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Nonequilibrium phase transition in the coevolution of networks and opinions
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Models of the convergence of opinion in social systems have been the subject of a considerable amount of recent
attention in the physics literature. These models divide into two classes, those in which individuals form their
beliefs based on the opinions of their neighbors in a social network of personal acquaintances, and those in which,
conversely, network connections form between individualsof similar beliefs. While both of these processes
can give rise to realistic levels of agreement between acquaintances, practical experience suggests that opinion
formation in the real world is not a result of one process or the other, but a combination of the two. Here we
present a simple model of this combination, with a single parameter controlling the balance of the two processes.
We find that the model undergoes a continuous phase transition as this parameter is varied, from a regime in
which opinions are arbitrarily diverse to one in which most individuals hold the same opinion. We characterize
the static and dynamic properties of this transition.

PACS numbers: 87.23.Ge, 64.60.Ak, 89.75.Fb, 89.75.Hc

I. INTRODUCTION

Simple mathematical models describing emergent phenom-
ena in human populations (15), such as voter models and mar-
ket models, have a long history of study in the social sci-
ences. It is only relatively recently, however, that physicists
have noted the close conceptual and mathematical connec-
tions between these models and traditional models in statis-
tical physics such as spin models. Building on this observa-
tion, there have been a number of important advances in the
understanding of these models in the last decade or so, most
notably in the study of social networks (1; 7; 14). While the
physics community has been concerned primarily with studies
of network structure, there has also been a substantial lineof
investigation focusing on dynamical processes on networks.
One example, which has a long history in sociology but is
also well suited to study using physics methods, is the dynam-
ics of opinion formation. This problem highlights one of the
fundamental questions in network dynamics, namely whether
dynamics controls the structure of a network or the structure
controls the dynamics.

It is observed that real social networks tend to divide into
groups or communities of like-minded individuals. An ob-
vious question to ask is whether individuals become like-
minded because they are connected via the network (5; 6; 9;
10; 18; 19), or whether they form network connections be-
cause they are like-minded (11). Both situations have been
studied with physics-style models, the first using opinion for-
mation models (5; 9; 18) and the second using models of “as-
sortative mixing” or “homophily” (4; 13; 17). Common sense,
however, tells us that the distinction between the two sce-
narios is not clear-cut. Rather, the real world self-organizes
by a combination of the two, the network changing in re-
sponse to opinion and opinion changing in response to the
network. In this paper we study a simple model—perhaps
the simplest—that combines opinion dynamics with assorta-
tive network formation, revealing an apparent phase transition
between regimes in which one process or the other dominates
the dynamics.
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FIG. 1 An illustration of our model, with vertex shapes representing
opinions. At each time step the system is updated according to the
process illustrated in panel (a) with probabilityφ or panel (b) with
probability 1− φ. In (a) a vertexi is selected at random and one of
its edges (in this case the edge (i, j)) is rewired to a new vertexj′

holding the same opinion asi. In (b) vertexi adopts the opinion of
one of its neighborsj.

II. MODEL DEFINITION

Consider a network ofN vertices, representing individu-
als, joined in pairs byM edges, representing acquaintance be-
tween individuals1. Each individual is assumed to hold one
of G possible opinions on some topic of interest. The opin-
ion of individual i is denotedgi . In the past, researchers have
considered both cases whereG is a fixed small number, such
as a choice between candidates in an election (5; 18; 19), and
cases in which the number of possible opinions is essentially
unlimited (6), so thatG can be arbitrarily large. An example
of the latter might be religious belief (or lack of it)—the num-
ber of subtly different religious beliefs appears to be limited
only by the number of people available to hold them.

The case of fixed smallG has relatively simple behavior
compared to the case of arbitrarily largeG, and so it is on
the latter that we focus here. We will assume that the num-
ber of possible opinions scales in proportion to the number of
individuals, and parameterize this proportionality by theratio

1 Although acquaintance networks are typically simple graphs, with multi-
edges and self-edges disallowed, we have in the interest of simplicity, al-
lowed multiedges and self-edges in our calculation. Since these form only
a small fraction of all edges, we expect that our results would change little
if we were to remove them.
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γ = N/G. (It is possible that not all opinions will end up ex-
isting in the population. Our model allows for some opinions
to become extinct as the dynamics evolves, so that the final
number of distinct opinions may be less thanG.)

