expensive than the entrally optimal network. In this setion we de�ne alass of games in whih there is always a Nash equilibrium, and the optimisti prie of anarhy is1. Furthermore, we show how we an use an approximation to the entrally optimal network toonstrut a (1 + �)-approximate Nash equilibrium in poly-time, for any � > 0.De�nition 3.1 A single soure game is a game in whih all players share a ommon terminal s,and in addition, eah player i has exatly one other terminal ti.Theorem 3.2 In any single soure game, there is a Nash equilibrium whih purhases T �, a min-imum ost Steiner tree on all players' terminal nodes.4



Proof. Given T �, we present an algorithm to onstrut payment strategies p. We will view T �as being rooted at s. Let Te be the subtree of T � disonneted from s when e is removed.Algorithm 3.3Initialize pi(e) = 0 for all players i and edges e.Loop through all edges e in T � in reverse BFS order.Loop through all players i with ti 2 Te until e paid for.If e is a ut in G set pi(e) = (e).OtherwiseDefine 0(f) = pi(f) for all f 2 T � and0(f) = (f) for all f =2 T �.Define �i to be the ost of the heapest path from s toti in G n feg under modified osts 0.Define pi(T �) =Pf2T � pi(f).Define p(e) =Pj pj(e).Set pi(e) = minf�i � pi(T �); (e) � p(e)g.We �rst laim that if this algorithm terminates, the resulting payment forms a Nash equilibrium.Consider the algorithm at some stage where we are determining i's payment to e. The ost funtion0 is de�ned to reet the osts player i faes if he deviates in the �nal solution. We never allow ito ontribute so muh to e that his total payments exeed his ost of onneting ti to s. Thereforeit is never in player i's interest to deviate. Sine this is true for all players, p is a Nash equilibrium.We will now prove that this algorithm sueeds in paying for T �. In partiular, we need toshow that for any edge e, the players with terminals in Te will be willing to pay for e. Assume theplayers are unwilling to buy an edge e. Then eah player has some path whih explains why it an'tontribute more to e. We an use a arefully seleted subset of these paths to modify T �, forminga heaper tree that spans all terminals and doesn't ontain e. This would learly ontradit ourassumption that T � had minimum ost.De�ne player i's alternate path Ai to be the path of ost �i found in Algorithm 3.3, as shown inFigure 2(a). If there is more than one suh path, hoose Ai to be the path whih inludes as manyanestors of ti in Te as possible before inluding edges outside of T �. To show that all edges in T �are paid for, we need the following tehnial lemma onerning the struture of alternate paths.
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(c)(b)(a) Figure 2: Alternate paths in single soure games.
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Lemma 3.4 Suppose Ai is i's alternate path at some stage of the algorithm. Then there are twonodes v and w on Ai, suh that all edges on Ai from ti to v are in Te, all edges between v and ware in E n T �, and all edges between w and s are in T � n Te.Proof. One Ai reahes a node w in T � n Te, all subsequent nodes of Ai will be in T � n Te, asall edges f in T � n Te have ost 0(f) = 0 and the soure s is in T � n Te. Thus, suppose Ai beginswith a path P1 in Te, followed by a path P2 ontaining only edges not in T �, before reahing nodex whih is in Te, as shown in Figure 2(b). Let y be the lowest ommon anestor of x and ti in Te.Observe that P1 is stritly below y. De�ne P3 to be the path from ti to y in Te, and de�ne P4 tobe the path from y to x in Te. We now show that under the modi�ed ost funtion 0, P3 [P4 is atleast as heap as P1 [ P2. Sine P1 [ P2 inludes a higher anestor of ti than Ai (namely y), thiswould ontradit our hoie of Ai.Consider the iterations of the algorithm during whih player i ould have ontributed to edges inP3. At eah of these steps the algorithm omputes a heapest path from ti to s. At any time, playeri's payments are upper bounded by the modi�ed ost of his alternate path, whih is in turn upperbounded by the modi�ed ost of any path, in partiular Ai. Furthermore, at eah of these steps themodi�ed osts of all edges in Ai above x are 0. Therefore i's ontribution to P3 is always at mostthe modi�ed ost of P1 [P2. The modi�ed ost of P4 is always 0, as none of the edges in P4 are onplayer i's path from ti to s in T �. Together these imply that 0(P3 [ P4) = 0(P3) � 0(P1 [ P2).Thus, players' alternate paths may initially use some edges in Te, but subsequently will exlu-sively use edges outside of Te. We use this fat in the following lemma.Lemma 3.5 Algorithm 3.3 fully pays for every edge in T �.Proof. Suppose that for some edge e, after all players have ontributed to e, p(e) < (e).For eah player i, onsider the longest subpath of Ai ontaining ti and only edges in Te. Callthe highest anestor of ti on this subpath