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Abstract

We study a network creation game recently proposed by Fabrikant, Luthra, Maneva, Papadimitriou
and Shenker. In this game, each player (vertex) can create links (edges) to other players at a cost ofα
per edge. The player’s goal is to minimize the sum consistingof (a) the cost of the links he has created
and (b) the sum of the distances to all other players.

Fabrikant et al. [10] conjectured that there exists a constant A such that, for anyα > A, all non-
transient Nash equilibria graphs are trees. In this paper wedisprove the tree conjecture. More precisely,
we show that for any positive integern0, there exists a graph built byn ≥ n0 players which contains
cycles and forms a non-transient Nash equilibrium, for anyα with 1 < α ≤

√

n/2. Our construction
makes use of some interesting results on finite affine planes.On the other hand we show that forα ≥
12n logn every Nash equilibrium forms a tree.

The main result of Fabrikant et al. [10] is an upper bound on the price of anarchy ofO(
√

α) where
α ∈ [2, n2]. We improve this bound for everyα. Specifically, we derive a constant upper bound for
α ≤ √

n and forα ≥ 12n logn. For the intermediate values we derive an improved bound ofO(1 +

(min{α2

n , n2

α })1/3).
Additionally, we develop characterizations of Nash equilibria and extend our results to a weighted

network creation game as well as to scenarios with cost sharing.
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salbers@informatik.uni-freiburg.de Work supported by the German - Israeli Foundation for Scientific Research &
Development, project G-783-61.6/2003.

†Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 79, 79110 Freiburg, Germany.
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1 Introduction

Network design is a fundamental problem in computer scienceand operations research. This line of research
assumes a central authority that constructs the network andhas various optimization criteria to fulfill. In
practice, however, many networks are actually formed by selfish players who are motivated by their own
interests and their own objective function. For instance, the Internet, networks for exchanging goods and
social networks are all formed by many players and not by a single authority. This motivates the research of
network creation by multiple selfish players.

In this work we focus on the later model and allow individual users to decide which edges to buy. The
appropriate concept for studying such a scenario is that of Nash equilibria [18], where no user has the incen-
tive to deviate from his strategy. We analyze the performance of the resulting network architectures using
theprice of anarchy, introduced by Koutsoupias and Papadimitriou in their seminal paper [17]. Recently,
Nash equilibria and their associated price of anarchy have been studied for a wide range of classical com-
puter problems such as job scheduling, routing, facility location and, last but not least, network design and
creation, see e.g. [1, 2, 3, 7, 6, 8, 11, 10, 13, 15, 17, 20]. This also includes variants of the price of anarchy,
called the price of stability [1, 2, 6].

In this paper we study a network creation game introduced by Fabrikant, Luthra, Maneva, Papadimitriou
and Shenker [10]. The game is defined as follows, there aren players, each of which is associated with a
separate network vertex. These players have to build a connected, undirected graph. Each player may lay
down edges to other players. Once the edges are installed, they are regarded as undirected and may be used
in both directions. The resulting network is the set of players (vertices) and the union of all edges laid out.
The cost of each player consists of two components. Firstly,a player pays an edge building cost equal toα
times the number of edges laid out by him, for someα > 0. Secondly, the player incurs a connection cost
equal to the sum of the shortest path distances to other players. This game models scenarios in which peers
wish to communicate and transfer data. Each peer incurs a hardware cost and pays for the communication
delays to other players.

Formally, we represent the set of players by a vertex setV = {1, . . . , n}. A strategy, for a player
v ∈ V , is a set of verticesSv ⊆ V \ {v} such thatv creates an edge to everyw ∈ Sv. Given a com-
bination of strategies~S = (S1, . . . , Sn), the resulting graphG(~S) = (V,E) consists of the edge set
E =

⋃

v∈V

⋃

w∈Sv
{v,w}. In our analysis it will sometimes be convenient to assume that the edges have a

direction. A directed edge(v,w) indicates that the playerv built an edge tow. The cost of a playerv under
~S is Cost(v, ~S) = α|Sv| +

∑

w∈V,w 6=v δ(v,w), whereδ(v,w) is the length of the shortest path betweenv

andw in G(~S).
A combination of strategies~S forms a Nash equilibrium if, for any playerv ∈ V and every other

combination of strategies~U that differ from ~S only in v’s component,Cost(v, ~S) ≤ Cost(v, ~U ). The
induced graphG(~S) is called the equilibrium graph.~S is a strongNash equilibrium if, for every player
v, strict inequalityCost(v, ~S) < Cost(v, ~U ) holds. Otherwise, it is aweakNash equilibrium. In a weak
Nash equilibrium at least one player can change its strategywithout affecting its cost. We will also use the
notion of transientNash equilibria [10]. A transient Nash equilibrium is a weakequilibrium from which
there exists a sequence of single-player strategy changes,which do not change the deviator’s cost, leading
to a non-equilibrium position.

For a combination of strategies~S, let Cost(~S) =
∑

v∈V Cost(v, ~S) be the total cost of all players.
Let Cost(OPT ) be the cost of the social optimum that achieves the smallest possible value. The price of
anarchy is the worst-case ratioCost(~S)/Cost(OPT ), taken over all Nash equilibria~S.

Previous work: Fabrikant et al. [10] main interest was to analyze the price of anarchy of the game.
They easily observe that, forα < 2 andα > n2, it is constant. Their main contribution is an upper bound
of O(

√
α) for α ∈ [2, n2]. This upper bound can be as large asO(n) whenα = n2. Fabrikant et al. pointed

out that in their constructions as well as in experiments that they preformed only tree Nash equilibria were
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found. The only exception was the Petersen graph that represents a transient Nash equilibrium. This fact
motivated them to formulate atree conjecturestating that there exists a constantA such that, for anyα > A,
all non-transient Nash equilibria are trees. In other words, every Nash equilibrium that has a cycle in the
underlying graph is transient and, in particular, weak. Finally, they proved that the price of anarchy is
constant for a tree Nash equilibrium.

In a recent work Corbo and Parkes [5] study the price of anarchy in the model introduced by Fabrikant
et al. with a single variation that the edges are not bought bya single player but by both players at the end
points of the edge.

There exists a large body of previous work on other network design problems. Anshelevich et al. [1]
investigate a network design problem where players, in a given graph, have to connect desired terminal pairs.
They analyze the quality of the best Nash equilibrium under Shapley cost sharing. Anshelevich et al. [2]
consider connection games where each player has to connect aset of terminals and present algorithms for
computing approximate Nash equilibria. Further work on cost sharing in network design includes [12, 15,
19, 16]. Bala and Goyal [3] study a network formation problemin which players incur cost but also benefit
from building edges to other players. They trade off the costs of forming links against the potential reward
from doing so. Haller and Sarangi [13] build on this work and allow player heterogeneity.

Social and economic networks in which each player is a different vertex in the graph play a major role
in the economic literature. For a recent and detailed reviewof social and economics models see [14].

Our contribution: In this paper we first show that the tree conjecture is incorrect. We prove that, for any
positive integern0, there exists a graph built byn ≥ n0 players that contains cycles and forms a strong Nash
equilibrium, for anyα with 1 < α ≤

√

n/2. The graphs we construct aregeodetic, i.e. the shortest path
between any two vertices is unique, and have a diameter of2. These properties are crucial in showing that
the Nash equilibrium is indeed strong. If a player deviates from its original strategy and builds less edges or
edges to different players, then — since the original graph was geodetic — the shortest path distance cost
increases substantially. If a player decides to build more edges, then — since the graph has diameter2 —
the cost saving is negligible. Our construction resorts to some concepts from graph theory and geometry. In
particular, we use results on finite affine planes. To the bestof our knowledge, these concepts have never
been used in game theoretic investigations and might be helpful when studying other graph oriented games.

We proceed and give improved upper bounds on the price of anarchy. Our main result here is aconstant
upper bound on the price of anarchy for bothα ≤ √

n andα ≥ 12n log n. We prove that ifα ≥ 12n log n,
the price of anarchy is in fact not larger than 1.5 and goes to1 asα increases. Interestingly, the proof
shows that ifα ≥ 12n log n, any Nash equilibrium is indeed a tree. For anyα, we prove an upper bound of
O(1+(min{α2

n , n2

α })1/3). Thus, ifα ∈ O(
√

n), the price of anarchy is again constant. Forα ∈ [
√

n, n] the
value increases, reaching a maximum ofO(n1/3) at α = n. Forα > n, the price of anarchy is decreasing.
Hence, we have constant prices of anarchy for large ranges ofα and a worst case bound ofO(n1/3) instead
of O(n).

Furthermore, we analyze the structure of Nash equilibria, investigating solutions with short induced
cycles. We prove that any Nash equilibrium that forms a chordal graph having induced cycles of length
three is indeed transient. We show that such equilibria do exist for all n. Furthermore, we show that if
α < n/2, then the only tree that forms an equilibrium is the star and that there exists Nash equilibria graphs
of n vertices which are not trees.

Additionally, we study a weighted network creation game in which playerv wishes to send a certain
amount of traffic to playeru, for anyv andu. In the cost of playerv, the shortest path distance tou is
multiplied by this traffic amount. We also provide an upper bound on the price of anarchy. For a uniform
traffic matrix, we obtain for the weighted game the same bounds as our bounds for the unweighted game.

Finally, we consider settings with cost sharing where players can pay for a fraction of an edge. The edge
exists if the total contribution by all players is at leastα. We show that in both the unweighted and weighted
games part of our upper bounds on the price of anarchy carry over. We also prove that there exist strong
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Nash equilibria with cycles in which the cost is split evenlyamong players.

