Near-Optimal Network Design with Selfish Agents

Elliot Anshelevich* Anirban Dasguptal Eva Tardos | Tom Wexler ¥

November 2002

Abstract

We introduce a simple network design game that models how independent selfish agents
can build or maintain a large network. In our game every agent has a specific connectivity
requirement, i.e. each agent has a set of terminals and wants to build a network in which his
terminals are connected. Possible edges in the network have costs and each agent’s goal is to pay
as little as possible. Determining whether or not a Nash equilibrium exists in this game is NP-
complete. However, when the goal of each player is to connect a terminal to a common source,
we prove that there is a Nash equilibrium as cheap as the optimal network, and give a polynomial
time algorithm to find a (1 + £)-approximate Nash equilibrium that does not cost much more.
For the general connection game we prove that there is a 3-approximate Nash equilibrium that
is as cheap as the optimal network, and give an algorithm to find a (4.65 + ¢)-approximate Nash
equilibrium that does not cost much more.

*Department of Computer Science, Cornell University, Ithaca, NY 14853. Email: eanshel@cs.cornell.edu Re-
search supported in part by an NSF graduate fellowship.

"Department of Computer Science, Cornell University, Ithaca, NY 14853. Email: adg@cs.cornell.edu. Research
supported by the Computer Science Department of Cornell University.

{Department of Computer Science, Cornell University, Ithaca, NY 14853. Email: eva@cs.cornell.edu. Research
supported in part by ONR grant N00014-98-1-0589.

$Department of Computer Science, Cornell University, Ithaca, NY 14853. Email: wexler@cs.cornell.edu. Re-
search supported in part by an NSF graduate fellowship.

1 Introduction

Many networks, including the Internet, are developed, built, and maintained by a large number
of agents (Autonomous Systems), all of whom act selfishly and have relatively limited goals. This
naturally suggests a game-theoretic approach for studying both the behavior of these independent
agents and the structure of the networks they generate. The stable outcomes of the interactions
of non-cooperative selfish agents correspond to Nash equilibria. Typically, considering the Nash
equilibria of games modeling classical networking problems gives rise to a number of new issues. In
particular, Nash equilibria in network games can be much more expensive than the best centralized
design. Papadimitriou [15] uses the term price of anarchy to refer to this increase in cost caused
by selfish behavior. The price of anarchy has been studied in a number of games dealing with
various networking issues, such as load balancing [5, 6, 13, 18], routing [17, 19, 20], facility location
[22], and flow control [2, 7, 21]. In some cases [17, 19] the Nash equilibrium is unique, while in
others [13] the best Nash equilibrium coincides with the optimum solution and the authors study
the quality of the worst equilibrium. However, in some games the quality of even the best possible
equilibria can be far from optimal (e.g. in the prisoner’s dilemma). The best Nash equilibrium can
be viewed as the best solution that selfish agents can agree upon, i.e. once the solution is agreed
upon, the agents do not find it in their interest to deviate. Papadimitriou [15] defines the price
of anarchy to study the question of how bad an equilibrium can be. We study the complementary
question of how good an equilibrium can be in the context of a network design game. Schultz and
Stier [20] study the ratio of the best equilibrium to the optimum, in the context of a capacitated
routing game. We call this ratio the optimistic price of anarchy.

In this paper we consider a simple network design game where every agent has a specific con-
nectivity requirement, i.e. each agent has a set of terminals and wants to build a network in which
his terminals are connected. Possible edges in the network have costs and each agent’s goal is to
pay as little as possible. This game can be viewed as a simple model of network creation. Alter-
natively, by studying the best Nash equilibria, our game provides a framework for understanding
those networks that a central authority could persuade selfish agents to purchase and maintain,
by specifying to which parts of the network each agent contributes. An interesting feature of our
game is that selfish agents will find it in their individual interests to share the costs of edges, and
so effectively cooperate.

More precisely, we study the following network game for N players, which we call the connection
game. For each game instance, we are given an undirected graph G with non-negative edge costs.
Players form a network by purchasing some subgraph of G. Each player has a set of specified
terminal nodes that he would like to see connected in the purchased network. With this as their
goal, players offer payments indicating how much they will contribute towards the purchase of each
edge in G. If the players’ payments for a particular edge e sum to at least the cost of e, then the
edge is considered bought, which means that e is added to our network and can now be used by any
player. Each player would like to minimize his total payments, but insists on connecting all of his
terminals. We allow the cost of any edge to be shared by multiple players. Furthermore, once an
edge is purchased, any player can use it to satisfy his connectivity requirement, even if that player
contributed nothing to the cost of this edge. Finding the centralized optimum of the connection
game, i.e. the network of bought edges which minimizes the sum of the players’ contributions, is
the classic network design problem of the generalized Steiner tree [1, 10].

Our Results

We are most interested in deterministic Nash equilibria of the connection game, and in the optimistic
price of anarchy, as the pessimistic price of anarchy in our game can be quite bad. In a game
theoretic context it might seem natural to also consider mized Nash equilibria when agents can
randomly choose between different strategies. However, since we are modeling the construction
of large-scale networks, randomizing over strategies is not a realistic option for players. We also
explore the notion of an approzimate equilibrium, and study the question of how far from a true
equilibrium one has to get to be able to use the optimum solution, i.e. how unhappy would the
agents have to be if they were forced to pay for the socially optimal design. We view this as a two
parameter optimization problem: we would like to have a solution with cost close to the minimum
possible cost, and where users would not have large incentives to deviate. Finally, we examine how
difficult it is to find equilibria at all.

e In Section 3 we consider the special case when the goal of each player is to connect a single
terminal to a common source. We prove that in this case, there is a Nash equilibrium, the cost
of which is equal to the cost of the optimal network. In other words, with a single source and
one terminal per player, the optimistic price of anarchy is 1. Furthermore, given an ¢ > 0 and
an a-approximate solution to the optimal network, we show how to construct in polynomial time
an (1 4+ ¢)-approximate Nash equilibrium (players only benefit by a factor of (1 +) in deviating)
whose total cost is within a factor of a to the optimal network.

We generalize these results in two ways. First, we can extend the results to the case when the
graph is directed and players seek to establish a directed path from their terminal to the common
source. Note that problems in directed graphs are often significantly more complicated than their
undirected counterparts [4, 9]. Second, players do not have to insist on connecting their terminals
at all cost, but rather each player ¢ may have a maximum cost max(i) that he is willing to pay, and
would rather stay unconnected if his cost exceeds max(i).

e In Section 4 we consider the general case, when players may want to connect more than 2
terminals, and they do not necessarily share a single source node. In this case, there may not
exist a deterministic Nash equilibrium. When deterministic Nash equilibria do exist, the costs of
different equilibria may differ by as much as a factor of IV, the number of players, and even the
optimistic price of anarchy may be nearly N. However, in Section 4 we prove that there is always
a 3-approximate equilibrium that pays for the optimal network. Furthermore, we show how to
construct in polynomial time a (4.65 + ¢)-approximate Nash equilibrium whose total cost is within
a factor of 2 to the optimal network.

e Finally, in the Appendix we show that determining whether or not a Nash equilibrium exists is
NP-complete when the number of players is part of the input. We also show that the same problem
is poly-time solvable for 2 players that have two terminals each. Since there is only a polynomial
number of Nash equilibrium structures, the algorithm simply enumerates these.