i's deviation point, denoted di. Note that it is possiblethat di = ti. Let D be a minimum set of deviation points suh that every terminal in Te has ananestor in D.Suppose we have every player i with a terminal ti in D deviate to Ai, as shown in Figure 2(),paying his modi�ed osts to eah edge. Any player i deviating in this manner does not inrease histotal expenditure, as player i raised pi(e) until pi mathed the modi�ed ost of Ai. The remainingplayers leave their payments unhanged.We laim that now the edges bought by players with terminals in Te onnet all these playersto T � n Te. To see this, �rst onsider any edge f below a deviation point di in D. By Lemma 3.4,player i is the only deviating player who ould have been ontributing to f . If i did ontribute tof , then f must be on the unique path from ti to di in Te. But by the de�nition of di, this meansthat f is in Ai. Thus player i will not hange his payment to f .De�ne Ti to be the subtree of Te rooted at di. We have shown that all edges in Ti have beenbought. By Lemma 3.4, we know that Ai onsists of edges in Ti followed by edges in E nT followedby edges in T � nTe. By the de�nition of 0, the modi�ed ost of those edges in E nT � is their atualost. Thus i pays fully for a path onneting Ti to T � n Te.We have assumed that the payments generated by the algorithm for players with terminals inTe were not suÆient to pay for those terminals to onnet to T � nTe. However, without inreasingany players' payments, we have managed to buy a subset of edges whih onnets all terminals inTe to T � n Te. This ontradits the optimality of T �. Thus the algorithm runs to ompletion.6



Sine we have also shown that the algorithm always produes a Nash equilibrium, this onludesthe proof of the theorem.We have shown that the optimisti prie of anarhy in a single soure game is 1. However, thealgorithm for �nding an optimal Nash equilibrium requires us to have a minimum ost Steiner treeon hand. Sine this is often omputationally infeasible, we present the following result.Theorem 3.6 Suppose we have a single soure game and an �-approximate minimum ost Steinertree T . Then for any " > 0, there is a poly-time algorithm whih returns a (1 + ")-approximateNash equilibrium on a Steiner tree T 0, where (T 0) � (T ).Proof Sketh. The proof of Theorem 3.2 suggests suh an algorithm whih forms a heaper treewhenever a Nash equilibrium annot be found. To ensure polynomial-time onvergene, we forethe algorithm to make only substantial improvements. See the Appendix for further details.Extensions Both theorems 3.2 and 3.6 an be proven for the ase where our graph G is direted,and players wish to purhase paths from ti to s. The one diÆulty arises from the fat that inproving Lemma 3.4, we assume that paths, in partiular P4, an be traversed in either diretion.In the direted ase, this is no longer neessarily so. We an get around this problem with a moreompliated argument, showing that if e annot be paid for, then by removing segments of alternatepaths between pairs of subtrees Ti and Tj, we an onnet all terminals in Te at lower ost.One we have shown that our theorems apply in the direted ase, we an extend our modeland give eah player i a maximum ost max(i) beyond whih he would rather pay nothing and notonnet his terminals. It suÆes to make a new terminal t0i for eah player i, with a direted edgeof ost 0 to ti and a direted edge of ost max(i) to s.4 General Connetion GamesIn this setion we deal with the general ase of players that an have di�erent numbers of terminalsand do not neessarily share the same soure terminal. As stated before, in this ase the prie ofanarhy an be as large as N , the number of players. However, even the optimisti prie of anarhymay be quite large in this general ase.
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have a Nash equilibrium. Therefore, for any N > 2, there exists a game with the optimisti prieof anarhy being nearly N � 2.Beause of this, we annot hope to be able to provide heap Nash equilibria for the multi-sourease. Therefore, we onsider how heap �-approximate Nash equilibria with small � an be, andobtain the following result.Theorem 4.1 For any optimal entralized solution T �, there exists a 3-approximate Nash equilib-rium suh that the purhased edges are exatly T �.Let T � be an optimal entralized solution, whih we know is a forest. De�ne a segment of a treeT as a path P � T suh that all interior nodes of P have degree 2. For simpliity of the proof, weassume that every segment of T � is a single edge, sine this proof is easily extendable to the generalase where this need not hold. We also assume that T � is a tree, sine otherwise we an apply thisproof to eah omponent of T �. Let T i be the unique smallest subtree of T � whih onnets allterminals of player i.De�nition 4.2 A onnetion set S of player i is a subset of edges of T i