2 Disproving the tree conjecture

We will present a family of graphs that form strong Nash equilibria and have induced cycles of length three
and five. To construct these graphs, we have to define affine planes, see e.g. Mac Williams and Sloane [21].

Definition 1 An affine plane is a pair(A,L), whereA is a set (of points) andL is a family of subsets ofA
(of lines) satisfying the following four conditions.

• For any two points,there is a unique line containing these points.

• Each line contains at least two points.

• Given a pointx and a lineL that does not containx, there is a unique lineL′ that containsx and is
disjoint fromL.

• There exists a triangle, i.e. there are three distinct points which do not lie on a line.

If A is finite, then the affine plane is called finite.

Two lines areparallel, in signs‖, if the lines are disjoint or if they are equal. Given a pointx and a lineL,
we denote by(x‖L) the unique line that is parallel toL and containsx. Parallelism defines an equivalence
relation on the lines, and the equivalence class ofL is denoted by[L].

If q is a prime power, then for the fieldF = GF (q) the setsA = F 2 andL = {a+bF | a, b ∈ A, b 6= 0}
are an affine plane of orderq, denoted byAG(2, q). The plane containsq2 points and

(q2

2

)

/
(q
2

)

= q(q + 1)
lines. There areq + 1 equivalence classes (q − 1 real slopes, horizontal and vertical lines). Each class hasq
lines and each such line containsq points.

We are now ready to describe the graphs representing strong Nash equilibria. The graphs were also
constructed by Blokhuis and Brouwer [4] as instances of geodetic graphs. For an affine planeAG(2, q) we
define a graphG = (V,E) with V = A ∪ L. In the following, when we refer to a point or a line, we often
mean the corresponding vertex or player. The edge setE is specified as follows.

• A point and a line are connected by an edge if and only if the line contains the point.

• Two lines are connected by an edge if and only if they are parallel.

• No two points are connected by an edge.

There are no self-loops or multiple copies of an edge. We haveto give orientations to these edges. Every
equivalence class of a lineL defines a complete subgraphKq of G. Let r(L) ands(L) denote the indegree
and outdegree ofL in Kq, respectively. One can easily show by induction that there exists an orientation of
the edges ofKq such that, for every lineL in Kq, |r(L) − s(L)| = 0 if q is odd and|r(L) − s(L)| = 1 if r
is even. In order to define an orientation for the edges between points and lines, we choose a representative
line Li, 0 ≤ i ≤ q, for each of theq + 1 equivalence classes. The lines of[Lq] = {Lq

0, . . . , L
q
q−1} do not

build edges to their points; rather the existing edges are built by the points. As for the other equivalence
classes, a lineL ∈ [Li], 0 ≤ i ≤ q − 1, builds edges to the two pointsL ∩ Lq

i andL ∩ Lq
i+1(mod q). All the

other edges are built by the points. Every pointx is contained in a line(x ‖ Lq) =: Lq
j and has exactly two

incoming edges from the lines(x ‖ Lj) and(x ‖ Lj−1(mod q)). Forq = 2, we obtain the Petersen graph.
Figure 1 shows the graph structure relative to a lineL 6∈ [Lq]. Let x1, . . . , xq be theq points contained

in L. We number these points such thatL builds edges tox1 andx2. Let L1, . . . , Lq−1 be theq − 1 lines
parallel toL. We number these lines such that the firstr = r(L) lines build edges toL while L builds edges
to the remainingq − 1 − r lines. For any pointxi, 1 ≤ i ≤ q, we denote byLxi

1 , . . . , Lxi
q the otherq lines

that containxi. These sets ofq lines are disjoint for differentxi since for every pair of points there is a
unique line containing this pair. Furthermore these lines are different fromL1, . . . , Lq−1. For any lineLi,

3



1 ≤ i ≤ q − 1, let xi
1, . . . x

i
q be theq points contained inLi. Again these point sets are disjoint for different

Li and are also different fromx1, . . . , xq since the linesL andL1, . . . , Lq−1 are parallel. IfL ∈ [Lq], then
the structure of the graph is the same except that the edges betweenL and its points are all built by the points.
If L 6∈ [Lq] then the cost of the player representingL is (2+s)α+(2q−1)+2(2q−1)q = (s+2)α+4q2−1,
wheres = s(L) = q − 1 − r. If L ∈ [Lq], then the cost issα + 4q2 − 1.

L

x1 x2 x3 xq L1 Lr Lr+1
Lq−1

Lx1

1 Lx1
q Lx2

1 Lx2
q Lx3

1 Lx3
q L

xq

1 L
xq
q x1

1 x1
q

xr
1 xr

q xr+1
1 xr+1

q xq−1
1

xq−1
q

...... ...... ......

... ... ... ... ... ... ... ...

Figure 1: The distances with respect to a lineL.

Figure 2 depicts the graph structure relative to a pointx. LinesLx
1 , . . . , L

x
q+1 are theq +1 lines contain-

ing x. For a lineLx
i , 1 ≤ i ≤ q + 1, let xi

1, . . . , x
i
q−1 be the otherq − 1 points ofLx

i and letLi
1, . . . , L

i
q−1

be theq − 1 lines parallel toLx
i . These sets ofq − 1 points and lines are disjoint for differenti. Thus the

cost of the player representingx is (q − 1)α + (q + 1) + 2(q + 1)(2(q − 1)) = (q − 1)α + 4q2 + q − 3.

x

Lx
1 Lx

2 Lx
3 Lx

q+1

x1
1 x1

q−1 L1
1 L1

q−1 x2
1 x2

q−1 L2
1 L2

q−1 x3
1 x3

q−1 L3
1 L3

q−1 xq+1
1 xq+1

q−1 Lq+1
1 Lq+1

q−1

......

... ... ... ... ... ... ... ...

Figure 2: The distances with respect to a pointx.

Lemma 1 Let q > 10. For α in the range1 < α < q + 1, no player associated with a lineL has a
different strategy that achieves a cost equal to or smaller than that ofL’s original one. Forα in the range
1 ≤ α ≤ q + 1, L has no strategy with a smaller cost.

Proof. We prove the lemma for a lineL 6∈ [Lq], which builds two edges to points. This implies that the
lemma also holds for linesL′ ∈ [Lq] which do not build edges to points. For, if a lineL′ ∈ [Lq] had a
different strategy with the same or a smaller cost, then any line L 6∈ [Lq] could adopt the same strategy
change while maintaining the two edges built to points. Thiswould result in the same or a smaller cost,
respectively. As we will show in the following, this is impossible.

Fix a lineL 6∈ [Lq]. We consider all possible strategy changes. First, ifL builds l > s + 2 edges, then at
best there arel − s − 2 + 2q − 1 vertices at distance1 while the other vertices are at distance2 from L. In
L’s original strategy there are2q − 1 vertices at distance1 while all other vertices are at distance2. Thus,
L’s original strategy has a cost which is at leastα(l − s − 2) − (l − s − 2) smaller than that ofS, and this
expression is strictly positive forα > 1. Thus buying more thans + 2 edges does not pay off.

In the remainder of this proof we study the case thatL builds at mosts + 2 edges and start with the
strategyS0 in which L does not build any edges at all. The resulting shortest path tree of L is given
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L

x1 x2

x3 xq L1 Lr

Lr+1 Lq−1

Lx1

1
Lx1

q Lx2

1
Lx2

q

Lx3

1 Lx3
q

L
xq

1 L
xq
q x1

1 x1
q

xr
1 xr

q

xr+1
1 xr+1

q xq−1
1

xq−1
q

...... ......

......

... ...

... ... ... ...

... ...

Figure 3: Strategy changeS0.

in Figure 3. LinesLr+1, . . . , Lq−1 are a distance of2 away fromL since these lines are connected to
L1, . . . , Lr. LinesLx1

i andLx2

i , 1 ≤ i ≤ q, are a distance of3 away fromL because they do not contain
x3, . . . , xq and are not parallel toL1, . . . , Lr but are connected to one line fromL

xj

1 , . . . , L
xj
q , for any

j with 3 ≤ j ≤ q, and are also connected to one point fromxj
1, . . . x

j
q, for any j with 1 ≤ j ≤ r.

Pointsxi
1, . . . , x

i
r, with r + 1 ≤ i ≤ q − 1, are a distance of3 away because they are not contained

in L1, . . . , Lr but are connected to one line fromL
xj

1 , . . . , L
xj
q , for any 3 ≤ j ≤ q. Finally pointsx1

and x2 are a distance of4 away fromL because these points are only contained in linesLx1

1 , . . . , Lx1
q

andLx2

1 , . . . , Lx2
q , respectively, at distance3. The cost difference betweenS0 andL’s original strategy is

−(s + 2)α + s(q + 1) + 2q + 6 = (q + 1 − α)(s + 2) + 4 > 0 and henceS0 is a worse strategy.
Next suppose thatL does build edges. The edges can be of six different types:L builds an edge to (a) a

line Lxi

j for some3 ≤ i ≤ q and1 ≤ j ≤ q; (b) a pointxi
j , for some1 ≤ i ≤ r and1 ≤ j ≤ q; (c) an edge

Lx1

j or Lx2

j , for some1 ≤ j ≤ q; (d) a pointxi
j, for somer + 1 ≤ i ≤ q − 1 and1 ≤ j ≤ q; (e) a lineLi,

for somer + 1 ≤ i ≤ q − 1; (f) a pointx1 or x2. In the following we investigate all of these cases, which
are also depicted in Figure 4.

(a) L

Lxi

j

Lx1

? Lx2

?
xr+1

? xq−1
?

x1 x2

...

(b) L

xi
j

Lx1

? Lx2

?

x1 x2

(c) L

Lx1

j

x1 Lx2

? xr+1
? xq−1

?

...