Related Work

We view our game as a simple model of how different service providers build and maintain the
Internet topology. We use a game theoretic version of network design problems considered in
approximation algorithms [10]. Fabrikant et al [8] study a different network creation game. Network
games similar to that of [8] have also been studied for modeling the creation and maintenance of
social networks [3, 11]. In the network game considered in [3, 8, 11] each agent corresponds to a
single node of the network, and agents can only buy edges adjacent to their nodes. This model of

network creation seems extremely well suited for modeling the creation of social networks. However,
in the context of communication networks like the Internet, agents are not directly associated with
individual nodes, and can build or be responsible for more complex networks. There are many
situations where agents will find it in their interest to share the costs of certain expensive edges.
An interesting feature of our model which does not appear in [3, 8, 11] is that we allow agents to
share costs in this manner. To keep our model simple, we assume that each agent’s goal is to keep
his terminals connected, and agents are not sensitive to the length of the connecting path.

Jain and Vazirani [12] study a different cost-sharing game related to Steiner trees. They assume
that each player ¢ has a utility u; for belonging to the Steiner tree. Their goal is to give a truthful
mechanism to build a Steiner tree, and decide on cost-shares for each agent (where the cost charged
to an agent may not exceed his utility). They design a mechanism where truth-telling is a dominant
strategy for the agents, i.e. selfish agents do not find it in their interest to misreport their utility
(in hopes of being included in the Steiner tree for smaller costs). Jain and Vazirani give a truthful
mechanism to share the cost of the minimum spanning tree, which is a 2-approximation for the
Steiner tree problem. This game is quite analogous to our single source network creation game
considered in Section 3. We can view the maximum payment max(i) of agent i as his utility u;.
However, in our game there is no central authority designing the Steiner tree or cost shares. Rather,
we study Nash equilibria of our game. Also, in our game, agents must offer payments for each edge
of the tree (modeling the cooperation of selfish agents), while in a mechanism design framework,
agents pay the mechanism for the service, and do not care what edge they contribute to.

2 Model and Basic Results

The Connection Game We now formally define the connection game for N players. Let an
undirected graph G = (V, E) be given, with each edge e having a nonnegative cost c(e). Each
player ¢ has a set of terminal nodes that he must connect. The terminals of different players do
not have to be distinct. A strategy of a player is a payment function p;, where p;(e) is how much
player i is offering to contribute to the cost of edge e. Any edge e such that). pi(e) > c(e) is
considered bought, and G, denotes the graph of bought edges with the players offering payments
p = (p1,...,pn). Since each player must connect his terminals, all of the player’s terminals must
be connected in Gj,. However, each player tries to minimize his total payments, > .z pi(e).

A Nash equilibrium of the connection game is a payment function p such that, if players offer
payments p, no player has an incentive to deviate from his payments. This is equivalent to saying
that if p; for all j # ¢ are fixed, then p; minimizes the payments of player i. A (1 + ¢)-approximate
Nash equilibrium is a function p such that no player ¢ could decrease his payments by more than
a factor of 1+ ¢ by deviating, i.e. by using a different payment function p;’.

Basic Results Here we present several useful properties of Nash equilibria in the connection
game. Suppose we have a Nash equilibrium p, and let 7% be the smallest tree in G connecting all
terminals of player i. It easily follows from the definitions that (1) G}, is a forest, (2) each player ¢
only contributes to costs of edges on T, and (3) each edge is either paid for fully or not at all.

It is not always the case that selfish agents can agree to pay for a network. There are instances
of the connection game which have no deterministic Nash equilibria. In Figure 1, there are 2
players, one wishing to connect node s; to node %1, and the other sy to £5. Now suppose that there
exists a Nash equilibrium p. By Property 1 above, in a Nash equilibrium G, must be a forest, so
assume without loss of generality it consists of the edges a, b, and ¢. By Property 2, player 1 only
contributes to edges a and b, and player 2 only contributes to edges b and ¢. This means that edges

a and ¢ must be bought fully by players 1 and 2, respectively. At least one of the two players must
contribute a positive amount to edge b. However, neither player can do that in a Nash equilibrium,
since then he would have an incentive to switch to the strategy of only buying edge d and nothing
else, which would connect his terminals with the player’s total payments being only 1.

Figure 1: A game with no Nash equilibria.

We have now shown that Nash equilibria do not have to exist. However, when they exist, how
bad can these Nash equilibria be? As mentioned above, the price of anarchy often refers to the
ratio of the worst (most expensive) Nash equilibrium and the optimal centralized solution. In the
connection game, the price of anarchy is at most N, the number of players. This is simply because if
the worst Nash equilibrium p costs more than N times OPT, the cost of the optimal solution, then
there must be a player whose payments in p are strictly more than OPT, so he could deviate by
purchasing the entire optimal solution by himself, and connect his terminals with smaller payments
than before. More importantly, there are cases when the price of anarchy actually equals N, so
the above bound is tight. This is demonstrated with the following example. Suppose there are N
players, and G consists of nodes s and ¢ which are joined by 2 disjoint paths, one of length 1 and
and one of length N. Each player has a terminal at s and ¢. Then, the worst Nash equilibrium has
each player contributing 1 to the long path, and has a cost of N. The optimal solution here has
a cost of only 1, so the price of anarchy is N. Therefore, the price of anarchy could be very high
in the connection game. However, notice that in this example the best Nash equilibrium (which
is each player buying % of the short path) has the same cost as the optimal centralized solution.
We have now shown that the price of anarchy can be very large in the connection game, but the
optimistic price of anarchy remains worth considering, since the above example shows that it can
differ from the (conventional) price of anarchy by as much as a factor of N.

3 Single Source Games

As we show in the Appendix, determining whether or not Nash equilibria exist in a general in-
stance of the connection game is NP-Hard. Furthermore, even when equilibria exist, they may
be significantly more expensive than the centrally optimal network. In this section we define a
class of games in which there is always a Nash equilibrium, and the optimistic price of anarchy is
1. Furthermore, we show how we can use an approximation to the centrally optimal network to
construct a (1 4 €)-approximate Nash equilibrium in poly-time, for any € > 0.

Definition 3.1 A single source game is a game in which all players share a common terminal s,
and in addition, each player i has exactly one other terminal t;.

Theorem 3.2 In any single source game, there is a Nash equilibrium which purchases T*, a min-
imum cost Steiner tree on all players’ terminal nodes.

