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1 Introdu
tionMany networks, in
luding the Internet, are developed, built, and maintained by a large numberof agents (Autonomous Systems), all of whom a
t sel�shly and have relatively limited goals. Thisnaturally suggests a game-theoreti
 approa
h for studying both the behavior of these independentagents and the stru
ture of the networks they generate. The stable out
omes of the intera
tionsof non-
ooperative sel�sh agents 
orrespond to Nash equilibria. Typi
ally, 
onsidering the Nashequilibria of games modeling 
lassi
al networking problems gives rise to a number of new issues. Inparti
ular, Nash equilibria in network games 
an be mu
h more expensive than the best 
entralizeddesign. Papadimitriou [15℄ uses the term pri
e of anar
hy to refer to this in
rease in 
ost 
ausedby sel�sh behavior. The pri
e of anar
hy has been studied in a number of games dealing withvarious networking issues, su
h as load balan
ing [5, 6, 13, 18℄, routing [17, 19, 20℄, fa
ility lo
ation[22℄, and 
ow 
ontrol [2, 7, 21℄. In some 
ases [17, 19℄ the Nash equilibrium is unique, while inothers [13℄ the best Nash equilibrium 
oin
ides with the optimum solution and the authors studythe quality of the worst equilibrium. However, in some games the quality of even the best possibleequilibria 
an be far from optimal (e.g. in the prisoner's dilemma). The best Nash equilibrium 
anbe viewed as the best solution that sel�sh agents 
an agree upon, i.e. on
e the solution is agreedupon, the agents do not �nd it in their interest to deviate. Papadimitriou [15℄ de�nes the pri
eof anar
hy to study the question of how bad an equilibrium 
an be. We study the 
omplementaryquestion of how good an equilibrium 
an be in the 
ontext of a network design game. S
hultz andStier [20℄ study the ratio of the best equilibrium to the optimum, in the 
ontext of a 
apa
itatedrouting game. We 
all this ratio the optimisti
 pri
e of anar
hy.In this paper we 
onsider a simple network design game where every agent has a spe
i�
 
on-ne
tivity requirement, i.e. ea
h agent has a set of terminals and wants to build a network in whi
hhis terminals are 
onne
ted. Possible edges in the network have 
osts and ea
h agent's goal is topay as little as possible. This game 
an be viewed as a simple model of network 
reation. Alter-natively, by studying the best Nash equilibria, our game provides a framework for understandingthose networks that a 
entral authority 
ould persuade sel�sh agents to pur
hase and maintain,by spe
ifying to whi
h parts of the network ea
h agent 
ontributes. An interesting feature of ourgame is that sel�sh agents will �nd it in their individual interests to share the 
osts of edges, andso e�e
tively 
ooperate.More pre
isely, we study the following network game for N players, whi
h we 
all the 
onne
tiongame. For ea
h game instan
e, we are given an undire
ted graph G with non-negative edge 
osts.Players form a network by pur
hasing some subgraph of G. Ea
h player has a set of spe
i�edterminal nodes that he would like to see 
onne
ted in the pur
hased network. With this as theirgoal, players o�er payments indi
ating how mu
h they will 
ontribute towards the pur
hase of ea
hedge in G. If the players' payments for a parti
ular edge e sum to at least the 
ost of e, then theedge is 
onsidered bought, whi
h means that e is added to our network and 
an now be used by anyplayer. Ea
h player would like to minimize his total payments, but insists on 
onne
ting all of histerminals. We allow the 
ost of any edge to be shared by multiple players. Furthermore, on
e anedge is pur
hased, any player 
an use it to satisfy his 
onne
tivity requirement, even if that player
ontributed nothing to the 
ost of this edge. Finding the 
entralized optimum of the 
onne
tiongame, i.e. the network of bought edges whi
h minimizes the sum of the players' 
ontributions, isthe 
lassi
 network design problem of the generalized Steiner tree [1, 10℄.
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Our ResultsWe are most interested in deterministi
 Nash equilibria of the 
onne
tion game, and in the optimisti
pri
e of anar
hy, as the pessimisti
 pri
e of anar
hy in our game 
an be quite bad. In a gametheoreti
 
ontext it might seem natural to also 
onsider mixed Nash equilibria when agents 
anrandomly 
hoose between di�erent strategies. However, sin
e we are modeling the 
onstru
tionof large-s
ale networks, randomizing over strategies is not a realisti
 option for players. We alsoexplore the notion of an approximate equilibrium, and study the question of how far from a trueequilibrium one has to get to be able to use the optimum solution, i.e. how unhappy would theagents have to be if they were for
ed to pay for the so
ially optimal design. We view this as a twoparameter optimization problem: we would like to have a solution with 
ost 
lose to the minimumpossible 
ost, and where users would not have large in
entives to deviate. Finally, we examine howdiÆ
ult it is to �nd equilibria at all.� In Se
tion 3 we 
onsider the spe
ial 
ase when the goal of ea
h player is to 
onne
t a singleterminal to a 
ommon sour
e. We prove that in this 
ase, there is a Nash equilibrium, the 
ostof whi
h is equal to the 
ost of the optimal network. In other words, with a single sour
e andone terminal per player, the optimisti
 pri
e of anar
hy is 1. Furthermore, given an " > 0 andan �-approximate solution to the optimal network, we show how to 
onstru
t in polynomial timean (1 + ")-approximate Nash equilibrium (players only bene�t by a fa
tor of (1 + ") in deviating)whose total 
ost is within a fa
tor of � to the optimal network.We generalize these results in two ways. First, we 
an extend the results to the 
ase when thegraph is dire
ted and players seek to establish a dire
ted path from their terminal to the 
ommonsour
e. Note that problems in dire
ted graphs are often signi�
antly more 
ompli
ated than theirundire
ted 
ounterparts [4, 9℄. Se
ond, players do not have to insist on 
onne
ting their terminalsat all 
ost, but rather ea
h player i may have a maximum 
ost max(i) that he is willing to pay, andwould rather stay un
onne
ted if his 
ost ex
eeds max(i).� In Se
tion 4 we 
onsider the general 
ase, when players may want to 
onne
t more than 2terminals, and they do not ne
essarily share a single sour
e node. In this 
ase, there may notexist a deterministi
 Nash equilibrium. When deterministi
 Nash equilibria do exist, the 
osts ofdi�erent equilibria may di�er by as mu
h as a fa
tor of N , the number of players, and even theoptimisti
 pri
e of anar
hy may be nearly N . However, in Se
tion 4 we prove that there is alwaysa 3-approximate equilibrium that pays for the optimal network. Furthermore, we show how to
onstru
t in polynomial time a (4:65 + ")-approximate Nash equilibrium whose total 
ost is withina fa
tor of 2 to the optimal network.� Finally, in the Appendix we show that determining whether or not a Nash equilibrium exists isNP-
omplete when the number of players is part of the input. We also show that the same problemis poly-time solvable for 2 players that have two terminals ea
h. Sin
e there is only a polynomialnumber of Nash equilibrium stru
tures, the algorithm simply enumerates these.Related WorkWe view our game as a simple model of how di�erent servi
e providers build and maintain theInternet topology. We use a game theoreti
 version of network design problems 
onsidered inapproximation algorithms [10℄. Fabrikant et al [8℄ study a di�erent network 
reation game. Networkgames similar to that of [8℄ have also been studied for modeling the 
reation and maintenan
e ofso
ial networks [3, 11℄. In the network game 
onsidered in [3, 8, 11℄ ea
h agent 
orresponds to asingle node of the network, and agents 
an only buy edges adja
ent to their nodes. This model of2