suh that for eah onnetedomponent C of the graph T � n S, we have that either(1) any player that has terminals in C has all of his terminals in C, or(2) player i has a terminal in C.Intuitively, a onnetion set S is a set suh that if we removed it from T � and then somehowonneted all the terminals of i, then all the terminals of all players are still onneted in theresulting graph. Sine T � is optimal, this means that any onnetion set S with respet to imust be heaper than any deviation of i from a strategy where i pays for S. We now have thefollowing lemma, the proof of whih follows diretly from the de�nition of a onnetion set. Thislemma basially says that if eah player buys at most � onnetion sets in full, then we have an�-approximate Nash equilibrium.Lemma 4.3 Let p be a payment funtion purhasing T � whih obeys the following properties.(1) If p(e) > 0, then e is bought fully by a single player.(2) Eah player i only buys edges whih atually lie in his tree T i.If the set of edges that eah player buys is a union of at most � onnetion sets, then p is an�-approximate Nash equilibrium.Proof of Theorem 4.1. Now all that we need to prove Theorem 4.1 is a payment sheme forarbitrary games suh that the onditions in Lemma 4.3 hold with � = 3. We now exhibit suh asheme on the edges of T �. First, eah player i pays for the edges belonging only to T i and noother tree T j . This is learly a onnetion set, so we want eah player to pay for at most 2 more.We an ontrat the edges now paid for, forming a new tree T � whih the players must pay for,and on whih eah edge belongs to at least two di�erent T i's. For onveniene, we will now talkof terminals making payments instead of players. The total payment of a player is just the sum ofthe payments of his terminals.Now we reursively assign terminals to the edges of T �. Eah edge will be assigned a terminal,whih will pay for it. At the end of eah phase of the reursion, we generate a set of direted pathsR to be paid for during the following phase. Eah of these paths starts at some terminal t, andends at a node of a path paid for in the previous phase. We will all suh a path R(t), sine foreah terminal there will be at most 1 path starting at that terminal, and we will all the last nodeof this path r(t). Figure 4(a) shows a deomposition of T � into these paths after this reursion is8



done. Initially, selet R(t) to be a path from an arbitrary terminal t to another terminal of the sameplayer in T i, diret this path away from t, and set R = fR(t)g. Eah phase proeeds as follows.
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(a)Figure 4: (a) A deomposition of T � into paths R(t); (b)() The paths Q(t) for a single player i.Step 1: Consider the set of direted paths R generated by the previous phase. For eah path R(s)in this set, do the following. Let v1; v2; : : : be the nodes of R(s), ordered in the diretion away froms (so that s = v1). We assumed that T � has no non-terminal nodes of degree 2, so eah vk mustbe either a terminal or have edges not in R(s) inident to it. Consider the subtree rooted at vkobtained by utting edges (vk�1; vk) and (vk; vk+1). De�ne Sk to be the set of terminals in thissubtree suh that the player i who owns them has terminals outside this subtree as well, i.e. either(vk�1; vk) or (vk; vk+1) is in T i. Do not inlude s in S1, and set this set to be empty for r(s). Weform a path Q(t) for eah terminal t 2 Sk that belongs to i as follows.� If i does not own s, pik the smallest ` > k suh that S` ontains a terminal of player i.{ If suh a node v` exists, set Q(t) to be the path from vk to v`.{ If no suh node v` exists, and T i ontains r(s), set Q(t) to be the path from vk to r(s).{ If no suh node v` exists, and T i does not ontain r(s), set Q(t) to be the path from vk0 tovk, where vk0 is the �rst node of R(s) suh that Sk0 ontains a terminal belonging to player i.� If i owns s, pik the largest ` < k suh that S` ontains a terminal of player i.{ If suh a node v` exists, set Q(t) to be the path from v` to vk.{ If no suh node v` exists, set Q(t) to be the path from s to vk.Figure 4(b) illustrates what the paths Q(t) for terminals t of i look like if i does not own s and T iontains r(s). In this �gure, the terminals t1 through t4 are all the terminals of i in any of the setsSk. Figure 4() shows the same thing in the ase that i owns s.De�nition 4.4 A link L is a maximal set of edges of R(s) suh that for every edge e 2 L, the setof paths Q(t) that ontain e is exatly the same, for t 2 [vk2R(s)Sk.A link L is really a onnetion set of any terminal t with L � Q(t), sine if we take out L andadd a path onneting endpoints of Q(t), then all of the endpoints of all other paths Q(t0) remainonneted. We would like to hoose exatly one terminal t from eah set Sk and have these pay forthe path R(s) together, with eah one paying for at most 1 link L, and with L � Q(t). We do thisby onstruting the following bipartite graph (A;B).9