Proof. Given T%, we present an algorithm to construct payment strategies p. We will view T*
as being rooted at s. Let T, be the subtree of T disconnected from s when e is removed.

Algorithm 3.3

Initialize p;(e) =0 for all players i and edges e.
Loop through all edges e in 7™ in reverse BFS order.
Loop through all players ¢ with ¢; € T, until e paid for.
If ¢ is a cut in G set p;(e) = c(e).
Otherwise
Define ¢'(f) =pi(f) for all f € T* and
d(f)=c(f) for all f ¢ T*.
Define y; to be the cost of the cheapest path from s to
ti in G\ {e} under modified costs .
Define p;i(T*) = X er- pilf)-
Define p(e) =3, pj(e).
Set pi(e) = min{x; — p;(T*),c(e) —p(e)}.

We first claim that if this algorithm terminates, the resulting payment forms a Nash equilibrium.
Consider the algorithm at some stage where we are determining ¢’s payment to e. The cost function
¢’ is defined to reflect the costs player i faces if he deviates in the final solution. We never allow 4
to contribute so much to e that his total payments exceed his cost of connecting #; to s. Therefore
it is never in player i’s interest to deviate. Since this is true for all players, p is a Nash equilibrium.

We will now prove that this algorithm succeeds in paying for T*. In particular, we need to
show that for any edge e, the players with terminals in T, will be willing to pay for e. Assume the
players are unwilling to buy an edge e. Then each player has some path which explains why it can’t
contribute more to e. We can use a carefully selected subset of these paths to modify T, forming
a cheaper tree that spans all terminals and doesn’t contain e. This would clearly contradict our
assumption that 7% had minimum cost.

Define player i’s alternate path A; to be the path of cost x; found in Algorithm 3.3, as shown in
Figure 2(a). If there is more than one such path, choose A; to be the path which includes as many
ancestors of ¢; in T, as possible before including edges outside of T*. To show that all edges in T*
are paid for, we need the following technical lemma, concerning the structure of alternate paths.

(a) (b) ()

Figure 2: Alternate paths in single source games.

Lemma 3.4 Suppose A; is i’s alternate path at some stage of the algorithm. Then there are two
nodes v and w on A;, such that all edges on A; from t; to v are in Te, all edges between v and w
are in E\ T*, and all edges between w and s are in T* \ T,.

Proof. Once A; reaches a node w in T* \ T, all subsequent nodes of A; will be in T* \ T, as
all edges f in T* \ T, have cost ¢/(f) = 0 and the source s is in T* \ T,. Thus, suppose A; begins
with a path P; in T, followed by a path P» containing only edges not in 7%, before reaching node
2 which is in T, as shown in Figure 2(b). Let y be the lowest common ancestor of z and ¢; in Tp.
Observe that Pj is strictly below y. Define P; to be the path from ¢; to y in T, and define Py to
be the path from y to z in T,. We now show that under the modified cost function ¢/, Py U Py is at
least as cheap as P; U P,. Since P; U P, includes a higher ancestor of ¢; than A; (namely y), this
would contradict our choice of A;.

Consider the iterations of the algorithm during which player 4 could have contributed to edges in
P;3. At each of these steps the algorithm computes a cheapest path from ¢; to s. At any time, player
1’s payments are upper bounded by the modified cost of his alternate path, which is in turn upper
bounded by the modified cost of any path, in particular A;. Furthermore, at each of these steps the
modified costs of all edges in A; above x are 0. Therefore 7’s contribution to Pj is always at most
the modified cost of Py U P,. The modified cost of P, is always 0, as none of the edges in P, are on
player i’s path from #; to s in T*. Together these imply that ¢/(Ps U Py) =d(P;) < d(PLUP). &

Thus, players’ alternate paths may initially use some edges in T, but subsequently will exclu-
sively use edges outside of T,. We use this fact in the following lemma.

Lemma 3.5 Algorithm 3.3 fully pays for every edge in T*.

Proof. Suppose that for some edge e, after all players have contributed to e, p(e) < c(e).

For each player ¢, consider the longest subpath of A; containing ¢; and only edges in T,. Call
the highest ancestor of #; on this subpath i’s deviation point, denoted d;. Note that it is possible
that d; = t;. Let D be a minimum set of deviation points such that every terminal in T, has an
ancestor in D.

Suppose we have every player 7 with a terminal #; in D deviate to A;, as shown in Figure 2(c),
paying his modified costs to each edge. Any player 7 deviating in this manner does not increase his
total expenditure, as player i raised p;(e) until p; matched the modified cost of A;. The remaining
players leave their payments unchanged.

We claim that now the edges bought by players with terminals in T, connect all these players
to T* \ T,. To see this, first consider any edge f below a deviation point d; in D. By Lemma 3.4,
player 4 is the only deviating player who could have been contributing to f. If 4 did contribute to
f, then f must be on the unique path from ¢; to d; in T,. But by the definition of d;, this means
that f is in A;. Thus player 7 will not change his payment to f.

Define T; to be the subtree of T, rooted at d;. We have shown that all edges in T; have been
bought. By Lemma 3.4, we know that A; consists of edges in T; followed by edges in '\ T followed
by edges in T* \ T,. By the definition of ¢/, the modified cost of those edges in E\ T* is their actual
cost. Thus i pays fully for a path connecting T; to T* \ T¢.

We have assumed that the payments generated by the algorithm for players with terminals in
T, were not sufficient to pay for those terminals to connect to T* \ T,. However, without increasing
any players’ payments, we have managed to buy a subset of edges which connects all terminals in
Te to T* \ T,. This contradicts the optimality of 7. Thus the algorithm runs to completion. ®

Since we have also shown that the algorithm always produces a Nash equilibrium, this concludes
the proof of the theorem. []

We have shown that the optimistic price of anarchy in a single source game is 1. However, the
algorithm for finding an optimal Nash equilibrium requires us to have a minimum cost Steiner tree
on hand. Since this is often computationally infeasible, we present the following result.

Theorem 3.6 Suppose we have a single source game and an a-approzimate minimum cost Steiner
tree T. Then for any € > 0, there is a poly-time algorithm which returns a (1 + €)-approzimate
Nash equilibrium on a Steiner tree T, where c(T') < ¢(T).

Proof Sketch. The proof of Theorem 3.2 suggests such an algorithm which forms a cheaper tree
whenever a Nash equilibrium cannot be found. To ensure polynomial-time convergence, we force
the algorithm to make only substantial improvements. See the Appendix for further details.]

Extensions Both theorems 3.2 and 3.6 can be proven for the case where our graph G is directed,
and players wish to purchase paths from ¢; to s. The one difficulty arises from the fact that in
proving Lemma 3.4, we assume that paths, in particular Py, can be traversed in either direction.
In the directed case, this is no longer necessarily so. We can get around this problem with a more
complicated argument, showing that if e cannot be paid for, then by removing segments of alternate
paths between pairs of subtrees T; and T}, we can connect all terminals in T¢ at lower cost.