network 
reation seems extremely well suited for modeling the 
reation of so
ial networks. However,in the 
ontext of 
ommuni
ation networks like the Internet, agents are not dire
tly asso
iated withindividual nodes, and 
an build or be responsible for more 
omplex networks. There are manysituations where agents will �nd it in their interest to share the 
osts of 
ertain expensive edges.An interesting feature of our model whi
h does not appear in [3, 8, 11℄ is that we allow agents toshare 
osts in this manner. To keep our model simple, we assume that ea
h agent's goal is to keephis terminals 
onne
ted, and agents are not sensitive to the length of the 
onne
ting path.Jain and Vazirani [12℄ study a di�erent 
ost-sharing game related to Steiner trees. They assumethat ea
h player i has a utility ui for belonging to the Steiner tree. Their goal is to give a truthfulme
hanism to build a Steiner tree, and de
ide on 
ost-shares for ea
h agent (where the 
ost 
hargedto an agent may not ex
eed his utility). They design a me
hanism where truth-telling is a dominantstrategy for the agents, i.e. sel�sh agents do not �nd it in their interest to misreport their utility(in hopes of being in
luded in the Steiner tree for smaller 
osts). Jain and Vazirani give a truthfulme
hanism to share the 
ost of the minimum spanning tree, whi
h is a 2-approximation for theSteiner tree problem. This game is quite analogous to our single sour
e network 
reation game
onsidered in Se
tion 3. We 
an view the maximum payment max(i) of agent i as his utility ui.However, in our game there is no 
entral authority designing the Steiner tree or 
ost shares. Rather,we study Nash equilibria of our game. Also, in our game, agents must o�er payments for ea
h edgeof the tree (modeling the 
ooperation of sel�sh agents), while in a me
hanism design framework,agents pay the me
hanism for the servi
e, and do not 
are what edge they 
ontribute to.2 Model and Basi
 ResultsThe Conne
tion Game We now formally de�ne the 
onne
tion game for N players. Let anundire
ted graph G = (V;E) be given, with ea
h edge e having a nonnegative 
ost 
(e). Ea
hplayer i has a set of terminal nodes that he must 
onne
t. The terminals of di�erent players donot have to be distin
t. A strategy of a player is a payment fun
tion pi, where pi(e) is how mu
hplayer i is o�ering to 
ontribute to the 
ost of edge e. Any edge e su
h that Pi pi(e) � 
(e) is
onsidered bought, and Gp denotes the graph of bought edges with the players o�ering paymentsp = (p1; : : : ; pN ). Sin
e ea
h player must 
onne
t his terminals, all of the player's terminals mustbe 
onne
ted in Gp. However, ea
h player tries to minimize his total payments, Pe2E pi(e).A Nash equilibrium of the 
onne
tion game is a payment fun
tion p su
h that, if players o�erpayments p, no player has an in
entive to deviate from his payments. This is equivalent to sayingthat if pj for all j 6= i are �xed, then pi minimizes the payments of player i. A (1+ ")-approximateNash equilibrium is a fun
tion p su
h that no player i 
ould de
rease his payments by more thana fa
tor of 1 + " by deviating, i.e. by using a di�erent payment fun
tion pi0.Basi
 Results Here we present several useful properties of Nash equilibria in the 
onne
tiongame. Suppose we have a Nash equilibrium p, and let T i be the smallest tree in Gp 
onne
ting allterminals of player i. It easily follows from the de�nitions that (1) Gp is a forest, (2) ea
h player ionly 
ontributes to 
osts of edges on T i, and (3) ea
h edge is either paid for fully or not at all.It is not always the 
ase that sel�sh agents 
an agree to pay for a network. There are instan
esof the 
onne
tion game whi
h have no deterministi
 Nash equilibria. In Figure 1, there are 2players, one wishing to 
onne
t node s1 to node t1, and the other s2 to t2. Now suppose that thereexists a Nash equilibrium p. By Property 1 above, in a Nash equilibrium Gp must be a forest, soassume without loss of generality it 
onsists of the edges a, b, and 
. By Property 2, player 1 only
ontributes to edges a and b, and player 2 only 
ontributes to edges b and 
. This means that edges3



a and 
 must be bought fully by players 1 and 2, respe
tively. At least one of the two players must
ontribute a positive amount to edge b. However, neither player 
an do that in a Nash equilibrium,sin
e then he would have an in
entive to swit
h to the strategy of only buying edge d and nothingelse, whi
h would 
onne
t his terminals with the player's total payments being only 1.
s1 s2

t2 t1

1 1

1

1

a

c

d b

Figure 1: A game with no Nash equilibria.We have now shown that Nash equilibria do not have to exist. However, when they exist, howbad 
an these Nash equilibria be? As mentioned above, the pri
e of anar
hy often refers to theratio of the worst (most expensive) Nash equilibrium and the optimal 
entralized solution. In the
onne
tion game, the pri
e of anar
hy is at most N , the number of players. This is simply be
ause ifthe worst Nash equilibrium p 
osts more than N times OPT, the 
ost of the optimal solution, thenthere must be a player whose payments in p are stri
tly more than OPT, so he 
ould deviate bypur
hasing the entire optimal solution by himself, and 
onne
t his terminals with smaller paymentsthan before. More importantly, there are 
ases when the pri
e of anar
hy a
tually equals N , sothe above bound is tight. This is demonstrated with the following example. Suppose there are Nplayers, and G 
onsists of nodes s and t whi
h are joined by 2 disjoint paths, one of length 1 andand one of length N . Ea
h player has a terminal at s and t. Then, the worst Nash equilibrium hasea
h player 
ontributing 1 to the long path, and has a 
ost of N . The optimal solution here hasa 
ost of only 1, so the pri
e of anar
hy is N . Therefore, the pri
e of anar
hy 
ould be very highin the 
onne
tion game. However, noti
e that in this example the best Nash equilibrium (whi
his ea
h player buying 1N of the short path) has the same 
ost as the optimal 
entralized solution.We have now shown that the pri
e of anar
hy 
an be very large in the 
onne
tion game, but theoptimisti
 pri
e of anar
hy remains worth 
onsidering, sin
e the above example shows that it 
andi�er from the (
onventional) pri
e of anar
hy by as mu
h as a fa
tor of N .3 Single Sour
e GamesAs we show in the Appendix, determining whether or not Nash equilibria exist in a general in-stan
e of the 
onne
tion game is NP-Hard. Furthermore, even when equilibria exist, they maybe signi�
antly more expensive than the 
entrally optimal network. In this se
tion we de�ne a
lass of games in whi
h there is always a Nash equilibrium, and the optimisti
 pri
e of anar
hy is1. Furthermore, we show how we 
an use an approximation to the 
entrally optimal network to
onstru
t a (1 + �)-approximate Nash equilibrium in poly-time, for any � > 0.De�nition 3.1 A single sour
e game is a game in whi
h all players share a 
ommon terminal s,and in addition, ea
h player i has exa
tly one other terminal ti.Theorem 3.2 In any single sour
e game, there is a Nash equilibrium whi
h pur
hases T �, a min-imum 
ost Steiner tree on all players' terminal nodes.4