Step 2: Let A have a node for eah link in R(s), and let B be the nodes of R(s). Form an edgebetween a node vk 2 B and node L 2 A if there exists some terminal t 2 Sk suh that L � Q(t).For X � A, de�ne �(X) to be the set of nodes in B whih X has edges to. Aording to Hall'sMathing Theorem, there exists a mathing in this bipartite graph with all nodes of A inident toan edge of the mathing if for eah set X � A, j�(X)j � jXj. Arrange the edges of the links of Xin the order they appear in R(s). We want to show that between every link of X, there appears anode belonging to �(X).Consider some edge e of X that is not the �rst one in R(s). Suppose this edge belongs to link L,and the previous edge e0 in X to some link L0. Sine these are di�erent links, there must be somepath Q(t), whih either ended or began between e0 and e, with t 2 Sk and vk 2 �(X). Supposeit ended there. If t belongs to the same player as s, then vk is between e0 and e by de�nition ofQ(t). Otherwise, there must be some terminal t0 belonging to the same player as t suh that Q(t0)begins at the plae where Q(t) ends. If Q(t0) ontains e, then we are done. Otherwise, ontinuethis argument with t0 instead of t, until Q(t0) ontains either e or e0, one of whih must happenby onstrution of Q(t). Therefore, we obtain a node vk in �(X) that is loated between e0 and e.The ase of Q(t) beginning between e0 and e is similar.Now let L be the �rst link of X that appears in R(s), and suppose player i owns s. It annot bethat L belongs to a single path Q(t) where i owns t. Otherwise, this would mean that L 2 T i butin no other tree T j , and these edges have already been paid for and ontrated. Therefore, theremust be some Q(t) ontaining L suh that t belongs to a di�erent player than s. By onstrutionof Q(t), t 2 Sk for some vk that omes before L. This means that there is a node of �(X) before L.Therefore, jXj � j�(X)j, and so we an assign a terminal tk 2 Sk to eah node vk suh thatthese terminals pay for all the links of R(s) while eah paying for at most 1 link, with that link inQ(tk). If tk pays for link L, assign the payment of L to the player who owns tk.Step 3: Finally, we must generate the set of paths R for the next phase. For eah terminal tkhosen in Step 2, let R(tk) be the path from tk to vk as above. Together, these paths ompose R.We have now generated a payment p whih satis�es all of the onditions of Lemma 4.3. All thatis left to prove Theorem 4.1 is that with this payment, � = 3. Sine the edges that belong only toT i and no other tree T j form a onnetion set, we prove this indutively by showing that the setof edges paid for by eah player's terminals in the above sheme is a union of at most 2 onnetionsets. See the Appendix for details.Extensions We have now shown that in any game, we an �nd a 3-approximate Nash purhasingthe optimal network. As a lower bound, in the Appendix we give a simple sequene of games suhthat in the limit, any Nash purhasing the optimal network must be at least (32)-approximate.Sine the proof of Theorem 4.1 is onstrutive, it atually ontains a polynomial-time algorithmfor generating a 3-approximate Nash equilibrium on T �. We an use the ideas from Theorem 3.6to reate an algorithm whih, given an �-approximate Steiner forest T , �nds a (3+ ")-approximateNash equilibrium whih pays for a Steiner forest T 0 with (T 0) � (T ). However, this algorithmrequires a polynomial-time optimal Steiner tree �nder as a subroutine. The algorithm of Theorem4.1 generates at most 3 onnetion sets for eah player i. We an hek if eah onnetion set isatually heaper than the heapest deviation of player i, whih is found by the heapest Steinertree algorithm. If it is, then we have a (3 + ")-approximate Nash equilibrium. Otherwise, we anreplae this onnetion set with the heapest deviation tree and run this algorithm over again. Ifwe use a 2-approximate Steiner forest T , and an optimal Steiner tree 1:55-approximation algorithmfrom [16℄ as our subroutine, then the above algorithm atually gives a (4:65+ ")-approximate Nashequilibrium on T 0 with (T 0) � 2 � OPT , in time polynomial in n and "�1.10