Once we have shown that our theorems apply in the directed case, we can extend our model
and give each player i a maximum cost max(i) beyond which he would rather pay nothing and not
connect his terminals. It suffices to make a new terminal ¢, for each player i, with a directed edge
of cost 0 to t; and a directed edge of cost max(z) to s.

4 General Connection Games

In this section we deal with the general case of players that can have different numbers of terminals
and do not necessarily share the same source terminal. As stated before, in this case the price of
anarchy can be as large as IV, the number of players. However, even the optimistic price of anarchy
may be quite large in this general case.

NG N/2-1-¢ 52

N/2-1-¢ 10}
Figure 3: A game with high optimistic price of anarchy.

Consider the graph illustrated in Figure 3, where each player ¢ owns terminals s; and ¢;. The
optimal centralized solution has cost 1 + 3e. If the path of length 1 was bought, each player i > 2
will not want to pay for any e edges, and therefore the situation of players 1 and 2 reduces to the
example in Section 2 of a game with no Nash equilibria. Therefore, any Nash equilibrium must
purchase the path of length N — 2. In fact, if each player ¢ > 2 buys ﬁ of this path, then we

have a Nash equilibrium. Therefore, for any N > 2, there exists a game with the optimistic price
of anarchy being nearly N — 2.

Because of this, we cannot hope to be able to provide cheap Nash equilibria for the multi-source
case. Therefore, we consider how cheap a-approximate Nash equilibria with small & can be, and
obtain the following result.

Theorem 4.1 For any optimal centralized solution T*, there exists a 3-approximate Nash equilib-
rium such that the purchased edges are exactly T*.

Let T* be an optimal centralized solution, which we know is a forest. Define a segment of a tree
T as a path P C T such that all interior nodes of P have degree 2. For simplicity of the proof, we
assume that every segment of T is a single edge, since this proof is easily extendable to the general
case where this need not hold. We also assume that T™* is a tree, since otherwise we can apply this
proof to each component of T*. Let T® be the unique smallest subtree of T which connects all
terminals of player 1.

Definition 4.2 A connection set S of player i is a subset of edges of T* such that for each connected
component C of the graph T* \ S, we have that either

(1) any player that has terminals in C has all of his terminals in C, or

(2) player i has a terminal in C.

Intuitively, a connection set S is a set such that if we removed it from 7™ and then somehow
connected all the terminals of 7, then all the terminals of all players are still connected in the
resulting graph. Since T* is optimal, this means that any connection set S with respect to i
must be cheaper than any deviation of ¢+ from a strategy where ¢ pays for S. We now have the
following lemma, the proof of which follows directly from the definition of a connection set. This
lemma basically says that if each player buys at most « connection sets in full, then we have an
a-approximate Nash equilibrium.

Lemma 4.3 Let p be a payment function purchasing T which obeys the following properties.

(1) If p(e) > 0, then e is bought fully by a single player.

(2) Each player i only buys edges which actually lie in his tree T".

If the set of edges that each player buys is a union of at most o connection sets, then p is an
a-approxrimate Nash equilibrium.

Proof of Theorem 4.1. Now all that we need to prove Theorem 4.1 is a payment scheme for
arbitrary games such that the conditions in Lemma 4.3 hold with @ = 3. We now exhibit such a
scheme on the edges of T*. First, each player i pays for the edges belonging only to 7% and no
other tree T7. This is clearly a connection set, so we want each player to pay for at most 2 more.
We can contract the edges now paid for, forming a new tree T* which the players must pay for,
and on which each edge belongs to at least two different T%’s. For convenience, we will now talk
of terminals making payments instead of players. The total payment of a player is just the sum of
the payments of his terminals.

Now we recursively assign terminals to the edges of T*. Each edge will be assigned a terminal,
which will pay for it. At the end of each phase of the recursion, we generate a set of directed paths
R to be paid for during the following phase. Each of these paths starts at some terminal ¢, and
ends at a node of a path paid for in the previous phase. We will call such a path R(t), since for
each terminal there will be at most 1 path starting at that terminal, and we will call the last node
of this path r(t). Figure 4(a) shows a decomposition of T* into these paths after this recursion is

done. Initially, select R(¢) to be a path from an arbitrary terminal ¢ to another terminal of the same
player in T", direct this path away from ¢, and set R = {R(¢)}. Each phase proceeds as follows.

Qt;) Q) Qfts) Q(ty)
tg & r(s)

t t, iy ity ity ity

(b)

ty r(ty) t; . Q) Q) Q) Q) ©
R(ty) t

t»] : t1 : t2 : t3 : t4

(a) (c)

Figure 4: (a) A decomposition of T* into paths R(t); (b)(c) The paths Q(¢) for a single player 3.

Step 1: Consider the set of directed paths R generated by the previous phase. For each path R(s)
in this set, do the following. Let vy, vs,... be the nodes of R(s), ordered in the direction away from
s (so that s = v1). We assumed that 7% has no non-terminal nodes of degree 2, so each vy must
be either a terminal or have edges not in R(s) incident to it. Consider the subtree rooted at vy
obtained by cutting edges (vg—1,vx) and (vg,vk41). Define Sy to be the set of terminals in this
subtree such that the player 1 who owns them has terminals outside this subtree as well, i.e. either
(vk_1,vk) or (vg,vgy1) is in TP Do not include s in Sy, and set this set to be empty for r(s). We
form a path Q(t) for each terminal ¢ € S; that belongs to i as follows.

e If i does not own s, pick the smallest £ > k such that Sy contains a terminal of player i.
— If such a node vy exists, set Q(t) to be the path from vy to vy.
— If no such node v, exists, and 7% contains r(s), set Q(t) to be the path from vy to r(s).

— If no such node vy exists, and T" does not contain r(s), set Q(t) to be the path from v to
vk, where vy is the first node of R(s) such that Sy contains a terminal belonging to player i.

e If i owns s, pick the largest £ < k such that S, contains a terminal of player 3.
— If such a node vy, exists, set Q(¢) to be the path from v, to vy.
— If no such node vy exists, set Q(t) to be the path from s to vy.

Figure 4(b) illustrates what the paths Q(¢) for terminals ¢ of i look like if i does not own s and T"
contains r(s). In this figure, the terminals ¢; through ¢4 are all the terminals of 7 in any of the sets
Si. Figure 4(c) shows the same thing in the case that i owns s.

Definition 4.4 A link L is a mazimal set of edges of R(s) such that for every edge e € L, the set
of paths Q(t) that contain e is exactly the same, for t € Uy, cr(s)Sk-

A link L is really a connection set of any terminal ¢ with L C Q(#), since if we take out L and
add a path connecting endpoints of Q(¢), then all of the endpoints of all other paths Q(¢') remain
connected. We would like to choose exactly one terminal ¢ from each set S; and have these pay for
the path R(s) together, with each one paying for at most 1 link L, and with L C Q(¢). We do this
by constructing the following bipartite graph (A, B).