(d) L

xi
j

Lx1

? Lx2

?

x1 x2

(e) L

Li

xi
1 xi

q

...

(f) L

x1

Lx1

1 Lx1
q

...

Figure 4: The effect of edges of types (a – f).
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Case (a): The lineLxi

j is connected to one line fromLx1

1 , . . . , Lx1
q , which is linked tox1, and to one

line from Lx2

1 , . . . , Lx2
q , which is linked tox2. Additionally Lxi

j is connected to one point fromxk
1, . . . , x

k
q ,

for anyr + 1 ≤ k ≤ q − 1. Thus, setting a link toLxi

j , line L can save a cost of at mosts + 5 relative to
S0. HenceL can save a cost of at mosts + 5 no matter how other links are laid out byL. In other words,
removing the edge toLxi

j results in an increase in the shortest path distance cost of at mosts + 5.
Case (b): Pointxi

j is connected to one line fromLx1

1 , . . . , Lx1
q and to one line fromLx2

1 , . . . , Lx2
q . From

therex1 andx2 can be reached. By laying out an edge toxi
j , line L saves a shortest path distance cost of

5 relative toS0 and hence a value of at most5 relative to any other strategy. Again, removing this link can
increase the shortest path distance cost by at most5.

Case (c): Assume w.l.o.g. that an edge toLx1

j is built. The analysis of a link toLx2

j is similar. LineLx1

j

is linked tox1 and to one line fromLx2

1 , . . . , Lx2
q . FurthermoreLx1

j is linked to one point fromxi
1, . . . , x

i
q,

for anyr + 1 ≤ i ≤ q − 1. Relative toS0 the shortest path distances decrease bys + 5. Removing the edge
results in an increase of at mosts + 5.

Case (d): Pointxi
j is connected to one line fromLx1

1 , . . . , Lx1
q and to one line fromLx2

1 , . . . , Lx2
q . From

therex1 andx2 can be reached. Building an edge toxi
j saves a shortest path distance cost of6 relative to

S0. Not building this edge results in an increase of at most6.
The last two cases are studied under the condition that the other edges built byL are also of type(e) or

(f).
Case (e): If L builds only edges of type(e) and(f), then pointsxi

1, . . . , x
i
q are still at distance3 and by

setting a link toLi the shortest path distance cost reduces byq + 1.
Case (f): Again, assume thatL builds only edges of type(e) and (f). Without an edge tox1, lines

Lx1

1 , . . . , Lx1
q are a distance of3 away fromL andx1 is a distance of4 away. Building an edge tox1 reduces

the shortest path distance cost byq + 3.
With the above case distinction (a–f) we are able to finish theproof. Recall thatL builds at mosts + 2

edges. IfS contains edges of types (a–d), then we simultaneously replace all of these edges by edges of
type(e) or (f). Any such edge replacement increases the shortest path distance cost by at most6 or s + 5
while the decrease is at leastq + 1. Since, forq > 10, we haveq + 1 > q/2 + 6 ≥ s + 5 ≥ 6, strategyS
is worse thanL’s strategy defined by graphG. So suppose thatS only builds edges of types(e) or (f). If S
builds less thans+2 edges, then we introduce additional edges of types(e) or (f) until a total ofs+2 edges
are laid out. For any additional edge, there is an edge building cost ofα while the shortest path distance cost
decreases by at leastq + 1. If α < q + 1, there is a net cost saving andS is worse thanL’s original strategy
given byG. If α = q + 1, thenL’s original strategy is at least as good.2 2

Lemma 2 For α in the range1 < α ≤ q + 1, no player associated with a pointx has a different strategy
that achieves a cost equal to or smaller than that ofx’s original strategy. Forα = 1, no player associated
with a point has a strategy that achieves a smaller cost.

The proof is given in Appendix A. The above two lemmata yield the main result of this section.

Theorem 1 Let q > 10. The graphG is a strong Nash equilibrium, for1 < α < q + 1, and a Nash
equilibrium, for1 ≤ α ≤ q + 1.

3 Improved bounds for the price of anarchy

We first consider the case thatα ≥ 12n log n, proving a constant price of anarchy. Then we address the
remaining range ofα. In both cases, for a given equilibrium graphG(~S), we need the concept of a shortest
path tree rooted at a certain vertexu. The root ofT (u) is vertexu and this vertex representslayer 0 of the
tree. Given vertex layers 0 toi − 1, layeri is constructed as follows. A nodew belongs to layeri if it is not
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Exapnding 

Neutral 

Degenerated 

(Boundary level)

0

1

2

3

6 log n − 1

6 log n

...

u

Figure 5: A classification of the vertices of T(u).

yet contained in layers 0 toi − 1 and there is a vertexv in layeri − 1 such that there is an edge connecting
v andw, i.e. {v,w} ∈ E. We add this edge to the shortest path tree. We emphasize thatif w is linked to
several vertices of layeri− 1, only one such edge is added to the tree at this point. Supposethat all vertices
of V have been added toT (u) in this fashion. The edges inserted to far are referred to astree edges. We
now add all remaining edges ofE to T (u) and refer to these edges asnon-tree edges. Essentially,T (u) is
just a layered version ofG with distinguished tree edges.

3.1 Constant price of anarchy forα ≥ 12n log n

In order to establish a constant price of anarchy, we prove that if α ≥ 12n log n, then every Nash equilibrium
graph is a tree. This implies an upper bound of5 on the price of anarchy [10]. However, we here give an
improved upper bound of1.5 for the considered range ofα.

Our proof has the following structure. Given an equilibriumgraph whose girth (i.e., the length of the
minimal cycle in the graph) is at least12 log n, we prove that the graph diameter is bounded by6 log n.
The proof is by contradiction. We assume that there exists a vertexu with eccentricity at least6 log n and
examine its shortest path treeT (u). We show that the maximal depth ofT (u) is less than6 log n. This
immediately implies that the equilibrium graph is a tree, given the bound on the girth. Also, since we
have chosen an arbitrary vertex this implies that the diameter is at most6 log n. We complete the proof by
showing that for high edge costs the graph has a high girth.

We classify the vertices of the equilibrium graph accordingto their location in the treeT (u). We refer to
the vertices at depth exactly6 log n as vertices in theBoundarylevel. We classify the vertices in the levels
before the Boundary level according to the number of descendent their children have in the Boundary level.
We have three types of vertices. The first areExpanding verticeswhich lead to an exponential growth, the
second, and the most problematic, areNeutral verticesthat do not lead to a growth but have descendants in
the Boundary level, and the third areDegenerate verticesthat have no descendants in the Boundary level.
The vertices of the Boundary level, and at levels of larger depth, are unclassified. We now give the formal
definition.

Definition 2 Let G(~S) be an equilibrium graph and letu ∈ V . LetT (u) be a shortest path tree rooted at
u. We say that a vertexv ∈ V , at a depth smaller than6 log n in T (u), is:

• Expanding - If v has at least two children with at least one descendent in the Boundary level.
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• Neutral - If v has exactly one child with at least one descendent in the Boundary level.

• Degenerate- If v does not have any descendent in the Boundary level.

An example to this classification is given in Figure 5. Note that vertices at level6 log n (the Boundary
level) and higher levels are not classified. Our target is to show that there aren vertices in the Boundary
level. This implies that there are no vertices in levels higher than6 log n. It is important to note that since
the graph has girth at least12 log n, there is a unique treeT (u) up to level6 log n (the Boundary level).

In the next Lemma we show that Degenerate children of a Neutral vertex v and their descendants are
connected only throughv to vertices out of the subtree ofv in T (u).

Lemma 3 Let G(~S) be an equilibrium graph whose girth at least12 log n. Let v be a Neutral vertex in
T (u) and letDu(v) be the set of its Degenerate children and their descendants at T (u). Every path from
x ∈ Du(v) to y ∈ V \ Du(v) in G(~S) must go throughv.

Proof. We show that any path fromx to y must go throughv. Suppose that there is a path that does not go
throughv then either it goes through a vertexz from the Boundary level or the entire path does not cross
the Boundary level. However,x is Degenerate and wlogz is its descendant and can not be in the Boundary
level since it violates the definition Degenerate vertex. Thus, it must be thatδ(u, z) < 6 log n. Now if every
vertexz on the path fromx to y satisfies thatδ(u, z) < 6 log n then there is a cycle of length less than
12 log n. We conclude that any path fromx to y must go throughv. 2

The above Lemma shows that Neutral vertices have a crucial role in connecting Degenerate vertices.
The next Lemma will use this property to show that although many Neutral vertices can be found in the tree,
the number of times that two Neutral vertices can appear consecutively on a path fromu is limited.

Lemma 4 LetG(~S) be an equilibrium graph whose girth is at least12 log n. Letu = w0, w1, . . . , wl = v
be a shortest path fromu to v. An edge on the path is said to be a Neutral edge if both of its endpoints are
Neutral vertices. The total number of Neutral edges is2 log n.

Proof. Let (wi−1, wi) be a Neutral edge on the path fromu to v. There are two possible types of Neutral
edges. Edges which are bought by their tail (i.e.wi−1) or edges which are bought by their head (i.e.wi).
We assume w.l.o.g that the number of edges which are bought bytheir tail is larger than the number of edges
which are bought by their head. We bound the total number of such Neutral edges withlog n. This gives the
desired bound of2 log n.