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[16℄ G. Robins and A. Zelikovsky Improved Steiner Tree Approximation in Graphs. In Pro. 10thAnn. ACM-SIAM Symp. on Disrete Algorithms, pages 770{779, 2000.[17℄ T. Roughgarden. The prie of anarhy is independent of the network topology. In Proeedingsof the 34th Annual ACM Symposium on the Theory of Computing, 2002.[18℄ T. Roughgarden. Stakelberg sheduling strategies. In Proeedings of the 33rd Annual ACMSymposium on the Theory of Computing, pages 104{113, 2001.[19℄ T. Roughgarden and �E. Tardos. How bad is sel�sh routing? In Proeedings of the 41st AnnualSymposium on Foundations of Computer Siene, pages 93{102, 2000. Full version to appear inJournal of the ACM.[20℄ A. Shulz and N. Stier Moses. On the Performane of User Equilibria in TraÆ Networks. Toappear in ACM/SIAM Symposium on Disrete Algorithms, 2003.[21℄ S. Shenker. Making Greed Work in Networks: A Game-Theoreti Analysis of Swith ServieDisiplines. In IEEE/ACM Transations on Networking, pages 819{831, 1995.[22℄ A. Vetta. Nash equilibria in ompetitive soieties with appliations to faility loation, traÆrouting and autions. In Proeedings of the Annual IEEE Symposium on the Foundations ofComputer Siene, 2002.AppendixProof of Theorem 3.6. To �nd a (1 + ")-approximate Nash equilibrium, we start by de�ning = "(T )(1+")n� . We now use Algorithm 3.3 to attempt to pay for all but  of eah edge in T . SineT is not optimal, it is possible that even with the  redution in prie, there will be some edge ethat the players are unwilling to pay for. If this happens, the proof of Theorem 3.2 indiates howwe an rearrange T to derease its ost. If we modify T in this manner, it is easy to show thatwe have dereased its ost by at least . At this point we simply start over with the new tree andattempt to pay for that.Eah all to Algorithm 3.3 an be made to run in polynomial time. Furthermore, sine eahall whih fails to pay for the tree dereases the ost of the tree by , we an have at most (1+")�n"alls. Therefore in time polynomial in n, � an "�1, we have formed a tree T 0 with (T 0) � (T )suh that the players are willing to buy T 0 if the edges in T 0 have their osts dereased by .For all players and for eah edge e in T 0, we now inrease pi(e) in proportion to pi so that e isfully paid for. Now T 0 is learly paid for. To see that this is a (1+")-approximate Nash equilibrium,note that player i did not want to deviate before his payments were inreased. If we let m0 be thenumber of edges in T 0, then i's payments were inreased by pi(T 0)(T 0)�m0m0 = "(T )pi(T 0)m0(1 + ")n�((T 0)�m0) � "(T )pi(T 0)�(1 + ")(1� ")(T 0) � "pi(T 0):Thus any deviation yields at most an " fator improvement.Proof of Theorem 4.1 (ontinued). Sine the edges that belong only to T i and no other treeT j form a onnetion set, all we need to show is that the set of edges paid for by eah player'sterminals in the sheme of Setion 4 is a union of at most 2 onnetion sets. We will prove this12



indutively, using the paths R(s) as generated in that sheme. Let T (s) be the tree ontaining R(s)obtained by removing r(s) from T �. The indutive hypothesis is the following:Case 1: If T i is entirely ontained in T (s), then the edges paid for by terminals of i are theunion of at most 2 onnetion sets.Case 2: If T i is not ontained in T (s), and i owns s, then the edges paid for by terminals of iin T (s) is a single onnetion set, and r(s) is onneted to a terminal of i in T (s) by a path onwhih i does not pay for anything.Case 3: If T i is not ontained in T (s), and i does not own s, the edges paid for by terminalsof i in T (s) is a single onnetion set.We perform indution on the phases during whih the paths R(s) were generated, bakwards. IfR(s) was generated in the last phase, this means that it is an empty path onsisting only of theterminal s, and T (s) = fsg. The empty set here is learly a onnetion set.Let R(s) and i be as in Case 2, whih we will prove �rst. Let S be the edges of T (s) for whih ipays, and onsider the omponents of T � nS, whih we want to show satisfy one of the properties ofDe�nition 4.2. All the omponents whih do not interset R(s) are taken are of by the indutivehypothesis, so let C be a omponent of T � n S whih intersets R(s). If C ontains s, then Contains a terminal of i, so we are done. If C ontains r(s), then beause of the way edges of R(s)are paid for, there must be some path R(t) ending at a node of R(s), with t a terminal of i, andwith r(t) in C. By the indutive hypothesis, there is a path from a terminal belonging to i tor(t) with no edges paid for by i, and so there is a path to r(s) with the same property, as desired.The only possibility left is that there are some edges e1 and e2 of R(s), paid for by i, that borderC on left and right, utting it o� from the rest of R(s). If e1 and e2 are in the same link, thenby de�nition of a link, we have that C satis�es the �rst property of De�nition 4.2. Otherwise, byonstrution there must be some path R(t) ending at a node of R(s), with t a terminal of i, andwith r(t) in C, and so C satis�es property (2) of De�nition 4.2 by the argument above.The proof of Case 3 is very similar to Case 2, so all that is left is to prove is Case 1. SupposeT i is entirely ontained in T (s), and let S and C be as above. Assume that i pays for at least1 edge of R(s). In the proof of Case 2, we already showed that if C is ut o� from R(s) by twoedges of the same link, then C satis�es Property (1) of De�nition 4.2. Otherwise C must be uto� from R(s) by edges