Step 2: Let A have a node for each link in R(s), and let B be the nodes of R(s). Form an edge
between a node vy € B and node L € A if there exists some terminal ¢ € Sy, such that L C Q(¢).
For X C A, define (X) to be the set of nodes in B which X has edges to. According to Hall’s
Matching Theorem, there exists a matching in this bipartite graph with all nodes of A incident to
an edge of the matching if for each set X C A, |0(X)| > |X|. Arrange the edges of the links of X
in the order they appear in R(s). We want to show that between every link of X, there appears a
node belonging to 9(X).

Consider some edge e of X that is not the first one in R(s). Suppose this edge belongs to link L,
and the previous edge ¢’ in X to some link L'. Since these are different links, there must be some
path Q(t), which either ended or began between ¢’ and e, with ¢t € S and v € 9(X). Suppose
it ended there. If ¢ belongs to the same player as s, then v, is between €' and e by definition of
Q(t). Otherwise, there must be some terminal ¢’ belonging to the same player as ¢ such that Q(¢)
begins at the place where Q(¢) ends. If Q(#') contains e, then we are done. Otherwise, continue
this argument with ¢’ instead of ¢, until Q(#') contains either e or €', one of which must happen
by construction of Q(t). Therefore, we obtain a node v in 9(X) that is located between e’ and e.
The case of Q(t) beginning between ¢’ and e is similar.

Now let L be the first link of X that appears in R(s), and suppose player 7 owns s. It cannot be
that L belongs to a single path Q(t) where i owns ¢. Otherwise, this would mean that L € T* but
in no other tree 77, and these edges have already been paid for and contracted. Therefore, there
must be some Q(t) containing L such that ¢ belongs to a different player than s. By construction
of Q(t), t € Sy for some vy, that comes before L. This means that there is a node of 9(X) before L.

Therefore, |X| < |0(X)|, and so we can assign a terminal t; € Si to each node vy such that
these terminals pay for all the links of R(s) while each paying for at most 1 link, with that link in
Q(tx). If ty pays for link L, assign the payment of L to the player who owns .

Step 3: Finally, we must generate the set of paths R for the next phase. For each terminal
chosen in Step 2, let R(tx) be the path from #; to vy as above. Together, these paths compose R.

We have now generated a payment p which satisfies all of the conditions of Lemma 4.3. All that
is left to prove Theorem 4.1 is that with this payment, a = 3. Since the edges that belong only to
T* and no other tree T7 form a connection set, we prove this inductively by showing that the set
of edges paid for by each player’s terminals in the above scheme is a union of at most 2 connection
sets. See the Appendix for details. []

Extensions We have now shown that in any game, we can find a 3-approximate Nash purchasing
the optimal network. As a lower bound, in the Appendix we give a simple sequence of games such
that in the limit, any Nash purchasing the optimal network must be at least (%)—approximate.

Since the proof of Theorem 4.1 is constructive, it actually contains a polynomial-time algorithm
for generating a 3-approximate Nash equilibrium on 7. We can use the ideas from Theorem 3.6
to create an algorithm which, given an a-approximate Steiner forest T, finds a (3 + ¢)-approximate
Nash equilibrium which pays for a Steiner forest 7" with ¢(T") < ¢(T). However, this algorithm
requires a polynomial-time optimal Steiner tree finder as a subroutine. The algorithm of Theorem
4.1 generates at most 3 connection sets for each player 7. We can check if each connection set is
actually cheaper than the cheapest deviation of player ¢, which is found by the cheapest Steiner
tree algorithm. If it is, then we have a (3 + ¢)-approximate Nash equilibrium. Otherwise, we can
replace this connection set with the cheapest deviation tree and run this algorithm over again. If
we use a 2-approximate Steiner forest 7', and an optimal Steiner tree 1.55-approximation algorithm
from [16] as our subroutine, then the above algorithm actually gives a (4.65 + ¢)-approximate Nash
equilibrium on 7" with ¢(T") < 2- OPT, in time polynomial in n and !,

10

Acknowledgements

This project arose in a class taught by Eric Friedman. It began as joint work with Ranjith Ra-
jagopalan. We would like to thank him for many useful insights and contributions.

References

[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the
generalized Steiner problem on networks. STAM Journal on Computing, 24(3) 445-456 (1995).

[2] A. Akella, R. Karp, C. Papadimitrou, S. Seshan, and S. Shenker. Selfish Behavior and Stability
of the Internet: A Game-Theoretic Analysis of TCP. In Proceedings of SIGCOMM, 2002

[3] V. Bala and S. Goyal. A Non-Cooperative Model of Network Formation. In Econometrica
68(2000), pages 1181-1229.

[4] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha. Approximation Algorithms
for Directed Steiner Problems. In Proceedings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, 1998.

[5] A. Czumaj, P. Krysta, and B. Vécking. Selfish Traffic Allocation for Server Farms. In Proceed-
ings of the 34th Annual ACM Symposium on the Theory of Computing, pages 287-296, 2002.

[6] A. Czumaj and B. Vocking. Tight bounds for worst-case equilibria. In Proceedings of the 13th
Annual Symposium on Discrete Algorithms, pages 413-420, 2002.

[7] D. Dutta A. Goel, and J. Heidemann. Oblivious AQM and Nash Equilibrium. In Proceeding of
the IEEE Infocom, 2003.

[8] A. Fabrikant, A. Luthra, E. Maneva, S. Papadimitriou, and S. Shenker. On a Network Creation
Game. Unpublished manuscript.

[9] U. Feige. A treshold of lgn for approximating set-cover. In Proceedings of the 28th ACM
Symposium on Theory of Computing, pages 314-318, 1996.

[10] M. Goemans, and D. Williamson. A General Approximation Technique for Constrained Forest
Problems. STAM Journal on Computing, 24:296-317, 1995

[11] H. Heller and S. Sarangi. Nash Networks with Heterogeneous Agents. Working Paper Series
2001, E-2001-1, Virginia Tech.

[12] K. Jain and V. Vazirani. Applications of Approximation Algorithms to Cooperative Games.
In the Proceedings in the Annual ACM Symposium on Theory of Computing, 2001.

[13] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proceedings of the 16th Annual
Symposium on Theoretical Aspects of Computer Science, pages 404-413, 1999.

[14] M. Mavronicolas and P. Spirakis. The price of selfish routing. In Proceedings of the 33rd
Annual ACM Symposium on the Theory of Computing, pages 510-519, 2001.

[15] C. Papadimitriou. Algorithms, Games, and the Internet. In Proceedings of the 33rd Annual
ACM Symposium on the Theory of Computing, pages 749-753, 2001.