Proof. Given T �, we present an algorithm to 
onstru
t payment strategies p. We will view T �as being rooted at s. Let Te be the subtree of T � dis
onne
ted from s when e is removed.Algorithm 3.3Initialize pi(e) = 0 for all players i and edges e.Loop through all edges e in T � in reverse BFS order.Loop through all players i with ti 2 Te until e paid for.If e is a 
ut in G set pi(e) = 
(e).OtherwiseDefine 
0(f) = pi(f) for all f 2 T � and
0(f) = 
(f) for all f =2 T �.Define �i to be the 
ost of the 
heapest path from s toti in G n feg under modified 
osts 
0.Define pi(T �) =Pf2T � pi(f).Define p(e) =Pj pj(e).Set pi(e) = minf�i � pi(T �); 
(e) � p(e)g.We �rst 
laim that if this algorithm terminates, the resulting payment forms a Nash equilibrium.Consider the algorithm at some stage where we are determining i's payment to e. The 
ost fun
tion
0 is de�ned to re
e
t the 
osts player i fa
es if he deviates in the �nal solution. We never allow ito 
ontribute so mu
h to e that his total payments ex
eed his 
ost of 
onne
ting ti to s. Thereforeit is never in player i's interest to deviate. Sin
e this is true for all players, p is a Nash equilibrium.We will now prove that this algorithm su

eeds in paying for T �. In parti
ular, we need toshow that for any edge e, the players with terminals in Te will be willing to pay for e. Assume theplayers are unwilling to buy an edge e. Then ea
h player has some path whi
h explains why it 
an't
ontribute more to e. We 
an use a 
arefully sele
ted subset of these paths to modify T �, forminga 
heaper tree that spans all terminals and doesn't 
ontain e. This would 
learly 
ontradi
t ourassumption that T � had minimum 
ost.De�ne player i's alternate path Ai to be the path of 
ost �i found in Algorithm 3.3, as shown inFigure 2(a). If there is more than one su
h path, 
hoose Ai to be the path whi
h in
ludes as manyan
estors of ti in Te as possible before in
luding edges outside of T �. To show that all edges in T �are paid for, we need the following te
hni
al lemma 
on
erning the stru
ture of alternate paths.
ti

P1

P2

P4
P3

x

y

T1 T2 T3

d1 d2 d3

A1

A2

A3

Te

Ai

ti

e e

(c)(b)(a) Figure 2: Alternate paths in single sour
e games.
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Lemma 3.4 Suppose Ai is i's alternate path at some stage of the algorithm. Then there are twonodes v and w on Ai, su
h that all edges on Ai from ti to v are in Te, all edges between v and ware in E n T �, and all edges between w and s are in T � n Te.Proof. On
e Ai rea
hes a node w in T � n Te, all subsequent nodes of Ai will be in T � n Te, asall edges f in T � n Te have 
ost 
0(f) = 0 and the sour
e s is in T � n Te. Thus, suppose Ai beginswith a path P1 in Te, followed by a path P2 
ontaining only edges not in T �, before rea
hing nodex whi
h is in Te, as shown in Figure 2(b). Let y be the lowest 
ommon an
estor of x and ti in Te.Observe that P1 is stri
tly below y. De�ne P3 to be the path from ti to y in Te, and de�ne P4 tobe the path from y to x in Te. We now show that under the modi�ed 
ost fun
tion 
0, P3 [P4 is atleast as 
heap as P1 [ P2. Sin
e P1 [ P2 in
ludes a higher an
estor of ti than Ai (namely y), thiswould 
ontradi
t our 
hoi
e of Ai.Consider the iterations of the algorithm during whi
h player i 
ould have 
ontributed to edges inP3. At ea
h of these steps the algorithm 
omputes a 
heapest path from ti to s. At any time, playeri's payments are upper bounded by the modi�ed 
ost of his alternate path, whi
h is in turn upperbounded by the modi�ed 
ost of any path, in parti
ular Ai. Furthermore, at ea
h of these steps themodi�ed 
osts of all edges in Ai above x are 0. Therefore i's 
ontribution to P3 is always at mostthe modi�ed 
ost of P1 [P2. The modi�ed 
ost of P4 is always 0, as none of the edges in P4 are onplayer i's path from ti to s in T �. Together these imply that 
0(P3 [ P4) = 
0(P3) � 
0(P1 [ P2).Thus, players' alternate paths may initially use some edges in Te, but subsequently will ex
lu-sively use edges outside of Te. We use this fa
t in the following lemma.Lemma 3.5 Algorithm 3.3 fully pays for every edge in T �.Proof. Suppose that for some edge e, after all players have 
ontributed to e, p(e) < 
(e).For ea
h player i, 
onsider the longest subpath of Ai 
ontaining ti and only edges in Te. Callthe highest an
estor of ti on this subpath i's deviation point, denoted di. Note that it is possiblethat di = ti. Let D be a minimum set of deviation points su
h that every terminal in Te has anan
estor in D.Suppose we have every player i with a terminal ti in D deviate to Ai, as shown in Figure 2(
),paying his modi�ed 
osts to ea
h edge. Any player i deviating in this manner does not in
rease histotal expenditure, as player i raised pi(e) until pi mat
hed the modi�ed 
ost of Ai. The remainingplayers leave their payments un
hanged.We 
laim that now the edges bought by players with terminals in Te 
onne
t all these playersto T � n Te. To see this, �rst 
onsider any edge f below a deviation point di in D. By Lemma 3.4,player i is the only deviating player who 
ould have been 
ontributing to f . If i did 
ontribute tof , then f must be on the unique path from ti to di in Te. But by the de�nition of di, this meansthat f is in Ai. Thus player i will not 
hange his payment to f .De�ne Ti to be the subtree of Te rooted at di. We have shown that all edges in Ti have beenbought. By Lemma 3.4, we know that Ai 
onsists of edges in Ti followed by edges in E nT followedby edges in T � nTe. By the de�nition of 
0, the modi�ed 
ost of those edges in E nT � is their a
tual
ost. Thus i pays fully for a path 
onne
ting Ti to T � n Te.We have assumed that the payments generated by the algorithm for players with terminals inTe were not suÆ
ient to pay for those terminals to 
onne
t to T � nTe. However, without in
reasingany players' payments, we have managed to buy a subset of edges whi
h 
onne
ts all terminals inTe to T � n Te. This 
ontradi
ts the optimality of T �. Thus the algorithm runs to 
ompletion.6