belonging to di�erent links of R(s). By onstrution of the payments, therean only be one omponent C suh that there is no path R(t) ending at a node of R(s), with t aterminal of i, and with r(t) in C. If the links bordering that omponent are L and L0, then if wepretend that i does not pay for either L or L0, the set of edges paid for by i beomes a onnetionset, sine C now has a terminal of i in it. Therefore, S is a union of 2 onnetion sets. The onlyase left to address is if i does not pay for any edges of R(s). Then, there is only 1 omponent Cof T � n S interseting R(s), and we do not have to worry about any other omponents beause ofthe indutive hypothesis. If we take any link bordering C and remove it from S, then S beomes aonnetion set. Therefore, the set of edges paid for by i is a union of at most 2 onnetion sets.Lower bounds for approximate Nash on the optimal networkClaim 4.5 For any � > 0, there is a game suh that any equilibrium whih purhases the optimalnetwork is at least a (32 � �)-approximate Nash equilibrium.Proof. Construt the graph HN on 2N verties as follows. Begin with a yle on 2N verties,and number the verties 1 through 2N in a lokwise fashion. For vertex i, add an edge to verties13
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Figure 5: A game with best Nash equilibrium on OPT tending to at least a 32 -approximation.i+N � 1 mod (2N) and i+N + 1 mod (2N). Let all edges have ost 1. Finally, we will add Nplayers with 2 terminals, si and ti, for eah player i. At node j, add the label sj if j � N and tj�Notherwise. Figure 5(a) shows suh a game with N = 5.Consider the optimal network T � onsisting of all edges in the outer yle exept (s1; tN ).We would like to show that any Nash whih purhases this solution must be at least (6N�214N�11 )-approximate. This learly would prove our laim.First we would like to show that players 1 and N are not willing to ontribute too muh toany solution that is better than (32)-approximate. Suppose we have suh a solution. De�ne x tobe player 1's ontribution to his onneting path in T �, and de�ne y to be his ontribution to theremainder of T �. Thus player 1 has a total payment of x+ y. Player 1 ould deviate to only payfor x. Furthermore, player 1 ould deviate to purhase only y and the edge (s1; tN ). If we have asolution that is at most (32)-approximate, then we have that xx+y � 23 and similarly y+1x+y � 23 . Takentogether this implies that 1x+y � 13 , or x + y � 3. A symmetri argument shows that player N isalso unwilling to ontribute more than 3.Thus we have that the remaining N � 2 players must together ontribute at least 2N � 7.Therefore there must be some player other than 1 or N who must ontribute 2N�7N�2 . Suppose playeri is suh a player. Let x be the amount that player i ontributes to his onneting path in T �. Lety be his ontribution to (si�1; si) and let z be his ontribution to (ti; ti+1). See Figure 5(b).Now onsider three possible deviations available to player i. He ould hoose to ontribute onlyx. He ould ontribute y and purhase edge (si�1; ti) for an additional ost of 1. Or he ouldontribute z and purhase edge (si; ti+1), also for an additional ost of 1. We will only onsiderthese possible deviations, although of ourse there are others. Note that if i was ontributingto any other portion of T �, then we ould remove those ontributions and inrease x, y, and z,thereby stritly dereasing i's inentive to deviate. Thus we an safely assume that these are i'sonly payments, and hene x+ y + z � 2N � 7N � 2 :Sine i is urrently paying at least x + y + z, we know that his inentive to deviate is at leastmax(x+y+zx ; x+y+zy+1 ; x+y+zz+1 ). This funtion is minimized when x = y + 1 = z + 1. Solving for x we�nd that x � 4N � 113N � 6 :14



Thus player i's inentive to deviate is at leastx+ y + zx � 3x� 2x = 3� 2x � 3� 2 3N � 64N � 11 = 6N � 214N � 11 :Therefore as N grows, this lower bound on player i's inentive to deviate tends towards 32 . Note thatin this proof, we only onsidered one optimal network, namely T �. If we modify G by inreasing theosts of all edges not in T � by some small " > 0, then T � is the only optimal network. Repeatingthe above analysis under these new osts still yields a lower bound of 32 for the best approximateNash on T � in the limit as N grows and " tends to 0.NP CompletenessIn this setion, we present a brief proof that determining the existene of Nash equilibria in a givengraph is NP-omplete if the number of players is O(n). We present a redution from 3-SAT toshow that the problem is NP-hard. The graph onstruted will have unit ost edges.Consider an arbitrary instane of 3-SAT with lauses Cj and variables xi. For eah variablexi onstrut the gadget shown in Figure 6a. When player i buys the left path or right path, thisorresponds to xi being set to be true or false, respetively. We will all i a variable player.