Let (wi1−1, wi1), (wi2−1, wi2), . . . , (wim−1, wim) be the Neutral edges on the path which are bought by
their tail. We show thatm ≤ log n. Let Du(wij ) be the set of all the Degenerate children ofwij and their
descendants. By Lemma 3 every path from a vertex inV \Du(wij ) to a vertex inDu(wij ) goes throughwij .
Let nj denote the size ofDu(wij ). Now since we are in equilibrium the benefit ofwij−1 from buying the
edge(wij−1, wij ) is larger than the benefit from buying the edge(wij−1, wij+1). Thus,nj ≥ ∑m

k=j+1 nk.
As a resultnj ≥ 2m−j−1 andm is bounded bylog n. 2

Based on the above Lemma we prove the main result of this section. We show that every equilibrium
graph whose girth is at least12 log n must be a tree whose maximal depth is6 log n.

Proposition 1 If G(~S) is an equilibrium graph whose girth is at least12 log n then the diameter ofG(~S) is
at most6 log n andG(~S) is a tree.
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Proof. For the sake of contradiction, we start by assuming that the diameter is at least6 log n. Let u ∈ V
be a vertex on one of the endpoints of the diameter. We look on ashortest path tree rooted atu. Sinceu is
one of the diameter endpoints our assumption implies thatu is either Neutral or Expanding vertex. We show
that the number of descendants at the Boundary level (i.e. vertices at a depth ofexactly 6 log n) is at least
n. As it is not possible to haven vertices in the Boundary level we reach to a contradiction. This obviously
implies that the maximal depth is at most6 log n and that there are no cycles. Letv ∈ V , we denote with
d the depth ofv in T (u) and with b the number of Neutral edges on the path fromu to v. We label a
vertex by(d, b). For example, the label for the rootu is (0, 0) becaused = 0 andb = 0. Let v be a non-
Degenerate vertex whose label is(d, b), and letN(d, b) be a lower bound on the number of its descendants
at the Boundary level. (Note that two vertices might have thesame label, but have different number of

descendants at the boundary level.) We claim thatN(d, b) ≥ 2
6 log n−d

2
−(2 log n−b). This implies for the root

thatN(0, 0) ≥ 2
6 log n−0

2
−(2 log n−0) = n, thus proving the claim will lead to the desired contradiction.

The proof will be by a backwards induction ond and b. As for the induction basis we show that

N(6 log n, b) ≥ 2−(2 log n−b) andN(d, 2 log n) ≥ 2
6 log n−d

2 . We first show thatN(6 log n, b) ≥ 2−(2 log n−b).
The only descendent at the Boundary level is the vertex itself and N(6 log n, b) = 1. Thus, we need to
show that2−(2 log n−b) ≤ 1. This follows directly from Lemma 4 sinceb ≤ 2 log n. Next, we prove

that N(d, 2 log n) ≥ 2
6 log n−d

2 . The proof here is a bit more subtle and a secondary inductionon d is
needed. The basis for the secondary induction,N(6 log n, 2 log n) ≥ 1, trivially holds. We assume that

N(d′, 2 log n) ≥ 2
6 log n−d′

2 for everyd′ > d and prove it ford. Let v be a vertex at depthd with b = 2 log n
which may be either Expanding or Neutral. We show that in either casev has at least two descendants at
depthd + 2 which are either Expanding or Neutral. For the case thatv is Expanding it follows from the
definition of Expanding vertex thatv has at least two descendants at depthd+2 which are either Expanding
or Neutral. For the case thatv is Neutral it follows thatv cannot have a Neutral child sinceb = 2 log n and
there are at most2 log n Neutral edges by Lemma 4. Thus,v must have an Expanding child which again has
by definition at least two children which are either Expanding or Neutral. We conclude that in both cases,
i.e. v is Expanding or Neutral, it has at least two descendants at depth d + 2 which are either Expanding or
Neutral. The induction hypothesis holds for these descendants ofv and we get that:

N(d, 2 log n) ≥ N(d + 2, 2 log n) + N(d + 2, 2 log n) ≥ 2
6 log n−d−2

2 + 2
6 log n−d−2

2 = 2
6 log n−d

2

This completes the proof of the basis of the primary induction. We assume the induction hypothesis
holds for everyd′ ≥ d andb′ ≥ b (note that one inequality must be sharp). Letv be a vertex at depthd with
b Neutral edges on the path fromv. Let w be a child ofv. There are four possibilities: bothv andw are
Expanding,v is Expanding andw is Neutral,v is Neutral andw is Expanding and bothv andw are Neutral.
In the first three possibilities, as we already discussed above, v has at least two descendants at depthd + 2
which are either Expanding or Neutral and thus the inductionhypothesis holds for them and we have:

N(d, b) ≥ N(d+2, b)+N(d+2, b) ≥ 2
6 log n−d−2

2
−(2 log n−b)+2

6 log n−d−2

2
−(2 log n−b) = 2

6 log n−d

2
−(2 log n−b)

In the fourth case in which bothv andw are Neutral there is one more Neutral edge and we have

N(d, b) = N(d + 2, b + 1) = 2
6 log n−d−2

2
−(2 log n−b−1) = 2

6 log n−d

2
−(2 log n−b)

2

So far the only assumption that we used in our proofs on the equilibrium graph is that its girth is of
length at least12 log n. The next lemma connects between the girth of an equilibriumgraph and the edge
costα.
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Lemma 5 LetG(~S) be an equilibrium graph andc be any positive constant. Ifα > cn log n then the length
of the girth ofG(~S) is at leastc log n.

Proof. Suppose for the sake of contradiction that the size of the minimal cycle isc log n, and look on a
vertexu on the cycle that buys a cycle edge. The benefit ofu from this edge is at most(c log n−1)n, which
is strictly less thancn log n = α the cost of an edge. Therefore, this is not an equilibrium graph and we
reach to a contradiction. 2

We are ready to state our main results, which is a characterization of every Nash equilibrium and a
constant price of anarchy wheneverα ≥ 12n log n.

Theorem 2 For α ≥ 12n log n the price of anarchy is bounded by1 + 6n log n
α ≤ 1.5 and any equilibrium

graph is a tree.

Proof. The fact that the graph is a tree follows form Lemma 5 and Proposition 1. Thesocial costof the
optimum, a star graph, isα(n − 1) + 2(n − 1)2. By Proposition 1 we know that every Nash equilibrium
graph is a tree whose maximal depth is6 log n. Therefore, the cost of every equilibrium graph is bounded
by α(n − 1) + 6n2 log n and the price of anarchy is bounded by

α(n − 1) + 6n2 log n

α(n − 1) + 2(n − 1)2
≤ 1 +

6n2 log n

αn + 2(n − 1)2 − α
≤ 1 +

6n log n

α

2

3.2 Improved upper bound for α < 12n log n

We give a new upper bound forα < 12n log n. In fact, the following theorem holds for anyα and is stated
in this general form so that it can be generalized to a weighted game in Section 5. Furthermore, it implies a
constant upper bound forα ≤ O(

√
n). The proof is given in Appendix B.

Theorem 3 Let α > 0. For any Nash equilibriumN , the price of anarchy is bounded by
15(1 + (min{α2

n , n2

α })1/3).

The next theorem implies that the only critical part in bounding the price of anarchy is the sum of the
shortest path distances between players. The proof is givenin Appendix B.

Theorem 4 In any Nash equilibriumN , the total cost incurred by the players in building edges is bounded
by twice the cost of the social optimum. There exists a shortest path tree such that, for any playerv, the
number of non-tree edges built byv is bounded by1 + ⌊(n − 1)/α⌋.

4 Characterizations of Nash equilibria

We give further characterization of Nash equilibria. Our first contribution is to show that, for anyn and
any α < n/2, there exist transient Nash equilibria which are not trees.We then show that every Nash
equilibrium which is chordal graph is a transient Nash equilibrium. An undirected graph is chordal if every
cycle of length at least four has a chord, i.e. has an edge connecting two non-adjacent vertices on the cycle.
Chordal graphs play a very important role in graph theory, see e.g. [9]. Finally, we show that forα < n/2
every Nash equilibrium which is a tree must be star. The proofs of the results are given in Appendix C.

Theorem 5 For any integern and for any integer costα ≤ n/2, there exists a Nash equilibrium forming a
non-tree chordal graph onn vertices.
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Theorem 6 Letα > 1 andN be a Nash equilibrium that has a cycle in the associated graphG = (V,E).
If G is chordal, thenN is transient.

Theorem 7 For α < n/2, the star is the only Tree which is an equilibrium graph.

We note that forα = n/2, the construction of Theorem 5 is an equilibrium graph whichis also a tree with
diameter3, and as a result Theorem 7 is tight.

5 A weighted network creation game

So far, we have considered an unweighted network creation game in which all players incur the same traffic.
We now study a weighted game in which playeru sends a traffic amount ofwuv > 0 to playerv, with u 6= v.
In the cost of playeru, the shortest path distance betweenu andv is multiplied bywuv. LetW = (wuv)u,v

be the resultingn × n traffic matrix. We usewmin = minu 6=v wuv to denote smallest traffic entry and
wmax = maxu 6=v wuv to denote the largest one. LetW =

∑n
u=1

∑n
v=1 wuv be the sum of the traffic values.

We extend the upper bounds of Section 3 to the weighted case. Again we assume that there are at leastn ≥ 2
players. The following theorem is a generalization of Theorem 3. In the unweighted case we havewmin = 1
and the bounds given in the next theorem are identical to thatof Theorem 3, up to constant factors. The
proof is given in Appendix D.

Theorem 8 a) Let0 < α ≤ wminn
2. For any Nash equilibriumN , the price of anarchy is bounded by

60(1 + min{(α2/(w2
minn))1/3,W/(wminn4α)1/3, n}).

b) Let wminn
2 < α < wmaxn

2. Then the price of anarchy is bounded by12 + 3min{
√

α/wmin,
W/(

√
αwmin(n − 1)), n}.

c) Letwmaxn
2 ≤ α. Then the price of anarchy is bounded by 4.