Sin
e we have also shown that the algorithm always produ
es a Nash equilibrium, this 
on
ludesthe proof of the theorem.We have shown that the optimisti
 pri
e of anar
hy in a single sour
e game is 1. However, thealgorithm for �nding an optimal Nash equilibrium requires us to have a minimum 
ost Steiner treeon hand. Sin
e this is often 
omputationally infeasible, we present the following result.Theorem 3.6 Suppose we have a single sour
e game and an �-approximate minimum 
ost Steinertree T . Then for any " > 0, there is a poly-time algorithm whi
h returns a (1 + ")-approximateNash equilibrium on a Steiner tree T 0, where 
(T 0) � 
(T ).Proof Sket
h. The proof of Theorem 3.2 suggests su
h an algorithm whi
h forms a 
heaper treewhenever a Nash equilibrium 
annot be found. To ensure polynomial-time 
onvergen
e, we for
ethe algorithm to make only substantial improvements. See the Appendix for further details.Extensions Both theorems 3.2 and 3.6 
an be proven for the 
ase where our graph G is dire
ted,and players wish to pur
hase paths from ti to s. The one diÆ
ulty arises from the fa
t that inproving Lemma 3.4, we assume that paths, in parti
ular P4, 
an be traversed in either dire
tion.In the dire
ted 
ase, this is no longer ne
essarily so. We 
an get around this problem with a more
ompli
ated argument, showing that if e 
annot be paid for, then by removing segments of alternatepaths between pairs of subtrees Ti and Tj, we 
an 
onne
t all terminals in Te at lower 
ost.On
e we have shown that our theorems apply in the dire
ted 
ase, we 
an extend our modeland give ea
h player i a maximum 
ost max(i) beyond whi
h he would rather pay nothing and not
onne
t his terminals. It suÆ
es to make a new terminal t0i for ea
h player i, with a dire
ted edgeof 
ost 0 to ti and a dire
ted edge of 
ost max(i) to s.4 General Conne
tion GamesIn this se
tion we deal with the general 
ase of players that 
an have di�erent numbers of terminalsand do not ne
essarily share the same sour
e terminal. As stated before, in this 
ase the pri
e ofanar
hy 
an be as large as N , the number of players. However, even the optimisti
 pri
e of anar
hymay be quite large in this general 
ase.
s3,...,sN

t3,...,tN

s2

t2

s1 t1

N/2-1-ε

1

ε

εε

ε

N/2-1-εFigure 3: A game with high optimisti
 pri
e of anar
hy.Consider the graph illustrated in Figure 3, where ea
h player i owns terminals si and ti. Theoptimal 
entralized solution has 
ost 1 + 3". If the path of length 1 was bought, ea
h player i > 2will not want to pay for any " edges, and therefore the situation of players 1 and 2 redu
es to theexample in Se
tion 2 of a game with no Nash equilibria. Therefore, any Nash equilibrium mustpur
hase the path of length N � 2. In fa
t, if ea
h player i > 2 buys 1N�2 of this path, then we7



have a Nash equilibrium. Therefore, for any N > 2, there exists a game with the optimisti
 pri
eof anar
hy being nearly N � 2.Be
ause of this, we 
annot hope to be able to provide 
heap Nash equilibria for the multi-sour
e
ase. Therefore, we 
onsider how 
heap �-approximate Nash equilibria with small � 
an be, andobtain the following result.Theorem 4.1 For any optimal 
entralized solution T �, there exists a 3-approximate Nash equilib-rium su
h that the pur
hased edges are exa
tly T �.Let T � be an optimal 
entralized solution, whi
h we know is a forest. De�ne a segment of a treeT as a path P � T su
h that all interior nodes of P have degree 2. For simpli
ity of the proof, weassume that every segment of T � is a single edge, sin
e this proof is easily extendable to the general
ase where this need not hold. We also assume that T � is a tree, sin
e otherwise we 
an apply thisproof to ea
h 
omponent of T �. Let T i be the unique smallest subtree of T � whi
h 
onne
ts allterminals of player i.De�nition 4.2 A 
onne
tion set S of player i is a subset of edges of T i su
h that for ea
h 
onne
ted
omponent C of the graph T � n S, we have that either(1) any player that has terminals in C has all of his terminals in C, or(2) player i has a terminal in C.Intuitively, a 
onne
tion set S is a set su
h that if we removed it from T � and then somehow
onne
ted all the terminals of i, then all the terminals of all players are still 
onne
ted in theresulting graph. Sin
e T � is optimal, this means that any 
onne
tion set S with respe
t to imust be 
heaper than any deviation of i from a strategy where i pays for S. We now have thefollowing lemma, the proof of whi
h follows dire
tly from the de�nition of a 
onne
tion set. Thislemma basi
ally says that if ea
h player buys at most � 
onne
tion sets in full, then we have an�-approximate Nash equilibrium.Lemma 4.3 Let p be a payment fun
tion pur
hasing T � whi
h obeys the following properties.(1) If p(e) > 0, then e is bought fully by a single player.(2) Ea
h player i only buys edges whi
h a
tually lie in his tree T i.If the set of edges that ea
h player buys is a union of at most � 
onne
tion sets, then p is an�-approximate Nash equilibrium.Proof of Theorem 4.1. Now all that we need to prove Theorem 4.1 is a payment s
heme forarbitrary games su
h that the 
onditions in Lemma 4.3 hold with � = 3. We now exhibit su
h as
heme on the edges of T �. First, ea
h player i pays for the edges belonging only to T i and noother tree T j . This is 
learly a 
onne
tion set, so we want ea
h player to pay for at most 2 more.We 
an 
ontra
t the edges now paid for, forming a new tree T � whi
h the players must pay for,and on whi
h ea
h edge belongs to at least two di�erent T i's. For 
onvenien
e, we will now talkof terminals making payments instead of players. The total payment of a player is just the sum ofthe payments of his terminals.Now we re
ursively assign terminals to the edges of T �. Ea
h edge will be assigned a terminal,whi
h will pay for it. At the end of ea
h phase of the re
ursion, we generate a set of dire
ted pathsR to be paid for during the following phase. Ea
h of these paths starts at some terminal t, andends at a node of a path paid for in the previous phase. We will 
all su
h a path R(t), sin
e forea
h terminal there will be at most 1 path starting at that terminal, and we will 
all the last nodeof this path r(t). Figure 4(a) shows a de
omposition of T � into these paths after this re
ursion is8



done. Initially, sele
t R(t) to be a path from an arbitrary terminal t to another terminal of the sameplayer in T i, dire
t this path away from t, and set R = fR(t)g. Ea
h phase pro
eeds as follows.
Q(t1)

t2t1 t3 t4

r(s)s
Q(t2) Q(t3) Q(t4)

Q(t1)

t2t1 t3 t4

r(s)s
Q(t2) Q(t3) Q(t4)

(c)

(b)

t1

t2

t3

t9 t4

t5

t8

t6

t7r(t2)
R(t2)