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(a) (b)Figure 6: Gadgets for the NP-ompleteness redution.Next, for eah lause Cj, onstrut the gadget shown in Figure 6b. Note that this example is forthe ase where Cj = (x1 _ x2 _ x3). Furthermore, the edges labeled e1T , e2T , and e3F are the sameedges that appear in the variable gadgets. In other words, among all lauses and variables, there isonly one edge labeled xiT and only one labeled xiF . We will all both players on this gadget lauseplayers.Suppose that there is a satisfying assignment A in our 3-SAT instane. Consider the strategyin whih variable player i fully buys the left path if xi is true in A and fully buys the right pathotherwise. Sine this is a satisfying assignment, by our onstrution eah lause gadget has at leastone interior edge fully paid for by a variable player. For eah lause Cj , let e be one suh edge,and let both players on this gadget buy the unique path of length 3 that onnets their terminalswhih uses edge e. It is easy to see that this forms a Nash equilibrium.Suppose now that there is a Nash equilibrium. From our example in Figure 1, we know thatif we onsider any lause and look at the two orresponding players, these players must use someedges other than just those on the perimeter of the gadget. In fat, by simple ase heking it islear that in a Nash equilibrium, no edges on the perimeter of the gadget are bought at all. Thisimplies that variable players only selet paths within their gadget. Furthermore, it implies thatvariable players must pay fully for their entire path. Suppose i is a variable player who has seletedthe left (true) path, but has not paid fully for the seond edge in that path. The remainder of this15



ost must be paid for by some lause player or players. But for suh a lause player to use thisedge, he must also buy two other edges, whih are not used by any other player. Hene suh alause player must pay stritly more than 2. But there is always a path he ould use to onnetof ost exatly 2, so this an not happen in a Nash equilibrium. Thus we have established thatvariable players pay fully for their own paths.Now onsider any lause gadget. Sine we have a Nash equilibrium, we know that only internaledges are used. But sine eah lause player an onnet his terminals using perimeter edges fora ost of exatly 2, one of the interior variable edges must be bought by a variable player in eahlause gadget. If we onsider a truth assignment A in whih xi is true if and only if player i seletsthe left (true) path, then this obviously satis�es our 3-SAT instane, as every lause has at leastone variable foring it to evaluate to true.Therefore, this game has a Nash equilibrium if and only if the orresponding formula is satis-�able, and sine this problem is learly in NP, determining whether a Nash equilibrium exists isNP-Complete.Connetion game with two players is solvableIn this setion, we outline a polynomial time algorithm to �nd a Nash equilibrium for a simpli�edtwo-player version of the game in whih eah player i has only two terminals, a soure si and asink ti. For any tree T , we use Txy to represent the unique path in T from node x to y. Also,d(x; y) always stands for the shortest distane from x to y in the original graph G. We base ouralgorithm on the possible struture of the Nash equilibrium in the network. Sine the Nash networkis always a forest with four terminals, it either has to be two disjoint paths or a tree with Ts1;t1and Ts2;t2 sharing a ontiguous set of edges. Let the two endpoints of the shared subpath be alledmerge-nodes. The algorithm just enumerates over all possible Nash equilibrium strutures. Werestrit the searh spae to polynomial size by using the properties of a Nash tree. The followingalgorithm onstruts a Nash tree T if one exists.Step 1 : We �rst onsider a speial ase of this problem. Here we simply want to �nd out whetherthe two players have a Nash equilibrium in whih they buy node-disjoint paths. The paths taken byeah player at Nash equilibrium would be shortest paths, so the only possibly pro�table deviationsfor eah player are the ones where he uses the edges purhased by the other player. Hene, in orderto make sure there are no pro�table deviations, we need to build the paths so that they are \far"from eah other. Spei�ally, for some d1, the nodes allowed for player 2 are the set of all w 2 Gsimultaneously satisfying d(s1; w) � d(s1; t1)� d1 and d(t1; w) � d1. The nodes allowed for player1 also satisfy symmetrial onditions for some d2. To test if there is suh a node-disjoint Nash,we simply iterate over all possible values of d1 and d2. If for any hoie of d1 and d2, the shortestpaths through the restrited nodes are atually the shortest paths in the original graph, we have aNash. Else, we laim that the graph has no node-disjoint Nash.Step 2 : If we did not �nd a node-disjoint Nash equilibrium in Step 1, we hoose a pair of nodesfu; vg as our possible merge-nodes and assign one terminal from eah player to eah of the mergenodes. Suppose terminals s1; s2 are assigned to u and t1; t2 to v. The following steps are theniterated over all possible suh assignments and over all possible hoies of the merge-nodes. If wedo not sueed after trying out all possible suh ombinations and node-pairs, we delare that thereis no Nash in the game instane.We �rst onsider a subgame in whih eah terminal is a player that wants to onnet to itsmerge-node, and look for a node-disjoint Nash equilibrium in this game. This subgame is solvableby an easy extension of the algorithm in step 1. Let the paths obtained be named Tsiu and Ttiv for16