6 Cost sharing

We study the effect of cost sharing where players can pay for afraction of an edge. An edge exists if the
total contribution is at leastα. We first show that the bounds on the price of anarchy developed in Section 3
and 5 essentially carry over. We then prove that there exist strong Nash equilibria containing cycles in which
the cost is split evenly among players. We present the proofsin Appendix E.

Theorem 9 a) In the unweighted scenario the bounds of Theorem 3 hold. b)In the weighted scenario the
bound of Theorem 8 hold.

Theorem 10 For n > 6 andα in the range1
6n2 + n < α < 1

2n2 − n, there exist strong Nash equilibria
with n players that contain cycle an in which the cost is split evenly among players.
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Appendix A

Proof of Lemma 2. Consider an arbitrary pointx. We study all possible strategy changes. Ifx builds
l > q − 1 edges then at best there arel + 2 vertices at distance1 and the remaining vertices at distance2. In
x’s original strategy, there areq + 1 vertices at distance 1 while the other vertices are at distance 2. The cost
difference between the new and old strategy is(l− (q − 1))α + l− (q − 1), and this value is stricly positive
if α > 1 and zero ifα = 1.

In the following we assume thatx builds at mostq − 1 edges and first investigate the strategyS0 in
which x does not build any edges. The new graph relative tox is shown in Figure 6. Any lineLi

j, with
3 ≤ i ≤ q + 1 and1 ≤ j ≤ q − 1, is at distance3 from x because these lines are not connected toLx

1 or
Lx

2 but are each connected to one point fromx1
1, . . . , x

1
q−1 and to one point fromx2

1, . . . , x
2
q−1. Similarly,

any pointxi
j, with 3 ≤ i ≤ q + 1 and1 ≤ j ≤ q − 1 is at distance3 because the point is not contained

in Lx
1 or Lx

2 but is contained in one line fromL1
1, . . . , L

1
q−1 and in one line fromL2

1, . . . , L
2
q−1. Any line

Lx
i , 3 ≤ i ≤ q + 1, is at distance4 from x. This is because this line does not contain pointsx1

j or x2
j ,

for j = 1, . . . , q − 1, and is not parallel to lines[Lx
1 ] and [Lx

2 ]. In Figure 6,L denotes the linesL 6= Lx
i ,

i = 1, . . . , q+1, L 6∈ [Lx
1 ]∪[Lx

2 ]. Symbolx denotes the points not equal tox, x1
i andx2

i , for i = 1, . . . , q−1.
SymbolLx denotes the linesLx

i , 3 ≤ i ≤ q + 1. The cost difference betweenS0 and the original strategy
of x in G is−(q − 1)α + 2(q − 1)2 + 3(q − 1) = (q − 1)(2q + 1 − α) > 0 and henceS0 is worse.

x

Lx
1 Lx

2

x1
1 x1

q−1 L1
1 L1

q−1 x2
1 x2

q−1 L2
1 L2

q−1

L x

L
x

... ... ... ...

Figure 6: Strategy changeS0.

Next consider a strategyS that builds edges to vertices not equal toLx
i , 3 ≤ i ≤ q + 1. These edges can

be of four different types:x builds an edge to (a) a pointx1
j or x2

j , for some1 ≤ j ≤ q − 1; (b) a lineL1
j

or L2
j , for some1 ≤ j ≤ q − 1; (c) a lineL′ with L′ 6= Lx

i , for 3 ≤ i ≤ q + 1, andL′ 6∈ [Lx
1 ] ∪ [Lx

2 ]; (d) a
point x′ with x′ 6= x1

i andx′ 6= x2
i , for 1 ≤ i ≤ q − 1. The different cases are depicted in Figure 7. We

investigate how many additional vertices at distance2 pointx can reach compared toS0. We remark that in
x’s original strategy each link to a lineLx

i , 3 ≤ i ≤ q + 1, gives2(q − 1) such vertices.

x

x1
j

Lx
1 L2

?

L3
? Lq+1

?

...

x

L1
j[L1

j ] x2
?

x3
? xq+1

?

...

x

L′
x1

? x2
?

x3
? xq+1

?
[L′]

...

x

x′
L1

? L2
?

L3
? Lq+1

?

...

Figure 7: The effect of edges of types (a – d).
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Case (a): We analyze an edge tox1
j . This point is connected to exactly one line fromLi

1, . . . , L
i
q−1, for

any3 ≤ i ≤ q + 1. Thus at bestq − 1 additional vertices at distance2 are reached byx.
Case (b): We consider an edge toL1

j . This line is connected to exactly one point fromxi
1, . . . , x

i
q−1, for

any3 ≤ i ≤ q + 1. Thus at bestq − 1 additional vertices at distance2 can be reached.
Case (c): Suppose thatL′ ∈ [Lx

j ], with 3 ≤ j ≤ q + 1. ThenL′ is connected to lines in[Lx
j ] and to

exactly one point fromxi
1, . . . , x

i
q−1, for any3 ≤ i ≤ q + 1 with i 6= j. This gives a total of at most2q − 3

extra vertices at distance2.
Case (d): Suppose thatx′ belongs toLx

j , 3 ≤ j ≤ q + 1. Thusx′ is connectedLx
j and to exactly one

line fromLi
1, . . . , L

i
q−1, for any3 ≤ i ≤ q + 1 with i 6= j. The number of new vertices isq − 1.

We conclude that ifS buildsk edges of types (a–d), then, compared toS0, less than2(q−1)k additional
edges at distance2 can be reached byx. Now, if S builds a total ofl, l < q − 1 edges, then there must be at
least(q − 1 − l)2(q − 1) edges at distance3 from x. The cost difference relative to the original strategy of
x in G is−(q − 1− l)α + (q − 1− l)(2q − 2) > 0 and henceS is worse. IfS builds l = q − 1 edges, then
S has a cost as low asx’s original strategy and only if all edges are built toLx

i , 3 ≤ i ≤ q + 1. 2

Appendix B

Proof of Theorem 3. Consider an arbitrary Nash equilibriumN = ~S and letG(~S) = (V,E) be the
corresponding equilibrium graph. We assume that|V | = n > 1 since otherwise, ifn = 1, the edge set is
empty and the price of anarchy is 1. Given a shortest path treeT (u) and a vertexv, let ℓ(v) be the index of
the layerv belongs to inT (u). We need the following lemma.

Lemma 6 For any T (u) and anyv,w ∈ V , the shortest path betweenv and w in G consists of at least
|ℓ(v) − ℓ(w)| edges.

Proof. We first observe that any non-tree edge connects vertices of the same layer or of adjacent layers:
If there was an edge linking a vertexx of layer i to a vertexx′ of layer j, with j ≥ i + 2, thenx′ would
rather belong to layeri + 1. Clearly, tree edges link vertices of adjacent layers. Now,consider a shortest
pathv = v0, v1, . . . , vk = w in G. For anyi with 0 ≤ i ≤ k − 1, we have|ℓ(vi) − ℓ(vi+1)| ≤ 1. Thus, in
traversing the shortest path, each edge can reduce the layerdifference betweenv andw by at most 1. 2

Let Cost(N) be the cost ofN andCost(OPT) be the cost of a social optimum. For the analysis of
Cost(N), let Cost(v) be the cost paid by playerv ∈ V in N . We haveCost(N) =

∑

v∈V Cost(v). The
cost incurred byv consists of the cost for building edges andDist(v), the sum of the shortest path distances
from v to all the other vertices in the equilibrium graph. Fix an arbitrary v0 ∈ V . We prove

Cost(N) ≤ 2α(n − 1) + nDist(v0) + (n − 1)2. (1)

Consider the shortest path treeT (v0). For any vertexv ∈ V , let Ev be the number of tree edges built by
v in T (v0). Vertexv0 built only tree edges while the other vertices may have builttree as well as non-tree
edges. To prove (1), we show forv ∈ V , v 6= v0,

Cost(v) ≤ α(Ev + 1) + Dist(v0) + n − 1. (2)

To verify this inequality, we modifyv’s strategy as follows. Vertexv discards the non-tree edges it built
formerly; it only builds the tree edges it laid out before and, additionally, builds an edge tov0. The new
cost for building edges isα(Ev + 1). Since only non-tree edges were deleted,Dist(v0) is not affected by
v’s new strategy. The new edge betweenv andv0 ensures that the shortest path distance betweenv and
any other vertexw is by at most 1 larger than the shortest path distance betweenv0 andw. This gives
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Dist(v) ≤ Dist(v0) + n− 1 and (2) is established. Summing (2) over allv 6= v0 and addingCost(v0) we
obtain (1). This is becausev0 built only tree edges and the total number of tree edges inT (v0) is n − 1.

It remains to analyzeDist(v0). If α < 1, then there is a direct link between any pair of vertices and
henceDist(v0) ≤ n − 1. We obtainCost(N) ≤ 2α(n − 1) + 2n(n − 1) and the price of anarchy is
bounded by2 becauseCost(OPT) ≥ α(n − 1) + n(n − 1). If α > n2, then we use the trivial bound
Dist(v0) ≤ (n − 1)2 andCost(N) ≤ 2α(n − 1) + 2n(n − 1)2 and the price of anarchy is bounded by 4
becauseCost(OPT) > α(n − 1) > n2(n − 1).

In the remainder of this proof we assume1 ≤ α ≤ n2. In this case a social optimum is given by the star
graph, which incurs a cost ofCost(OPT) = α(n − 1) + 2(n − 1)2 > α(n − 1) + n2, for n ≥ 2 players.
Let d be the depth ofT (v0), i.e.d is the maximum layer numbermaxv∈V ℓ(v). If d ≤ 9, we are easily done.
We haveDist(v0) ≤ 9n andCost(N) ≤ 2α(n− 1)+10n2 and the desired price of anarchy holds because
Cost(OPT) > α(n − 1) + n2. Thus, in the following we restrict ourselves to the cased ≥ 10.