11

[16] G. Robins and A. Zelikovsky Improved Steiner Tree Approximation in Graphs. In Proc. 10th
Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 770-779, 2000.

[17] T. Roughgarden. The price of anarchy is independent of the network topology. In Proceedings
of the 34th Annual ACM Symposium on the Theory of Computing, 2002.

[18] T. Roughgarden. Stackelberg scheduling strategies. In Proceedings of the 33rd Annual ACM
Symposium on the Theory of Computing, pages 104-113, 2001.

[19] T. Roughgarden and E. Tardos. How bad is selfish routing? In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, pages 93-102, 2000. Full version to appear in
Journal of the ACM.

[20] A. Schulz and N. Stier Moses. On the Performance of User Equilibria in Traffic Networks. To
appear in ACM/SIAM Symposium on Discrete Algorithms, 2003.

[21] S. Shenker. Making Greed Work in Networks: A Game-Theoretic Analysis of Switch Service
Disciplines. In IEEE/ACM Transactions on Networking, pages 819-831, 1995.

[22] A. Vetta. Nash equilibria in competitive societies with applications to facility location, traffic
routing and auctions. In Proceedings of the Annual IEEE Symposium on the Foundations of
Computer Science, 2002.

Appendix

Proof of Theorem 3.6. To find a (1 + ¢)-approximate Nash equilibrium, we start by defining

= (ﬁg;)m' We now use Algorithm 3.3 to attempt to pay for all but v of each edge in T. Since
T is not optimal, it is possible that even with the v reduction in price, there will be some edge e
that the players are unwilling to pay for. If this happens, the proof of Theorem 3.2 indicates how
we can rearrange 1 to decrease its cost. If we modify T in this manner, it is easy to show that
we have decreased its cost by at least . At this point we simply start over with the new tree and
attempt to pay for that.

Each call to Algorithm 3.3 can be made to run in polynomial time. Furthermore, since each
call which fails to pay for the tree decreases the cost of the tree by -y, we can have at most @
calls. Therefore in time polynomial in n, o an €, we have formed a tree T’ with ¢(T") < ¢(T)
such that the players are willing to buy 7" if the edges in T” have their costs decreased by +.

For all players and for each edge e in T”, we now increase p;(e) in proportion to p; so that e is
fully paid for. Now T" is clearly paid for. To see that this is a (1+¢)-approximate Nash equilibrium,
note that player ¢ did not want to deviate before his payments were increased. If we let m' be the
number of edges in T”, then i’s payments were increased by

() el el D)
c(T") — mly (1+e)na(c(T") —m'y) = a(l +e)(1 —e)c(T)
Thus any deviation yields at most an e factor improvement.]

Proof of Theorem 4.1 (continued). Since the edges that belong only to T% and no other tree
T form a connection set, all we need to show is that the set of edges paid for by each player’s
terminals in the scheme of Section 4 is a union of at most 2 connection sets. We will prove this

12

inductively, using the paths R(s) as generated in that scheme. Let T'(s) be the tree containing R(s)
obtained by removing r(s) from T*. The inductive hypothesis is the following:

Case 1: If T? is entirely contained in T'(s), then the edges paid for by terminals of i are the
union of at most 2 connection sets.

Case 2: If T" is not contained in T'(s), and i owns s, then the edges paid for by terminals of i
in T'(s) is a single connection set, and r(s) is connected to a terminal of 7 in T'(s) by a path on
which 4 does not pay for anything.

Case 3: If T" is not contained in T'(s), and i does not own s, the edges paid for by terminals
of 7 in T'(s) is a single connection set.

We perform induction on the phases during which the paths R(s) were generated, backwards. If
R(s) was generated in the last phase, this means that it is an empty path consisting only of the
terminal s, and T'(s) = {s}. The empty set here is clearly a connection set.

Let R(s) and 7 be as in Case 2, which we will prove first. Let S be the edges of T'(s) for which ¢
pays, and consider the components of 7%\ S, which we want to show satisfy one of the properties of
Definition 4.2. All the components which do not intersect R(s) are taken care of by the inductive
hypothesis, so let C be a component of 7% \ S which intersects R(s). If C contains s, then C
contains a terminal of 7, so we are done. If C' contains r(s), then because of the way edges of R(s)
are paid for, there must be some path R(%) ending at a node of R(s), with ¢ a terminal of 4, and
with r(¢) in C. By the inductive hypothesis, there is a path from a terminal belonging to i to
r(t) with no edges paid for by i, and so there is a path to r(s) with the same property, as desired.
The only possibility left is that there are some edges e; and ey of R(s), paid for by 7, that border
C on left and right, cutting it off from the rest of R(s). If e; and ey are in the same link, then
by definition of a link, we have that C satisfies the first property of Definition 4.2. Otherwise, by
construction there must be some path R(¢) ending at a node of R(s), with ¢ a terminal of 7, and
with r(¢) in C, and so C satisfies property (2) of Definition 4.2 by the argument above.

The proof of Case 3 is very similar to Case 2, so all that is left is to prove is Case 1. Suppose
T is entirely contained in T'(s), and let S and C be as above. Assume that i pays for at least
1 edge of R(s). In the proof of Case 2, we already showed that if C is cut off from R(s) by two
edges of the same link, then C satisfies Property (1) of Definition 4.2. Otherwise C' must be cut
off from R(s) by edges belonging to different links of R(s). By construction of the payments, there
can only be one component C such that there is no path R(¢) ending at a node of R(s), with ¢ a
terminal of 7, and with r(¢) in C. If the links bordering that component are L and L', then if we
pretend that ¢ does not pay for either L or L', the set of edges paid for by 7 becomes a connection
set, since C' now has a terminal of ¢ in it. Therefore, S is a union of 2 connection sets. The only
case left to address is if 7 does not pay for any edges of R(s). Then, there is only 1 component C
of T* \ S intersecting R(s), and we do not have to worry about any other components because of
the inductive hypothesis. If we take any link bordering C' and remove it from S, then S becomes a
connection set. Therefore, the set of edges paid for by 4 is a union of at most 2 connection sets. H

Lower bounds for approximate Nash on the optimal network

Claim 4.5 For any € > 0, there is a game such that any equilibrium which purchases the optimal
network is at least a (% — €)-approximate Nash equilibrium.

Proof. Construct the graph Hy on 2N vertices as follows. Begin with a cycle on 2N vertices,
and number the vertices 1 through 2N in a clockwise fashion. For vertex i, add an edge to vertices

13

(b)

Figure 5: A game with best Nash equilibrium on OPT tending to at least a %—approximation.

i+N—1 mod (2N) and i + N + 1 mod (2N). Let all edges have cost 1. Finally, we will add N
players with 2 terminals, s; and ¢;, for each player i. At node j, add the label s; if j < N and ¢;_x
otherwise. Figure 5(a) shows such a game with N = 5.