(a)Figure 4: (a) A de
omposition of T � into paths R(t); (b)(
) The paths Q(t) for a single player i.Step 1: Consider the set of dire
ted paths R generated by the previous phase. For ea
h path R(s)in this set, do the following. Let v1; v2; : : : be the nodes of R(s), ordered in the dire
tion away froms (so that s = v1). We assumed that T � has no non-terminal nodes of degree 2, so ea
h vk mustbe either a terminal or have edges not in R(s) in
ident to it. Consider the subtree rooted at vkobtained by 
utting edges (vk�1; vk) and (vk; vk+1). De�ne Sk to be the set of terminals in thissubtree su
h that the player i who owns them has terminals outside this subtree as well, i.e. either(vk�1; vk) or (vk; vk+1) is in T i. Do not in
lude s in S1, and set this set to be empty for r(s). Weform a path Q(t) for ea
h terminal t 2 Sk that belongs to i as follows.� If i does not own s, pi
k the smallest ` > k su
h that S` 
ontains a terminal of player i.{ If su
h a node v` exists, set Q(t) to be the path from vk to v`.{ If no su
h node v` exists, and T i 
ontains r(s), set Q(t) to be the path from vk to r(s).{ If no su
h node v` exists, and T i does not 
ontain r(s), set Q(t) to be the path from vk0 tovk, where vk0 is the �rst node of R(s) su
h that Sk0 
ontains a terminal belonging to player i.� If i owns s, pi
k the largest ` < k su
h that S` 
ontains a terminal of player i.{ If su
h a node v` exists, set Q(t) to be the path from v` to vk.{ If no su
h node v` exists, set Q(t) to be the path from s to vk.Figure 4(b) illustrates what the paths Q(t) for terminals t of i look like if i does not own s and T i
ontains r(s). In this �gure, the terminals t1 through t4 are all the terminals of i in any of the setsSk. Figure 4(
) shows the same thing in the 
ase that i owns s.De�nition 4.4 A link L is a maximal set of edges of R(s) su
h that for every edge e 2 L, the setof paths Q(t) that 
ontain e is exa
tly the same, for t 2 [vk2R(s)Sk.A link L is really a 
onne
tion set of any terminal t with L � Q(t), sin
e if we take out L andadd a path 
onne
ting endpoints of Q(t), then all of the endpoints of all other paths Q(t0) remain
onne
ted. We would like to 
hoose exa
tly one terminal t from ea
h set Sk and have these pay forthe path R(s) together, with ea
h one paying for at most 1 link L, and with L � Q(t). We do thisby 
onstru
ting the following bipartite graph (A;B).9



Step 2: Let A have a node for ea
h link in R(s), and let B be the nodes of R(s). Form an edgebetween a node vk 2 B and node L 2 A if there exists some terminal t 2 Sk su
h that L � Q(t).For X � A, de�ne �(X) to be the set of nodes in B whi
h X has edges to. A

ording to Hall'sMat
hing Theorem, there exists a mat
hing in this bipartite graph with all nodes of A in
ident toan edge of the mat
hing if for ea
h set X � A, j�(X)j � jXj. Arrange the edges of the links of Xin the order they appear in R(s). We want to show that between every link of X, there appears anode belonging to �(X).Consider some edge e of X that is not the �rst one in R(s). Suppose this edge belongs to link L,and the previous edge e0 in X to some link L0. Sin
e these are di�erent links, there must be somepath Q(t), whi
h either ended or began between e0 and e, with t 2 Sk and vk 2 �(X). Supposeit ended there. If t belongs to the same player as s, then vk is between e0 and e by de�nition ofQ(t). Otherwise, there must be some terminal t0 belonging to the same player as t su
h that Q(t0)begins at the pla
e where Q(t) ends. If Q(t0) 
ontains e, then we are done. Otherwise, 
ontinuethis argument with t0 instead of t, until Q(t0) 
ontains either e or e0, one of whi
h must happenby 
onstru
tion of Q(t). Therefore, we obtain a node vk in �(X) that is lo
ated between e0 and e.The 
ase of Q(t) beginning between e0 and e is similar.Now let L be the �rst link of X that appears in R(s), and suppose player i owns s. It 
annot bethat L belongs to a single path Q(t) where i owns t. Otherwise, this would mean that L 2 T i butin no other tree T j , and these edges have already been paid for and 
ontra
ted. Therefore, theremust be some Q(t) 
ontaining L su
h that t belongs to a di�erent player than s. By 
onstru
tionof Q(t), t 2 Sk for some vk that 
omes before L. This means that there is a node of �(X) before L.Therefore, jXj � j�(X)j, and so we 
an assign a terminal tk 2 Sk to ea
h node vk su
h thatthese terminals pay for all the links of R(s) while ea
h paying for at most 1 link, with that link inQ(tk). If tk pays for link L, assign the payment of L to the player who owns tk.Step 3: Finally, we must generate the set of paths R for the next phase. For ea
h terminal tk
hosen in Step 2, let R(tk) be the path from tk to vk as above. Together, these paths 
ompose R.We have now generated a payment p whi
h satis�es all of the 
onditions of Lemma 4.3. All thatis left to prove Theorem 4.1 is that with this payment, � = 3. Sin
e the edges that belong only toT i and no other tree T j form a 
onne
tion set, we prove this indu
tively by showing that the setof edges paid for by ea
h player's terminals in the above s
heme is a union of at most 2 
onne
tionsets. See the Appendix for details.Extensions We have now shown that in any game, we 
an �nd a 3-approximate Nash pur
hasingthe optimal network. As a lower bound, in the Appendix we give a simple sequen
e of games su
hthat in the limit, any Nash pur
hasing the optimal network must be at least (32)-approximate.Sin
e the proof of Theorem 4.1 is 
onstru
tive, it a
tually 
ontains a polynomial-time algorithmfor generating a 3-approximate Nash equilibrium on T �. We 
an use the ideas from Theorem 3.6to 
reate an algorithm whi
h, given an �-approximate Steiner forest T , �nds a (3+ ")-approximateNash equilibrium whi
h pays for a Steiner forest T 0 with 
(T 0) � 
(T ). However, this algorithmrequires a polynomial-time optimal Steiner tree �nder as a subroutine. The algorithm of Theorem4.1 generates at most 3 
onne
tion sets for ea
h player i. We 
an 
he
k if ea
h 
onne
tion set isa
tually 
heaper than the 
heapest deviation of player i, whi
h is found by the 
heapest Steinertree algorithm. If it is, then we have a (3 + ")-approximate Nash equilibrium. Otherwise, we 
anrepla
e this 
onne
tion set with the 
heapest deviation tree and run this algorithm over again. Ifwe use a 2-approximate Steiner forest T , and an optimal Steiner tree 1:55-approximation algorithmfrom [16℄ as our subroutine, then the above algorithm a
tually gives a (4:65+ ")-approximate Nashequilibrium on T 0 with 
(T 0) � 2 � OPT , in time polynomial in n and "�1.10
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e, 2002.AppendixProof of Theorem 3.6. To �nd a (1 + ")-approximate Nash equilibrium, we start by de�ning
 = "
(T )(1+")n� . We now use Algorithm 3.3 to attempt to pay for all but 
 of ea
h edge in T . Sin
eT is not optimal, it is possible that even with the 
 redu
tion in pri
e, there will be some edge ethat the players are unwilling to pay for. If this happens, the proof of Theorem 3.2 indi
ates howwe 
an rearrange T to de
rease its 
ost. If we modify T in this manner, it is easy to show thatwe have de
reased its 
ost by at least 
. At this point we simply start over with the new tree andattempt to pay for that.Ea
h 
all to Algorithm 3.3 
an be made to run in polynomial time. Furthermore, sin
e ea
h
all whi
h fails to pay for the tree de
reases the 
ost of the tree by 
, we 
an have at most (1+")�n"
alls. Therefore in time polynomial in n, � an "�1, we have formed a tree T 0 with 
(T 0) � 
(T )su
h that the players are willing to buy T 0 if the edges in T 0 have their 
osts de
reased by 
.For all players and for ea
h edge e in T 0, we now in
rease pi(e) in proportion to pi so that e isfully paid for. Now T 0 is 
learly paid for. To see that this is a (1+")-approximate Nash equilibrium,note that player i did not want to deviate before his payments were in
reased. If we let m0 be thenumber of edges in T 0, then i's payments were in
reased by
 pi(T 0)
(T 0)�m0
m0 = "
(T )pi(T 0)m0(1 + ")n�(
(T 0)�m0
) � "
(T )pi(T 0)�(1 + ")(1� ")
(T 0) � "pi(T 0):Thus any deviation yields at most an " fa
tor improvement.Proof of Theorem 4.1 (
ontinued). Sin
e the edges that belong only to T i and no other treeT j form a 
onne
tion set, all we need to show is that the set of edges paid for by ea
h player'sterminals in the s
heme of Se
tion 4 is a union of at most 2 
onne
tion sets. We will prove this12