Determinec, 1/3 ≤ c ≤ 1, such thatα = n3c−1. Let V ′ = {v ∈ V | ℓ(v) ≤ ⌊2
5d⌋ in T (v0)} be the set

of vertices of depth at most⌊2
5d⌋ in T (v0). We distinguish two cases depending on whether|V ′| ≥ 2

3nc or
|V ′| < 2

3nc.
If |V ′| ≥ 2

3nc, then consider a vertexw0 at depthd in T (v0), i.e. inℓ(w0) = d in T (v0). By Lemma 6,
the shortest path distance betweenw0 and any vertexv ∈ V ′ is at least⌈3

5d⌉. If there was an edge between
w0 andv0, then the distance betweenw0 andv would be at most⌊2

5d⌋ + 1. Sincew0 did not build an edge
to v0 we have

α > |V ′|
(⌈

3

5
d

⌉

−
⌊

2

5
d

⌋

− 1

)

≥ 2

3
nc
(

1

5
d − 1

)

≥ 2

3
nc 1

10
d

and hence

d ≤ 15α

nc
. (3)

Next assume|V ′| < 2
3nc. For anyi with ⌊1

5d⌋ + 1 ≤ i ≤ ⌊2
5d⌋ let V ′

i = {v ∈ V ′ | ℓ(v) = i in T (v0)}
be the vertices at depthi in T (v0). There must exist ani0 with |V ′

i0 | < 2
3nc/⌊1

5d⌋ since otherwise

|V ′| ≥
⌊ 2

5
d⌋

∑

i=⌊ 1
5
d⌋+1

|V ′
i | ≥ ⌊1

5
d⌋ · 2

3
nc/⌊1

5
d⌋ =

2

3
nc,

contradicting the assumption that|V ′| < 2
3nc. There are at leastn − 2

3nc ≥ 1
3n vertices inV \ V ′. Each

such vertex is decendent of one vertex inVi0 . Thus, there is one vertexvi0 ∈ Vi0 having at least

n/3
2
3nc/⌊1

5d⌋ =
1

2
n1−c

⌊

1

5
d

⌋

≥ 1

2
n1−c

(

1

5
d − 1

)

≥ d

20
n1−c

decendents. If there was an edge fromv0 to vi0 , then the shortest path distance fromv0 to these decendents

would be reduced by at least
⌊

1
5d
⌋

d
20n1−c ≥ d2

100n1−c. Sincev0 did not build such an edge,α ≥ d2

200n1−c,
which gives

d ≤ 15

√

α

n1−c
. (4)

The bounds ond shown in (3) and (4) are identical because15α
nc = 15

√

α/n1−c is equivalent toα = n3c−1

and this holds by the choice ofc.
We finally determine the price of anarchy. We haveDist(v0) ≤ (n − 1)15α/nc ≤ 15αn1−c. Using (1)

we obtainCost(N) ≤ 2α(n − 1) + 15αn2−c + n2. The price of anarchy is bounded by

2α(n − 1) + 15αn2−c + n2

α(n − 1) + n2
≤ 3 +

15αn2−c

α(n − 1) + n2
.
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Figure 8: A(6, 8) clique of stars graph, an equilibrium graph which is not a tree.

If α ≤ n, then the price of anarchy is bounded by3 + 15α/nc < 15(1 + α/nc) = 15(1 + n2c−1) =
15(1 + (α2/n)1/3) because the definition ofc implies thatnc = (αn)1/3. If α > n, then we use the fact
thatα(n − 1) + n2 > αn. This hold becauseα ≤ n2. The price of anarchy is bounded by3 + 15n1−c <
15(1 + n1−c) = 15(1 + (n2/α)1/3), using again the fact thatnc = (αn)1/3. 2

Proof of Theorem 4. Consider the graphG = (V,E) associated withN . Again, forv ∈ V , letCost(v) be
the cost incurred byv and letDist(v) be the sum of the shortest path distances fromv to all the other vertices
in V . Choose a vertexv0 with minimumDist-value among all vertices, i.e.Dist(v0) = minv∈V Dist(v)
and consider the shortest path treeT (v0). For anyv ∈ V , let Ev be the number of tree edges and letE′

v be
the number of non-tree edges built byv in T (v0). The total cost incurred by the players in building edges is
∑

v∈V (Ev + E′
v).

Suppose that playerv’s strategy,v 6= v0, is modified as follows. Agentv deletes itsE′
v non-tree

edges. It only builds theEv tree edges it laid out before and, additionally, build an edge to v0. With this
additional edge, the shortest path distance fromv to any vertexw is by at most one larger then the shortest
path distance fromv0 to w. Sincev does not follow this strategy,Cost(v) = α(Ev + E′

v) + Dist(v) ≤
αEv + α + Dist(v0) + n − 1, which by the minimality ofDist(v0) implies

E′
v ≤ 1 + ⌊(n − 1)/α⌋. (5)

There is a total ofn− 1 tree edges inT (v0) andE′
v0

= 0. Thus the total cost paid by the players in building
edges is bounded byα(n − 1) + α(n − 1) + (n − 1)2 and this is at most twice the costCost(OPT) of a
social optimum becauseCost(OPT) ≥ α(n − 1) + n(n − 1). 2

Appendix C

Proof of Theorem 5. We start by describing our non-tree chordal equilibrium graph. A (k, ℓ) clique of
stars is a clique withk vertices, where each vertex of the clique is a root of a star with ℓ vertices. A(6, 8)
clique of stars is depicted in Figure 8.

We next prove that a(k, ℓ) clique of stars is a Nash equilibrium whenα = ℓ and the edges of each star
are bought only by its root, and clique edges are bought arbitrarily by one of their vertices.
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Lemma 7 LetG(~S) be a(k, ℓ) clique of stars. If the cost of an edge equals toℓ and all the edges are bought
by the clique vertices (and no edge is bought twice), thenG(~S) is an equilibrium graph.

Proof. We prove that a(k, ℓ) clique of stars is an equilibrium in this setting by showing that no player has
an incentive to deviate form her strategy. We denote withx1, . . . , xk the vertices of the clique and with
y1

i , . . . , y
ℓ−1
i the vertices of the star rooted atxi.

We start by showing that the star vertices have no incentive to deviate form their strategy of not buying
any edge. We look on an arbitrary star vertexyj

i . The edge connecting it to the graph is bought byxi. The
benefit from buying the edge(yj

i , xp) for p 6= i is ℓ, sinceyj
i is getting closer by one only to the vertices of

the star rooted atxp. The cost of an edge is alsoℓ therefore the playeryj
i is indifferent and will not deviate.

The benefit from buying the edge(yj
i , y

j′

i′ ) is only one and thusyj
i will have no incentive to buy it. Since

buying a set of edges is at most as beneficial as the sum of theirbenefits in a connected graph,yj
i will not

deviate.
We now turn our attention to the clique vertices. We take an arbitrary vertexxi. Its star vertices are

connected with an edge of the form(xi, y
j
i ). If xi does not buy one of these edges the graph get disconnected

and the cost ofxi becomes infinity. Thus, these edges are necessary. Suppose that the edge(xj , xi) is bought
by xj, thenxj is indifference of buying or not buying the edge, since without the edge the distance to the
star rooted atxi is at least2 while it is 1 with the edge. The benefit from buying the edge isℓ which is also
the cost of an edge. Clearlyxj can not benefit from buying an edge to a leaf of another star, say yk

p , since
α ≥ 1 and the benefit is exactly1. Thus,xj has no incentive to change its strategy and we conclude that
G(~S) is an equilibrium graph. 2

For everyn we have a family of(k, ℓ) clique of stars withk · ℓ = n andα = ℓ. This implies that we
can build a non-tree equilibrium forα = n/3, n/4, . . . , 1. By a slightly more complicated construction it is
possible to extend the(k, ℓ) clique of stars construction and to derive the desired theorem. Details are given
in the full version of the paper. 2

Proof of Theorem 6. Consider an arbitrary cycle of length three inG. On this cycle, considering directed
edges, either (a) each of the three cycle vertices has exactly one incoming and one outgoing cycle edge or
(b) there exists one vertex that has two outgoing edges. In case (a) we name the vertices on the cyclev0,
v1 andv2, starting at an arbitrary vertex and then following the cycle orientation. In case (b), letv0 be the
vertex with two outgoing cycle edges and name the remaining two vertices such that there are oriented edges
(v0, v1) and(v1, v2). This leads to the configuration shown in Figure 9. The edge betweenv0 andv2 can be
oriented in two ways.

v1

v2

v0

Figure 9: The cycle of verticesv0, v1 andv2.

Let V12 be the set of verticesv, v 6= v0, that are directly linked to bothv1 andv2, i.e.V12 = {v ∈ V |
v 6= v0 and{v, vi} ∈ E for i = 1, 2)}. Furthermore, letW be the set of verticesw ∈ V such that a shortest
path fromv1 to w uses edge(v1, v2) and any other path fromv1 to w that does not use(v1, v2) is strictly
longer than a shortest path. Obviously,(v1, v2) is the first edge on the shortest paths fromv1 to verticesw.
Furthermore,W andV12 are disjoint. SetW must contain at leastα vertices since otherwisev1 could delete
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edge(v1, v2) and instead use the edges betweenv1 andv0 and betweenv0 andv2 to reachv2 on the path to
w ∈ W . The would lowerv1’s cost for building edges byα while its shortest paths cost would increase by
less thanα.