Consider the optimal network 7™ consisting of all edges in the outer cycle except (s1,tn).
We would like to show that any Nash which purchases this solution must be at least (g%:ﬂ)—
approximate. This clearly would prove our claim.

First we would like to show that players 1 and N are not willing to contribute too much to
any solution that is better than (%)—approximate. Suppose we have such a solution. Define z to
be player 1’s contribution to his connecting path in 7%, and define y to be his contribution to the
remainder of 7. Thus player 1 has a total payment of = + y. Player 1 could deviate to only pay
for x. Furthermore, player 1 could deviate to purchase only y and the edge (s1,tx). If we have a
solution that is at most (%)—approximate, then we have that xi_l_y > % and similarly % > % Taken

together this implies that I—}ry > %, or £+ y < 3. A symmetric argument shows that player N is
also unwilling to contribute more than 3.

Thus we have that the remaining N — 2 players must together contribute at least 2N — 7.
Therefore there must be some player other than 1 or N who must contribute 2]<,V:27. Suppose player
1 is such a player. Let z be the amount that player ¢ contributes to his connecting path in T%. Let
y be his contribution to (s;_1,s;) and let z be his contribution to (¢;,%;+1). See Figure 5(b).

Now consider three possible deviations available to player ¢. He could choose to contribute only
x. He could contribute y and purchase edge (s;_1,t;) for an additional cost of 1. Or he could
contribute z and purchase edge (s;,%;+1), also for an additional cost of 1. We will only consider
these possible deviations, although of course there are others. Note that if ¢ was contributing
to any other portion of T*, then we could remove those contributions and increase z, y, and z,
thereby strictly decreasing ’s incentive to deviate. Thus we can safely assume that these are i’s
only payments, and hence

2N -7
N-2"

Since 7 is currently paying at least = + y + z, we know that his incentive to deviate is at least

r+y+z2>

max(m+g+z, I;rf{z, mjj’_;rz) This function is minimized when z = y + 1 = 2z + 1. Solving for z we
find that
4N — 11
D —
— 3N -6

14

Thus player i’s incentive to deviate is at least

x+y+z>3$—2 2 3N -6 6N —21
x =z z = AN —11 4N —11°

Therefore as N grows, this lower bound on player i’s incentive to deviate tends towards % Note that
in this proof, we only considered one optimal network, namely T*. If we modify G by increasing the
costs of all edges not in T by some small € > 0, then T* is the only optimal network. Repeating
the above analysis under these new costs still yields a lower bound of % for the best approximate
Nash on T* in the limit as N grows and ¢ tends to 0.]

NP Completeness

In this section, we present a brief proof that determining the existence of Nash equilibria in a given
graph is NP-complete if the number of players is O(n). We present a reduction from 3-SAT to
show that the problem is NP-hard. The graph constructed will have unit cost edges.

Consider an arbitrary instance of 3-SAT with clauses C; and variables z;. For each variable
x; construct the gadget shown in Figure 6a. When player ¢ buys the left path or right path, this
corresponds to z; being set to be true or false, respectively. We will call ¢ a variable player.

(@) (b)
Figure 6: Gadgets for the NP-completeness reduction.

Next, for each clause C}, construct the gadget shown in Figure 6b. Note that this example is for
the case where C; = (21 V22 VZ3). Furthermore, the edges labeled ei7, ear, and e3p are the same
edges that appear in the variable gadgets. In other words, among all clauses and variables, there is
only one edge labeled x;7 and only one labeled z;r. We will call both players on this gadget clause
players.

Suppose that there is a satisfying assignment A in our 3-SAT instance. Consider the strategy
in which variable player ¢ fully buys the left path if x; is true in A and fully buys the right path
otherwise. Since this is a satisfying assignment, by our construction each clause gadget has at least
one interior edge fully paid for by a variable player. For each clause C}, let e be one such edge,
and let both players on this gadget buy the unique path of length 3 that connects their terminals
which uses edge e. It is easy to see that this forms a Nash equilibrium.

Suppose now that there is a Nash equilibrium. From our example in Figure 1, we know that
if we consider any clause and look at the two corresponding players, these players must use some
edges other than just those on the perimeter of the gadget. In fact, by simple case checking it is
clear that in a Nash equilibrium, no edges on the perimeter of the gadget are bought at all. This
implies that variable players only select paths within their gadget. Furthermore, it implies that
variable players must pay fully for their entire path. Suppose i is a variable player who has selected
the left (true) path, but has not paid fully for the second edge in that path. The remainder of this

15

cost must be paid for by some clause player or players. But for such a clause player to use this
edge, he must also buy two other edges, which are not used by any other player. Hence such a
clause player must pay strictly more than 2. But there is always a path he could use to connect
of cost exactly 2, so this can not happen in a Nash equilibrium. Thus we have established that
variable players pay fully for their own paths.

Now consider any clause gadget. Since we have a Nash equilibrium, we know that only internal
edges are used. But since each clause player can connect his terminals using perimeter edges for
a cost of exactly 2, one of the interior variable edges must be bought by a variable player in each
clause gadget. If we consider a truth assignment A in which z; is true if and only if player ¢ selects
the left (true) path, then this obviously satisfies our 3-SAT instance, as every clause has at least
one variable forcing it to evaluate to true.

Therefore, this game has a Nash equilibrium if and only if the corresponding formula is satis-
fiable, and since this problem is clearly in NP, determining whether a Nash equilibrium exists is
NP-Complete.

Connection game with two players is solvable

In this section, we outline a polynomial time algorithm to find a Nash equilibrium for a simplified
two-player version of the game in which each player ¢ has only two terminals, a source s; and a
sink ¢;. For any tree T', we use Ty, to represent the unique path in 7' from node z to y. Also,
d(z,y) always stands for the shortest distance from x to y in the original graph G. We base our
algorithm on the possible structure of the Nash equilibrium in the network. Since the Nash network
is always a forest with four terminals, it either has to be two disjoint paths or a tree with T}, ;,
and Ty, 4, sharing a contiguous set of edges. Let the two endpoints of the shared subpath be called
merge-nodes. The algorithm just enumerates over all possible Nash equilibrium structures. We
restrict the search space to polynomial size by using the properties of a Nash tree. The following
algorithm constructs a Nash tree T if one exists.

Step 1 : We first consider a special case of this problem. Here we simply want to find out whether
the two players have a Nash equilibrium in which they buy node-disjoint paths. The paths taken by
each player at Nash equilibrium would be shortest paths, so the only possibly profitable deviations
for each player are the ones where he uses the edges purchased by the other player. Hence, in order
to make sure there are no profitable deviations, we need to build the paths so that they are “far”
from each other. Specifically, for some d;, the nodes allowed for player 2 are the set of all w € G
simultaneously satisfying d(s1,w) > d(s1,t1) — dy and d(t1,w) > dy. The nodes allowed for player
1 also satisfy symmetrical conditions for some dy. To test if there is such a node-disjoint Nash,
we simply iterate over all possible values of d; and dy. If for any choice of d; and ds, the shortest
paths through the restricted nodes are actually the shortest paths in the original graph, we have a
Nash. Else, we claim that the graph has no node-disjoint Nash.