indu
tively, using the paths R(s) as generated in that s
heme. Let T (s) be the tree 
ontaining R(s)obtained by removing r(s) from T �. The indu
tive hypothesis is the following:Case 1: If T i is entirely 
ontained in T (s), then the edges paid for by terminals of i are theunion of at most 2 
onne
tion sets.Case 2: If T i is not 
ontained in T (s), and i owns s, then the edges paid for by terminals of iin T (s) is a single 
onne
tion set, and r(s) is 
onne
ted to a terminal of i in T (s) by a path onwhi
h i does not pay for anything.Case 3: If T i is not 
ontained in T (s), and i does not own s, the edges paid for by terminalsof i in T (s) is a single 
onne
tion set.We perform indu
tion on the phases during whi
h the paths R(s) were generated, ba
kwards. IfR(s) was generated in the last phase, this means that it is an empty path 
onsisting only of theterminal s, and T (s) = fsg. The empty set here is 
learly a 
onne
tion set.Let R(s) and i be as in Case 2, whi
h we will prove �rst. Let S be the edges of T (s) for whi
h ipays, and 
onsider the 
omponents of T � nS, whi
h we want to show satisfy one of the properties ofDe�nition 4.2. All the 
omponents whi
h do not interse
t R(s) are taken 
are of by the indu
tivehypothesis, so let C be a 
omponent of T � n S whi
h interse
ts R(s). If C 
ontains s, then C
ontains a terminal of i, so we are done. If C 
ontains r(s), then be
ause of the way edges of R(s)are paid for, there must be some path R(t) ending at a node of R(s), with t a terminal of i, andwith r(t) in C. By the indu
tive hypothesis, there is a path from a terminal belonging to i tor(t) with no edges paid for by i, and so there is a path to r(s) with the same property, as desired.The only possibility left is that there are some edges e1 and e2 of R(s), paid for by i, that borderC on left and right, 
utting it o� from the rest of R(s). If e1 and e2 are in the same link, thenby de�nition of a link, we have that C satis�es the �rst property of De�nition 4.2. Otherwise, by
onstru
tion there must be some path R(t) ending at a node of R(s), with t a terminal of i, andwith r(t) in C, and so C satis�es property (2) of De�nition 4.2 by the argument above.The proof of Case 3 is very similar to Case 2, so all that is left is to prove is Case 1. SupposeT i is entirely 
ontained in T (s), and let S and C be as above. Assume that i pays for at least1 edge of R(s). In the proof of Case 2, we already showed that if C is 
ut o� from R(s) by twoedges of the same link, then C satis�es Property (1) of De�nition 4.2. Otherwise C must be 
uto� from R(s) by edges belonging to di�erent links of R(s). By 
onstru
tion of the payments, there
an only be one 
omponent C su
h that there is no path R(t) ending at a node of R(s), with t aterminal of i, and with r(t) in C. If the links bordering that 
omponent are L and L0, then if wepretend that i does not pay for either L or L0, the set of edges paid for by i be
omes a 
onne
tionset, sin
e C now has a terminal of i in it. Therefore, S is a union of 2 
onne
tion sets. The only
ase left to address is if i does not pay for any edges of R(s). Then, there is only 1 
omponent Cof T � n S interse
ting R(s), and we do not have to worry about any other 
omponents be
ause ofthe indu
tive hypothesis. If we take any link bordering C and remove it from S, then S be
omes a
onne
tion set. Therefore, the set of edges paid for by i is a union of at most 2 
onne
tion sets.Lower bounds for approximate Nash on the optimal networkClaim 4.5 For any � > 0, there is a game su
h that any equilibrium whi
h pur
hases the optimalnetwork is at least a (32 � �)-approximate Nash equilibrium.Proof. Constru
t the graph HN on 2N verti
es as follows. Begin with a 
y
le on 2N verti
es,and number the verti
es 1 through 2N in a 
lo
kwise fashion. For vertex i, add an edge to verti
es13
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Figure 5: A game with best Nash equilibrium on OPT tending to at least a 32 -approximation.i+N � 1 mod (2N) and i+N + 1 mod (2N). Let all edges have 
ost 1. Finally, we will add Nplayers with 2 terminals, si and ti, for ea
h player i. At node j, add the label sj if j � N and tj�Notherwise. Figure 5(a) shows su
h a game with N = 5.Consider the optimal network T � 
onsisting of all edges in the outer 
y
le ex
ept (s1; tN ).We would like to show that any Nash whi
h pur
hases this solution must be at least (6N�214N�11 )-approximate. This 
learly would prove our 
laim.First we would like to show that players 1 and N are not willing to 
ontribute too mu
h toany solution that is better than (32)-approximate. Suppose we have su
h a solution. De�ne x tobe player 1's 
ontribution to his 
onne
ting path in T �, and de�ne y to be his 
ontribution to theremainder of T �. Thus player 1 has a total payment of x+ y. Player 1 
ould deviate to only payfor x. Furthermore, player 1 
ould deviate to pur
hase only y and the edge (s1; tN ). If we have asolution that is at most (32)-approximate, then we have that xx+y � 23 and similarly y+1x+y � 23 . Takentogether this implies that 1x+y � 13 , or x + y � 3. A symmetri
 argument shows that player N isalso unwilling to 
ontribute more than 3.Thus we have that the remaining N � 2 players must together 
ontribute at least 2N � 7.Therefore there must be some player other than 1 or N who must 
ontribute 2N�7N�2 . Suppose playeri is su
h a player. Let x be the amount that player i 
ontributes to his 
onne
ting path in T �. Lety be his 
ontribution to (si�1; si) and let z be his 
ontribution to (ti; ti+1). See Figure 5(b).Now 
onsider three possible deviations available to player i. He 
ould 
hoose to 
ontribute onlyx. He 
ould 
ontribute y and pur
hase edge (si�1; ti) for an additional 
ost of 1. Or he 
ould
ontribute z and pur
hase edge (si; ti+1), also for an additional 
ost of 1. We will only 
onsiderthese possible deviations, although of 
ourse there are others. Note that if i was 
ontributingto any other portion of T �, then we 
ould remove those 
ontributions and in
rease x, y, and z,thereby stri
tly de
reasing i's in
entive to deviate. Thus we 
an safely assume that these are i'sonly payments, and hen
e x+ y + z � 2N � 7N � 2 :Sin
e i is 
urrently paying at least x + y + z, we know that his in
entive to deviate is at leastmax(x+y+zx ; x+y+zy+1 ; x+y+zz+1 ). This fun
tion is minimized when x = y + 1 = z + 1. Solving for x we�nd that x � 4N � 113N � 6 :14