Let V1 be the set of verticesv ∈ V , v /∈ V12 ∪ {v0, v2}, that are directly linked tov1. Formally,
V1 = {v ∈ V | v /∈ V12 ∪ {v0, v2} and edge{v, v1} ∈ E}. We next prove that, for anyv ∈ V1 and
w ∈ W , a shortest path fromv to w is by at least 1 longer than a shortest path fromv1 to w. Assume that
this were not the case. Letv ∈ V1 be a vertex such that the desired statement is violated for some vertices
in W . Among those candidates, letw ∈ W be the one having the smallest distance fromv2. Let Pv be
a shortest path fromv to w andPv1

be a shortest path fromv1 to w. PathPv does not use(v1, v2) since
otherwisePv would be one edge longer thanPv1

. PathPv1
does use(v1, v2) by the definition ofW . Path

Pv cannot be shorter thenPv1
; otherwise the path consisting of the edge betweenv1 andv, followed byPv

would be a shortest path fromv1 to w, contradicting the fact thatw ∈ W . HencePv1
andPv have the same

length. All the vertices ofPv1
, except forv1, belong toW . ThereforePv1

andPv are edge disjoint. If they
was a common suffixS, then the first vertex ofS would be a vertex inW closer tov2 violating the desired
statement. PathsPv1

andPv each have a length of at least two, since otherwisew = v2 and hencev ∈ V12.
Consider the following cycleC that has a length of the least five. Starting atv1 we follow the edge to

v, then traverse the pathPv to w and finally traverse the edges ofPv1
to reachv1. We argue that neitherv1

nor v has a chord to any other vertex onC. A chord betweenv1 and another vertex onC would imply a
shortest path betweenv1 andw that does not use(v1, v2), contradicting the definition ofW . If there was
a chord betweenv andv2, thenv ∈ V12. If there was a chord betweenv and any other vertex onC, this
would imply the existence of a path formv to w that is shorter thenPv. Using this property ofv andv1, we
are able to identify a cycleC ′ of length at least four that that has no chord. We start at vertex v1, follow the
edge tov and traverse the first edge ofPv . Let w1 be the vertex reached. ¿Fromw1 we traverse the chord
that skips the largest number of edges on the arc ofC betweenw1 andv2. If there is no chord atw1, we
traverse the next edge ofC leavingw1. Let w2 be the vertex reached. We proceed in the same way as in
vertexw1. In general, when at vertexwi we follow the chord that skips the largest number of edges on the
cycle arc betweenwi andv2. If there is no such chord, we traverse the next cycle edge. Eventually we reach
v2 and can completeC ′ by traversing the edge betweenv2 andv1. The existence ofC ′ is a contradiction to
the fact that the undirected graph underlying our Nash equilibrium is chordal.

We conclude that, indeed, for anyv ∈ V1 andw ∈ W a shortest path fromv to w is at least one edge
longer than a shortest path fromv1 to w. Using this property we can show thatN is transient. If vertex
v ∈ V builds an edge tov2, its cost can only decrease because the shortest path distances betweenv and
w ∈ W decrease by at least|W | ≥ α while the cost for building edges increases byα. The fact thatv did
not build this edge inN implies that|W | = α andN is transient becausev can alter his strategy without
changing his cost. An edge(v, v2) does not change the shortest path distances from other verticesv′ ∈ V1,
v′ 6= v1, to verticesw ∈ W : If v′ uses(v, v2) on a shortest path, it needs at least two edges to reachv2 and
this was also the number of edges to reachv2 in N .

The single player changes are now as follows. Agentsv ∈ V1 one after the other introduce an edge
(v, v2). The changer’s cost does not change. At this point we have reached a non-equilibrium stateN ′:
Agentv0 can delete edge(v0, v1), saving a cost ofα. We finally show that only the shortest path distance to
v1 increases by one. In the original equilibriumN , consider a shortest path fromv0 to some vertexw 6= v1

that uses edge(v0, v1). After v1, the shortest path visits a vertexv′ ∈ V12 ∪ V1. The subpath(v0, v1)
followed by the edge betweenv1 andv′ in N can be replaced by the edges betweenv0 andv2 and between
v2 andv′ in N ′. If v′ ∈ V1, the last edge was newly introduced. 2

Proof of Theorem 7. Suppose for the sake of contradiction that there is an equilibrium graph which is a
tree but not a star. It is well known that any tree has a centroid vertex whose removal leaves the tree with
components of size smaller thann/2. Let v be such a centroid vertex and letu be a leaf at depthd ≥ 2. It is
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easy to see that since the removal ofv leaves the tree with components of size at mostn/2, there must be at
leastn/2 vertices whose shortest path tou passes throughv. Buying the edge(u, v) would saven(d− 1)/2
to u and thus we get thatα ≥ n(d − 1)/2 ≥ n/2, a contradiction. 2

Appendix D

Proof of Theorem 8. Let N be any Nash equilibrium. We extend the proof of Theorem 3 and first develop
a modified bound onCost(N). Consider the equilibrium graphG = (V,E) given byN and fix an arbitrary
playerv0 ∈ V . We use the shortest path treeT (v0) rooted atv0, which is defined in the same way as in the
unweighted case. We simply ignore traffic weights and just consider the edges inE to identify the structure
of T (v0). Again, letEv be the number of edges built by playerv ∈ V and letd be the depth ofT (v0). We
have

Cost(v0) ≤ αEv0
+ d

∑

u∈V

u 6=v0

wv0u

becausev0 builds only tree edges and the number of edges betweenv0 and any otheru ∈ V is bounded by
d. We next show

Cost(v) ≤ α(Ev + 1) + (d + 1)
∑

u∈V

u 6=v

wuv.

To verify this inequality we simply observe that ifv0 decides to build only its tree edges, deleting the non-
tree edges, and additionally builds an edge tov0, its cost is given by the right-hand side of the inequality.
Summing the costs over all vertices, we obtain

Cost(N) ≤ 2α(n − 1) + (d + 1)W.

It remains to analyzed. Obviously,d ≤ n − 1 and henceCost(N) ≤ 2α(n − 1) + nW . Since
Cost(OPT) ≥ α(n−1)+W , this establishes the upper bounds of60(1+n) and12+3n in parts a) and b)
of the theorem. We can also establish part c) of the theorem because, ifα ≥ wmaxn

2, we haveCost(N) ≤
2α(n − 1) + n3wmax andCost(OPT) ≥ n2(n − 1)wmax. If α < wmin, then there is a direct link between
any pair of players and the price of anarchy is bounded by 1 becauseCost(OPT) ≥ αn(n − 1)/2 + W .

In the following we assumewmin ≤ α ≤ wmaxn
2 and develop a refined bound ond. If d ≤ 9, then

the price of anarchy is bounded by 12. Therefore, we assumed ≥ 10. To prove part a) of the theorem, we
determinec, 1/3 ≤ c ≤ 1 such thatα = wminn

3c−1 and letV ′ = {v ∈ V | ℓ(v) ≤ ⌊2
5d⌋ in T (v0)}. If

|V ′| ≥ 2
3nc, then a vertexw0 at depthT (v0) could save a cost ofwmin|V ′|(⌈3

5d⌉ − ⌊2
5d⌋ − 1) by building

an edge tov0. Sincew0 does not build such an edge,α is at least as large as the latter expression, implying

d ≤ 15α

wminnc
. (6)

If |V ′| < 2
3nc, then, as in the proof of Theorem 3, there must exist a vertexvi0 at depthd0 with

⌊1
5d⌋+ 1 ≤ d0 ≤ ⌊2

5d⌋ having at leastdn1−c/20 decendents. Building an edge tov0, vertexvi0 would save

a cost of at leastwmin⌊1
5d⌋ d

20n1−c ≥ wmin
d2

100n1−c. This cost saving must be upper bounded byα sincevi0

does not build such an edge. We obtain

d ≤ 15

√

α

wminn1−c
. (7)

By the choice ofc, the bounds ond given in (6) and (7) are identical. Using these bound (6) we derive

Cost(N) ≤ 2α(n − 1) +

(

15α

wminnc
+ 1

)

W ≤ 2α(n − 1) + 2W
15α

wminnc
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We recall thatCost(OPT) ≥ α(n − 1) + W . Thus, ifα(n − 1) ≤ W , the price of anarchy is bounded by

2 +
30α

wminnc
= 2 + 30

(

α2

w2
minn

)1/3

becausenc = (αn/wmin)1/3. If α(n − 1) > W , the price of anarchy is bounded by

2 +
30W

wminnc(n − 1)
≤ 2 +

60W

(wminn4α)1/3
,

using againnc = (αn/wmin)1/3.
To prove part b) of the theorem, we finally study the case thatα is in the rangewmin < α < wmaxn

2.
Here we use a different estimate ond. We have thatd is upper bounded by3

√

α/wmin, since otherwisev0

could build an edge to a vertex that is⌈
√

α/wmin⌉+ 1 edges away on a path of lengthd. This would reduce
the shortest distance cost by at leastwmin⌈

√

α/wmin⌉(3⌈
√

α/wmin⌉ − ⌈
√

α/wmin⌉) > α. Thus

Cost(N) ≤ 2α(n − 1) + 3
√

α/wminW.

If α(n − 1) ≤ W , then the price of anarchy is bounded by2 + 3
√

α/wmin. If α(n − 1) > W , the price of
anarchy is bounded by2 + 3W/(

√
αwmin(n − 1)). 2

Appendix E

Proof of Theorem 9. We first show part a). Using the terminology of the proof of Theorem 3, we can show
that for anyv ∈ V , Cost(v) ≤ α(Ev +1)+Dist(v0)+n−1. To see this inequality, we modifyv’s strategy
such that it removes its cost contributions to non-tree edges. Agentv only maintains its contributions to tree
edges and, additionally, builds an edge tov0, the vertex for which we consider the corresponding shortest
path tree. The cost under this modified strategy is bounded bythe expression given above. Summing over
all v we obtainCost(N) ≤ 2α(n − 1) + nDist(v0) + (n − 1)2. We can then boundDist(v0) in exactly
the same way as in the proof of Theorem 3.