Step 2 : If we did not find a node-disjoint Nash equilibrium in Step 1, we choose a pair of nodes
{u,v} as our possible merge-nodes and assign one terminal from each player to each of the merge
nodes. Suppose terminals s1,s9 are assigned to u and t1,to to v. The following steps are then
iterated over all possible such assignments and over all possible choices of the merge-nodes. If we
do not succeed after trying out all possible such combinations and node-pairs, we declare that there
is no Nash in the game instance.

We first consider a subgame in which each terminal is a player that wants to connect to its
merge-node, and look for a node-disjoint Nash equilibrium in this game. This subgame is solvable
by an easy extension of the algorithm in step 1. Let the paths obtained be named 75, and T};, for

16

1=1,2.

Next, we need to construct the shared portion of the tree. We use the following criterion to
create a restricted subset of nodes H. Intuitively, we do not allow the shared path to traverse nodes
which might have a possibly cheaper shortcut from any of the terminals. The graph H is defined
by the following recursive process.

e Initialize H = G.

e Consider nodes in H. For w € H, find the two shortest paths @)1 from u to w and Qs from
v to w using only nodes currently in H. If we cannot find either of these paths, remove w
from H. Else, we remove w from H if either d(s1,u) + d(s2,u) + ¢(Q1) > d(s1, w) + d(s2,w)
or d(t1,v) + d(t2,v) + ¢(Q2) > d(t1,w) + d(t2, w).

e Continue this process until we cannot eliminate any more nodes from H. Each time we
eliminate any node from H, we need to iterate over all the remaining nodes to see if there
has been any change in the shortest paths of other nodes making them possible candidates
for elimination.

Lemma 4.6 If there is a Nash with merge-node pair {u,v}, then all nodes w in the shared portion
of the Nash tree are included in the graph H corresponding to this merge-node pair and terminal
assignment.

Proof. Suppose there exists a Nash equilibrium network M such that 4 and v are the merge nodes.
The subpaths M, ,,, My, Mj,, and My,, must all be shortest paths and are node-disjoint. If not all
nodes of M, are in H, consider the first node w of M,, to be eliminated. Then, since w is part of a
Nash strategy, and all other nodes of M,,,, were still in H, we must have d(s1,u)+d(s2,u)+c(Myy) <
d(s1,w) +d(s2, w). Similarly, d(t1,v) + d(t2,v) + ¢(Myy) < d(t1, w) + d(t2, w). Hence, w cannot be
eliminated. [|

We also observe that the graph H does not include any nodes from the paths T§,, and T},
except for u and v. We first show that H does not have any nodes from T, UTs,, — {u}. Take any
w € Tg,y with w # u. We have that d(s1,w) < d(s1,u) and d(s2,w) < d(s2,u) + d(u, w) because of
the triangle inequality, and the shortest path @y, in H satisfies ¢(Quyw) > d(u, w). Putting together
the inequalities, w satisfies the condition for elimination. Similarly, we can prove that H does not
have any node from T},, UT},, — {v}. This means that any path from u to v built over nodes in H
will be disjoint from the paths T}, and T};,,. We move on to the final step of the algorithm.

Step 3 : After constructing the graph H, find the shortest path T, from u to v in the induced graph
of H. We claim that we can find a Nash payment scheme p on the tree T' = T, U Ui:1,2(TSiU UT},0).
Each player ¢ pays for the part of T' which is used by himself only. In the shared portion, the payment
by each player on any segment T,,,, or T, is restricted by the cost of his alternate paths to w. This
completes the algorithm.

The following theorem proves the correctness of the algorithm.

Theorem 4.7 This algorithm finds a Nash equilibrium iff one exists.

Proof. We first prove that the node-disjoint solution returned, if any, is indeed a Nash. Suppose
the algorithm finds two paths P; and P, for the two players. Let d(¢;, Pj) indicate the minimum
distance of ¢; from any node on P;. Suppose the algorithm obtains a solution for (di,ds). Now,
the only possibly profitable deviations for player 1 are ones where he uses the edges paid for by

17

player 2. All nodes w on P, satisfy d(si,w) > d(s1,%1) —dy and d(t1, Py) > dy. Hence, the cost of
any such deviation will be at least d(sy,w) + d(t1, P») > d(s1,t1). So player 1 does not have any
incentive to deviate, and neither does player 2.

Now, we show that the algorithm returns a node disjoint Nash if there was one in the original
game. If the Nash paths are P and P», set di = d(t1, ;) and do = d(t2, P1). For this d;
and ds, since no player has any incentive to deviate, we have that each node w on P satisfies
d(s1,w) > d(s1,t1) — dy. The similar condition is satisfied for each node on P;. Thus the shortest
paths lie in the restricted subsets, and our algorithm will find the Nash solution for the pair (di, ds).

Next, we prove that the final algorithm is correct. In proving that the tree T is a Nash, we first
observe that for each player i, it is sufficient to consider alternate paths which are node-disjoint
from the tree T except at its endpoints. This is because each alternate path of player ¢ must
have subpaths which are disjoint from 7" and are cheaper than the payment of player 7 on the
corresponding edges of T. To prove that T is a Nash it is enough to show that there are no such
node-disjoint alternate paths which are cheaper. Further, if) is an alternate path for player i,
since the subpaths Ty, and T}, are also Nash strategies in the corresponding subgames, it cannot
be the case that) is providing cheaper alternate strategies to only these subpaths. Thus it is
sufficient to consider alternate paths which are shortest paths from s; and ¢; to some node w on
T.,. Henceforth, our arguments in showing 7' to be a Nash will be directed at proving that no such
alternate paths exist for the given payment schema.

The reasoning that this payment scheme is a Nash relies on the shared nodes being in H with
respect to the merge-node pair u and v. As argued before, the path T,, is node-disjoint with
subpaths Tj,,, or T},,. Consider the first node w on Ty, such that we cannot find sufficient payment
for the segment T),,,. This implies both players have better alternate paths II; and Il which take
them to w. As argued, it is enough to consider alternate paths II; and IIs which are shortest paths
from s; to w. Thus, c(Ily) + ¢(Ily) = d(s1,w) + d(s2,w). Also since w is in H, and T, is the
shortest path in H from u to w, d(s1,w) + d(s2,w) > ¢(Ts;u) + ¢(Tsyu) + ¢(Tyw). Thus, II1 and Iy
cannot both be cheaper alternate paths.

A similar reasoning holds for all segments T,,. This shows that the entire tree is successfully
paid for, and the payment scheme is a Nash equilibrium. By Lemma 4.6, if a Nash exists with
merge points u and v, then the above algorithm finds it.]

18