Thus player i's in
entive to deviate is at leastx+ y + zx � 3x� 2x = 3� 2x � 3� 2 3N � 64N � 11 = 6N � 214N � 11 :Therefore as N grows, this lower bound on player i's in
entive to deviate tends towards 32 . Note thatin this proof, we only 
onsidered one optimal network, namely T �. If we modify G by in
reasing the
osts of all edges not in T � by some small " > 0, then T � is the only optimal network. Repeatingthe above analysis under these new 
osts still yields a lower bound of 32 for the best approximateNash on T � in the limit as N grows and " tends to 0.NP CompletenessIn this se
tion, we present a brief proof that determining the existen
e of Nash equilibria in a givengraph is NP-
omplete if the number of players is O(n). We present a redu
tion from 3-SAT toshow that the problem is NP-hard. The graph 
onstru
ted will have unit 
ost edges.Consider an arbitrary instan
e of 3-SAT with 
lauses Cj and variables xi. For ea
h variablexi 
onstru
t the gadget shown in Figure 6a. When player i buys the left path or right path, this
orresponds to xi being set to be true or false, respe
tively. We will 
all i a variable player.
si

ti

sj1

sj2

tj2

tj1

eiFeiT

e1T

e2T

e3F

xi

Cj

(a) (b)Figure 6: Gadgets for the NP-
ompleteness redu
tion.Next, for ea
h 
lause Cj, 
onstru
t the gadget shown in Figure 6b. Note that this example is forthe 
ase where Cj = (x1 _ x2 _ x3). Furthermore, the edges labeled e1T , e2T , and e3F are the sameedges that appear in the variable gadgets. In other words, among all 
lauses and variables, there isonly one edge labeled xiT and only one labeled xiF . We will 
all both players on this gadget 
lauseplayers.Suppose that there is a satisfying assignment A in our 3-SAT instan
e. Consider the strategyin whi
h variable player i fully buys the left path if xi is true in A and fully buys the right pathotherwise. Sin
e this is a satisfying assignment, by our 
onstru
tion ea
h 
lause gadget has at leastone interior edge fully paid for by a variable player. For ea
h 
lause Cj , let e be one su
h edge,and let both players on this gadget buy the unique path of length 3 that 
onne
ts their terminalswhi
h uses edge e. It is easy to see that this forms a Nash equilibrium.Suppose now that there is a Nash equilibrium. From our example in Figure 1, we know thatif we 
onsider any 
lause and look at the two 
orresponding players, these players must use someedges other than just those on the perimeter of the gadget. In fa
t, by simple 
ase 
he
king it is
lear that in a Nash equilibrium, no edges on the perimeter of the gadget are bought at all. Thisimplies that variable players only sele
t paths within their gadget. Furthermore, it implies thatvariable players must pay fully for their entire path. Suppose i is a variable player who has sele
tedthe left (true) path, but has not paid fully for the se
ond edge in that path. The remainder of this15




ost must be paid for by some 
lause player or players. But for su
h a 
lause player to use thisedge, he must also buy two other edges, whi
h are not used by any other player. Hen
e su
h a
lause player must pay stri
tly more than 2. But there is always a path he 
ould use to 
onne
tof 
ost exa
tly 2, so this 
an not happen in a Nash equilibrium. Thus we have established thatvariable players pay fully for their own paths.Now 
onsider any 
lause gadget. Sin
e we have a Nash equilibrium, we know that only internaledges are used. But sin
e ea
h 
lause player 
an 
onne
t his terminals using perimeter edges fora 
ost of exa
tly 2, one of the interior variable edges must be bought by a variable player in ea
h
lause gadget. If we 
onsider a truth assignment A in whi
h xi is true if and only if player i sele
tsthe left (true) path, then this obviously satis�es our 3-SAT instan
e, as every 
lause has at leastone variable for
ing it to evaluate to true.Therefore, this game has a Nash equilibrium if and only if the 
orresponding formula is satis-�able, and sin
e this problem is 
learly in NP, determining whether a Nash equilibrium exists isNP-Complete.Conne
tion game with two players is solvableIn this se
tion, we outline a polynomial time algorithm to �nd a Nash equilibrium for a simpli�edtwo-player version of the game in whi
h ea
h player i has only two terminals, a sour
e si and asink ti. For any tree T , we use Txy to represent the unique path in T from node x to y. Also,d(x; y) always stands for the shortest distan
e from x to y in the original graph G. We base ouralgorithm on the possible stru
ture of the Nash equilibrium in the network. Sin
e the Nash networkis always a forest with four terminals, it either has to be two disjoint paths or a tree with Ts1;t1and Ts2;t2 sharing a 
ontiguous set of edges. Let the two endpoints of the shared subpath be 
alledmerge-nodes. The algorithm just enumerates over all possible Nash equilibrium stru
tures. Werestri
t the sear
h spa
e to polynomial size by using the properties of a Nash tree. The followingalgorithm 
onstru
ts a Nash tree T if one exists.Step 1 : We �rst 
onsider a spe
ial 
ase of this problem. Here we simply want to �nd out whetherthe two players have a Nash equilibrium in whi
h they buy node-disjoint paths. The paths taken byea
h player at Nash equilibrium would be shortest paths, so the only possibly pro�table deviationsfor ea
h player are the ones where he uses the edges pur
hased by the other player. Hen
e, in orderto make sure there are no pro�table deviations, we need to build the paths so that they are \far"from ea
h other. Spe
i�
ally, for some d1, the nodes allowed for player 2 are the set of all w 2 Gsimultaneously satisfying d(s1; w) � d(s1; t1)� d1 and d(t1; w) � d1. The nodes allowed for player1 also satisfy symmetri
al 
onditions for some d2. To test if there is su
h a node-disjoint Nash,we simply iterate over all possible values of d1 and d2. If for any 
hoi
e of d1 and d2, the shortestpaths through the restri
ted nodes are a
tually the shortest paths in the original graph, we have aNash. Else, we 
laim that the graph has no node-disjoint Nash.Step 2 : If we did not �nd a node-disjoint Nash equilibrium in Step 1, we 
hoose a pair of nodesfu; vg as our possible merge-nodes and assign one terminal from ea
h player to ea
h of the mergenodes. Suppose terminals s1; s2 are assigned to u and t1; t2 to v. The following steps are theniterated over all possible su
h assignments and over all possible 
hoi
es of the merge-nodes. If wedo not su