For the proof of part b), using the terminology of the proof ofTheorem 8, we can showCost(N) ≤
2α(n − 1) + (d + 1)W . We can extend the arguments presented for the scenario without cost sharing to
boundd in a similar way. 2

Proof of Theorem 10. Consider a cycle ofn verticesv1, . . . , vn. There is an edge betweenvi andvi+1,
1 ≤ i ≤ n − 1, and an edge betweenvn andv1. We associate a player with each of then vertices. Every
player pays a cost ofα/2 for each of the two edges adjacent to him, incurring a total cost of α for building
edges. We show that this cycle represents a strong Nash equilibrium for the given range ofα. Since the
strategies of playersvi, 1 ≤ i ≤ n, are symmetric ini, it suffices to prove that there is no strictly better
strategy forv1. We first analyze the cost ofv1. There are two vertices at each of the distances 1 up to
⌊n

2 ⌋ − 1. If n is even, there is one vertex at distance⌊n
2 ⌋; otherwise there are two such vertices. We have

Cost(v0) = α + 2

(

1 + . . . +

⌊

n

2

⌋)

−
⌊

n

2

⌋

((n + 1) mod 2) (8)

= α +

⌊

n

2

⌋(⌊

n

2

⌋

+ 1

)

−
⌊

n

2

⌋

((n + 1) mod 2). (9)

We investigate the following strategy changes.
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(a) Agentv1 maintains its cost contributions to the two adjacent edges and, additionally, builds new edges
to other vertices.

(b) Agentv1 removes its cost contribution to one of the adjacent edges and does not build any new edges.

(c) Agentv1 removes its cost contribution to one of the adjacent edges and builds does build new edges
to other vertices.

(d) Agentv1 removes its cost contributions to the two adjacent edges and, instead, builds new edges to
other vertices.

Case (a): We first assume thatv1 builds one additional edge and then consider the scenario that more
edges are built. If one extra edge is added, then the best strategy is to connect to vertexvi with i = ⌊n

2 ⌋+ 1.
With this new link,v1 has three vertices at distance 1 and four vertices at each of the distances 2 up to⌊n

4 ⌋.
If n mod 4 = 1, then there is one additional vertex at distance⌊n

4 ⌋ + 1. If n mod 4 = 2, there are two
additional vertices at this distance. Three such vertices exist if n mod 4 = 3. Thus,v1’s new shortest path
distance cost is

3 · 1 + 4(2 + . . . +

⌊

n

4

⌋

) + (n mod 4)

(⌊

n

4

⌋

+ 1

)

= 2

(⌊

n

4

⌋

+ 1

)(⌊

n

4

⌋

+
1

2
(n mod 4)

)

− 1

≥ n2

8
− 1.

The difference inv1’s shortest path distance cost is

⌊

n

2

⌋(⌊

n

2

⌋

+ 1

)

−
⌊

n

2

⌋

((n + 1) mod 2) − n2

8
+ 1

≤ n2

8
+

n

2
+ 1

≤ α − n2

6
− n +

n2

8
+

n

2
+ 1

< α

and it does not pay to build an additional edge since the extracost for that edge isα.
Next assume that there was a strategy in whichv1 builds two or more additional edges, incurring a total

cost bounded by (9). Consider the strategy with the smallestnumber of additional edges and suppose that
there are at least two such links. The removal of any extra link to a vertexvi0, 2 < i0 < n, would increase the
shortest path distance cost by more thanα. In other words, the addition of the link tovi0 leads to a decrease
in the shortest path distance cost by more thanα. This implies that ifv1 maintained its original strategy and
only added one link tovi0, this would lead to a smaller total cost. This contradicts the calculations of the
last paragraph where we showed that an extra link to an optimal vertexvi, i = ⌊n

2 ⌋ + 1, does not pay off.
Case (b): We assume w.l.o.g. thatv1 removes its cost contribution to the edge connecting tov2, saving

a cost ofα/2. Verticesvi, for i = 2, . . . , ⌈n
2 ⌉, must now be reached by traversing the cycle arc throughvn.

The shortest path distance cost ofv1 increases by
⌊

n

2

⌋(⌈

n

2

⌉

− 1

)

≥ n

2

(

n

2
− 1

)

.

Sinceα/2 is smaller than the latter expression,v1 does not perform the considered strategy change.
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Case (c): Again we assume thatv1 removes its cost contribution to the edge connecting tov2. We first
study the scenario thatv1 builds one new edge and then address the case that more new edges are built. If
one additional edge ist built, then the best strategy is to connect to vertexvi with i = ⌊n

3 ⌋ + 1. Thenv1 can
reach two vertices at distance 1 and three vertices at each ofthe distances 2 up to⌊n

3 ⌋. If n mod 3 = 1,
there is one additional vertex at distance⌊n

3 ⌋ + 1. If n mod 3 = 2, there are two additional vertices at this
distance. Thus the new path distance cost ofv1 is

2 · 1 + 3

(

1 + . . . +

⌊

n

3

⌋)

+

(⌊

n

3

⌋

+ 1

)

(n mod 3)

=
3

2

(⌊

n

3

⌋

+ 1

)(⌊

n

3

⌋

+
2

3
(n mod 3)

)

− 1

≥ 3

2

(⌊

n

3

⌋

+ 1

)

n

3
− 1

≥ 3

2

(

n

3
+

1

3

)

n

3
− 1

≥ n2

6
.

Hencev1’s saving in the shortest path distance cost is at most

⌊

n

2

⌋(⌊

n

2

⌋

+ 1

)

−
⌊

n

2

⌋

((n + 1) mod 2) − n2

6
≤ n

2

(

n

2
+ 1

)

− n2

6

and this is less thanα/2, which is the extra cost incurred byv1 in building edges.
Next assume that there was a strategy in whichv1 builds more than one additional edge, leading to

a cost bounded by that given in (9). Consider the strategy with the smallest number of additional edges
and suppose that there are at least two such links. Leti0, i0 < n, be the largest index such thatv1 builds
an additional edge tovi0 . As in case (a) it follows that the deletion of the link tovi0 would increase the
shortest path distance cost by more thanα. Equivalently, the addition of the link tovi0 leads to a decrease
of the shortest path distance cost by more thanα. This implies that the following strategy leads to a cost
smaller than (9): Vertexv1 maintains its cost contribution to the edges connecting tov2 andvn and builds
an additional edge tovi0 . This contradicts the fact that, as argued above, strategy changes of type (a) lead to
strictly higher cost.

Case (d): We first study the scenario thatv1 builds one new edge and then investigate the case that two
or more new edges are built. If one new edge is built, thenv1’s total cost for building edges remains the
same. The best strategy is to build a link to the vertexvi with i = ⌊n

2 ⌋ + 1. With respect tov1’s shortest
path distance cost, there is one vertex at distance 1 and two vertices at each of the distances 2 up to⌊n

2 ⌋. If
n is odd, there is one vertex at distance⌈n

2 ⌉. Thus the new shortest path distance cost is

1 + 2

(

2 + . . . +

⌊

n

2

⌋)

+

⌈

n

2

⌉

(n mod 2).

The cost difference with respect tov1’s original strategy is
⌈

n

2

⌉

(n mod 2) − 1 +

⌊

n

2

⌋

((n + 1) mod 2)

and this is strictly positive forn > 6.
Next suppose that two new edges are built. The best strategy for v1 is to connect tovi1 , with i1 = ⌈n

4 ⌉+1,
and tovi2 , with i1 = ⌊3n

4 ⌋ + 1. Vertexv1 has two vertices at distance 1 and four vertices at each of the
distances 2 up to⌊n

4 ⌋. If n is divisible by 4, then there is one additional vertex at distance⌊n
4 ⌋ + 1. If
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n mod 4 = 1, then there are two additional vertices at distance⌊n
4 ⌋ + 1. If n mod 4 = 2, then there are

three additional vertices at that distance. Thus the new shortest path distance cost is

2 · 1 + 4

(

2 + . . . +

⌊

n

4

⌋)

+

(⌊

n

4

⌋

+ 1

)

((n + 1) mod 4)

= 2

(⌊

n

4

⌋

+ 1

)(⌊

n

4

⌋

+
1

2
(n + 1) mod 4

)

− 2

≥ n

2

(

n

4
− 3

4

)

− 2.

The difference in the shortest path distance cost is upper bounded by
⌊

n

2

⌋(⌊

n

2

⌋

+ 1

)

−
⌊

n

2

⌋

((n + 1) mod 2) − n

2

(

n

4
− 3

4

)

+ 2

< α − 1

6
n2 − n +

1

8
n2 +

7

8
n + 2

< α.

Hence it does not pay to build two additional edges.
Finally assume that there was a strategy in whichv1 builds three or more additional edges, leading to

a cost bounded by that given in (9). As usual, consider the strategy with the smallest number of additional
edges and suppose that there are at least three such links. Let i0, i0 < n, be the second to largest index
such thatv1 builds an additional edge tovi0. We can now argue as in case (c). Removing the link tovi0

increases the shortest path distance cost ofv1 by more thanα, i.e. the addition of the link tovi0 leads to
a decrease of the shortest path distance cost by more thanα. This implies that the following strategy has
a cost smaller than (9): Vertexv1 maintains its cost contribution to the edges connecting tov2 andvn and
builds an additional edge tovi0 . As before, this contradicts the fact that strategy changesof type (a) lead to
strictly higher cost. 2
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