i = 1; 2.Next, we need to onstrut the shared portion of the tree. We use the following riterion toreate a restrited subset of nodes H. Intuitively, we do not allow the shared path to traverse nodeswhih might have a possibly heaper shortut from any of the terminals. The graph H is de�nedby the following reursive proess.� Initialize H = G.� Consider nodes in H. For w 2 H, �nd the two shortest paths Q1 from u to w and Q2 fromv to w using only nodes urrently in H. If we annot �nd either of these paths, remove wfrom H. Else, we remove w from H if either d(s1; u) + d(s2; u) + (Q1) > d(s1; w) + d(s2; w)or d(t1; v) + d(t2; v) + (Q2) > d(t1; w) + d(t2; w).� Continue this proess until we annot eliminate any more nodes from H. Eah time weeliminate any node from H, we need to iterate over all the remaining nodes to see if therehas been any hange in the shortest paths of other nodes making them possible andidatesfor elimination.Lemma 4.6 If there is a Nash with merge-node pair fu; vg, then all nodes w in the shared portionof the Nash tree are inluded in the graph H orresponding to this merge-node pair and terminalassignment.Proof. Suppose there exists a Nash equilibrium networkM suh that u and v are the merge nodes.The subpathsMs1u,Mt1u,Ms2v andMt2v must all be shortest paths and are node-disjoint. If not allnodes ofMuv are in H, onsider the �rst node w ofMuv to be eliminated. Then, sine w is part of aNash strategy, and all other nodes ofMuv were still inH, we must have d(s1; u)+d(s2; u)+(Muw) �d(s1; w) + d(s2; w). Similarly, d(t1; v) + d(t2; v) + (Mvw) � d(t1; w) + d(t2; w). Hene, w annot beeliminated.We also observe that the graph H does not inlude any nodes from the paths Tsiu and Ttivexept for u and v. We �rst show that H does not have any nodes from Ts1u[Ts2u�fug. Take anyw 2 Ts1u with w 6= u. We have that d(s1; w) < d(s1; u) and d(s2; w) � d(s2; u) + d(u;w) beause ofthe triangle inequality, and the shortest path Quw in H satis�es (Quw) � d(u;w). Putting togetherthe inequalities, w satis�es the ondition for elimination. Similarly, we an prove that H does nothave any node from Tt1v [Tt2v �fvg. This means that any path from u to v built over nodes in Hwill be disjoint from the paths Tsiu and Ttiv. We move on to the �nal step of the algorithm.Step 3 : After onstruting the graphH, �nd the shortest path Tuv from u to v in the indued graphof H. We laim that we an �nd a Nash payment sheme p on the tree T = Tuv[Si=1;2(Tsiu[Ttiv).Eah player i pays for the part of T whih is used by himself only. In the shared portion, the paymentby eah player on any segment Tuw or Twv is restrited by the ost of his alternate paths to w. Thisompletes the algorithm.The following theorem proves the orretness of the algorithm.Theorem 4.7 This algorithm �nds a Nash equilibrium i� one exists.Proof. We �rst prove that the node-disjoint solution returned, if any, is indeed a Nash. Supposethe algorithm �nds two paths P1 and P2 for the two players. Let d(ti; Pj) indiate the minimumdistane of ti from any node on Pj . Suppose the algorithm obtains a solution for (d1; d2). Now,the only possibly pro�table deviations for player 1 are ones where he uses the edges paid for by17



player 2. All nodes w on P2 satisfy d(s1; w) � d(s1; t1)� d1 and d(t1; P2) � d1. Hene, the ost ofany suh deviation will be at least d(s1; w) + d(t1; P2) � d(s1; t1). So player 1 does not have anyinentive to deviate, and neither does player 2.Now, we show that the algorithm returns a node disjoint Nash if there was one in the originalgame. If the Nash paths are P1 and P2, set d1 = d(t1; P2) and d2 = d(t2; P1). For this d1and d2, sine no player has any inentive to deviate, we have that eah node w on P2 satis�esd(s1; w) � d(s1; t1)� d1. The similar ondition is satis�ed for eah node on P1. Thus the shortestpaths lie in the restrited subsets, and our algorithm will �nd the Nash solution for the pair (d1; d2).Next, we prove that the �nal algorithm is orret. In proving that the tree T is a Nash, we �rstobserve that for eah player i, it is suÆient to onsider alternate paths whih are node-disjointfrom the tree T exept at its endpoints. This is beause eah alternate path of player i musthave subpaths whih are disjoint from T and are heaper than the payment of player i on theorresponding edges of T . To prove that T is a Nash it is enough to show that there are no suhnode-disjoint alternate paths whih are heaper. Further, if Y is an alternate path for player i,sine the subpaths Tsiu and Ttiu are also Nash strategies in the orresponding subgames, it annotbe the ase that Y is providing heaper alternate strategies to only these subpaths. Thus it issuÆient to onsider alternate paths whih are shortest paths from si and ti to some node w onTuv. Heneforth, our arguments in showing T to be a Nash will be direted at proving that no suhalternate paths exist for the given payment shema.The reasoning that this payment sheme is a Nash relies on the shared nodes being in H withrespet to the merge-node pair u and v. As argued before, the path Tuv is node-disjoint withsubpaths Tsiu or Ttiv. Consider the �rst node w on Tuv suh that we annot �nd suÆient paymentfor the segment Tuw. This implies both players have better alternate paths �1 and �2 whih takethem to w. As argued, it is enough to onsider alternate paths �1 and �2 whih are shortest pathsfrom si to w. Thus, (�1) + (�2) = d(s1; w) + d(s2; w). Also sine w is in H, and Tuw is theshortest path in H from u to w, d(s1; w) + d(s2; w) � (Ts1u) + (Ts2u) + (Tuw). Thus, �1 and �2annot both be heaper alternate paths.A similar reasoning holds for all segments Twv. This shows that the entire tree is suessfullypaid for, and the payment sheme is a Nash equilibrium. By Lemma 4.6, if a Nash exists withmerge points u and v, then the above algorithm �nds it.
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