eed after trying out all possible su
h 
ombinations and node-pairs, we de
lare that thereis no Nash in the game instan
e.We �rst 
onsider a subgame in whi
h ea
h terminal is a player that wants to 
onne
t to itsmerge-node, and look for a node-disjoint Nash equilibrium in this game. This subgame is solvableby an easy extension of the algorithm in step 1. Let the paths obtained be named Tsiu and Ttiv for16



i = 1; 2.Next, we need to 
onstru
t the shared portion of the tree. We use the following 
riterion to
reate a restri
ted subset of nodes H. Intuitively, we do not allow the shared path to traverse nodeswhi
h might have a possibly 
heaper short
ut from any of the terminals. The graph H is de�nedby the following re
ursive pro
ess.� Initialize H = G.� Consider nodes in H. For w 2 H, �nd the two shortest paths Q1 from u to w and Q2 fromv to w using only nodes 
urrently in H. If we 
annot �nd either of these paths, remove wfrom H. Else, we remove w from H if either d(s1; u) + d(s2; u) + 
(Q1) > d(s1; w) + d(s2; w)or d(t1; v) + d(t2; v) + 
(Q2) > d(t1; w) + d(t2; w).� Continue this pro
ess until we 
annot eliminate any more nodes from H. Ea
h time weeliminate any node from H, we need to iterate over all the remaining nodes to see if therehas been any 
hange in the shortest paths of other nodes making them possible 
andidatesfor elimination.Lemma 4.6 If there is a Nash with merge-node pair fu; vg, then all nodes w in the shared portionof the Nash tree are in
luded in the graph H 
orresponding to this merge-node pair and terminalassignment.Proof. Suppose there exists a Nash equilibrium networkM su
h that u and v are the merge nodes.The subpathsMs1u,Mt1u,Ms2v andMt2v must all be shortest paths and are node-disjoint. If not allnodes ofMuv are in H, 
onsider the �rst node w ofMuv to be eliminated. Then, sin
e w is part of aNash strategy, and all other nodes ofMuv were still inH, we must have d(s1; u)+d(s2; u)+
(Muw) �d(s1; w) + d(s2; w). Similarly, d(t1; v) + d(t2; v) + 
(Mvw) � d(t1; w) + d(t2; w). Hen
e, w 
annot beeliminated.We also observe that the graph H does not in
lude any nodes from the paths Tsiu and Ttivex
ept for u and v. We �rst show that H does not have any nodes from Ts1u[Ts2u�fug. Take anyw 2 Ts1u with w 6= u. We have that d(s1; w) < d(s1; u) and d(s2; w) � d(s2; u) + d(u;w) be
ause ofthe triangle inequality, and the shortest path Quw in H satis�es 
(Quw) � d(u;w). Putting togetherthe inequalities, w satis�es the 
ondition for elimination. Similarly, we 
an prove that H does nothave any node from Tt1v [Tt2v �fvg. This means that any path from u to v built over nodes in Hwill be disjoint from the paths Tsiu and Ttiv. We move on to the �nal step of the algorithm.Step 3 : After 
onstru
ting the graphH, �nd the shortest path Tuv from u to v in the indu
ed graphof H. We 
laim that we 
an �nd a Nash payment s
heme p on the tree T = Tuv[Si=1;2(Tsiu[Ttiv).Ea
h player i pays for the part of T whi
h is used by himself only. In the shared portion, the paymentby ea
h player on any segment Tuw or Twv is restri
ted by the 
ost of his alternate paths to w. This
ompletes the algorithm.The following theorem proves the 
orre
tness of the algorithm.Theorem 4.7 This algorithm �nds a Nash equilibrium i� one exists.Proof. We �rst prove that the node-disjoint solution returned, if any, is indeed a Nash. Supposethe algorithm �nds two paths P1 and P2 for the two players. Let d(ti; Pj) indi
ate the minimumdistan
e of ti from any node on Pj . Suppose the algorithm obtains a solution for (d1; d2). Now,the only possibly pro�table deviations for player 1 are ones where he uses the edges paid for by17



player 2. All nodes w on P2 satisfy d(s1; w) � d(s1; t1)� d1 and d(t1; P2) � d1. Hen
e, the 
ost ofany su
h deviation will be at least d(s1; w) + d(t1; P2) � d(s1; t1). So player 1 does not have anyin
entive to deviate, and neither does player 2.Now, we show that the algorithm returns a node disjoint Nash if there was one in the originalgame. If the Nash paths are P1 and P2, set d1 = d(t1; P2) and d2 = d(t2; P1). For this d1and d2, sin
e no player has any in
entive to deviate, we have that ea
h node w on P2 satis�esd(s1; w) � d(s1; t1)� d1. The similar 
ondition is satis�ed for ea
h node on P1. Thus the shortestpaths lie in the restri
ted subsets, and our algorithm will �nd the Nash solution for the pair (d1; d2).Next, we prove that the �nal algorithm is 
orre
t. In proving that the tree T is a Nash, we �rstobserve that for ea
h player i, it is suÆ
ient to 
onsider alternate paths whi
h are node-disjointfrom the tree T ex
ept at its endpoints. This is be
ause ea
h alternate path of player i musthave subpaths whi
h are disjoint from T and are 
heaper than the payment of player i on the
orresponding edges of T . To prove that T is a Nash it is enough to show that there are no su
hnode-disjoint alternate paths whi
h are 
heaper. Further, if Y is an alternate path for player i,sin
e the subpaths Tsiu and Ttiu are also Nash strategies in the 
orresponding subgames, it 
annotbe the 
ase that Y is providing 
heaper alternate strategies to only these subpaths. Thus it issuÆ
ient to 
onsider alternate paths whi
h are shortest paths from si and ti to some node w onTuv. Hen
eforth, our arguments in showing T to be a Nash will be dire
ted at proving that no su
halternate paths exist for the given payment s
hema.The reasoning that this payment s
heme is a Nash relies on the shared nodes being in H withrespe
t to the merge-node pair u and v. As argued before, the path Tuv is node-disjoint withsubpaths Tsiu or Ttiv. Consider the �rst node w on Tuv su
h that we 
annot �nd suÆ
ient paymentfor the segment Tuw. This implies both players have better alternate paths �1 and �2 whi
h takethem to w. As argued, it is enough to 
onsider alternate paths �1 and �2 whi
h are shortest pathsfrom si to w. Thus, 
(�1) + 
(�2) = d(s1; w) + d(s2; w). Also sin
e w is in H, and Tuw is theshortest path in H from u to w, d(s1; w) + d(s2; w) � 
(Ts1u) + 
(Ts2u) + 
(Tuw). Thus, �1 and �2
annot both be 
heaper alternate paths.A similar reasoning holds for all segments Twv. This shows that the entire tree is su

essfullypaid for, and the payment s
heme is a Nash equilibrium. By Lemma 4.6, if a Nash exists withmerge points u and v, then the above algorithm �nds it.
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