The M edges of the network are initially placed uniformly
at random between vertex pairs, and opinions are assigned to
vertices uniformly at random. We then study by computer
simulation a dynamics in which on each step of the simulation
we either move an edge to lie between two individuals whose
opinions agree, or we change the opinion of an individual to
agree with one of their neighbors. To be specific, on each step
we do the following (see Fig. 1).

1. Pick a vertexi at random. If the degreeki of that vertex
is zero, do nothing. Otherwise, with probabilityφ, se-
lect at random one of the edges attached toi and move
the other end of that edge to a vertex chosen randomly
from the set of all vertices having opiniongi .

2. Otherwise (i.e., with probability 1− φ) pick a random
neighborj of i and setgi equal tog j.

Step 1 represents the formation of new acquaintances between
people of similar opinions. Step 2 represents the influence of
acquaintances on one another, opinions becoming similar asa
result of acquaintance.

Note that both the total number of edgesM in our network
and the total number of possible opinionsG are fixed. In the
limit of large system size, the model thus has three parameters:
the average degreēk = 2M/N, the mean number of people
holding an opinionγ = N/G, and the parameterφ. In our
studies, we primarily keep the first two of these parameters
fixed and ask what happens as we vary the third.

III. PHASES AND CRITICAL SCALING OF COMMUNITY
SIZES

The expected qualitative behavior of the model is clear.
Since both of our update moves tend to decrease the num-
ber of nearest-neighbor vertex pairs with different opinions,
we should ultimately reach a state in which the network is di-
vided into a set of separate components, disconnected from
one another, with all members of a component holding the
same opinion. That is, the model segregates into a set of com-
munities such that no individual has any acquaintances with
whom they disagree. We call this theconsensus state. Fur-
thermore, once we reach consensus, all moves in the model
involve the random rearrangement of edges within compo-
nents, and hence, in the limit of long time, the components be-
come random graphs with uniform uncorrelated arrangements
of their edges.

The primary interest in our model therefore is in the number
and sizes of the communities that form and in the dynamics of
the model as it comes to consensus. Let us consider the dis-
tribution P(s) of the sizess of the consensus communities. In
the limit φ → 1, only updates that move edges are allowed
and hence the consensus state is one in which the commu-
nities consist of the sets of initial holders of the individual
opinions. Since the initial assignment of opinions is random,
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FIG. 2 Histograms of community sizes in the consensus state for
values ofφ above, at, and below the critical point in panels (a), (b),
and (c) respectively. Values of the other parameters areN = 3200,
M = 6400 (givingk̄ = 4), andγ = 10. In panel (b) the distribution
appears to follow a power law for part of its range with exponent
3.5± 0.3, as indicated by the solid line. Numerical data are averaged
over 104 realizations for eachφ-value and binned logarithmically.

the sizes of these sets follow the multinomial distribution, or
the Poisson distribution with meanγ in the limit of largeN.
Conversely, in the limitφ → 0, only changes of opinion are
allowed and not edge moves, which means that the communi-
ties correspond to the initial components in the graph, which
are simply the components of a random graph. Assuming we
are in the regimēk > 1 in which a giant component exists
in the random graph, we will then have one giant (extensive)
community and an exponential distribution of small commu-
nities. Thus, in varyingφ we go from a situation in which we
have only small communities with constant average sizeγ to
one in which we have a giant community plus a set of small
ones.

This is the classic behavior seen in a system undergoing a
continuous phase transition and it leads us to conjecture that
our model displays a phase transition with decreasingφ at
which a giant community of like-minded individuals forms.
In other words, there is a transition between a regime in which
the population holds a broad variety of views and one in which
most people believe the same thing. We now offer a variety of
further evidence to support this conjecture. (Phase transition
behavior is also seen in some models of opinion formation on
static networks, such as the model of Ref. (10), although the
mechanisms at work appear to be different from those consid-
ered here.)

In Fig. 2 we show plots ofP(s) from simulations of our
model for k̄ = 4 andγ = 10. As the figure shows, we do
indeed see a qualitative change from a regime with no giant
community to one with a giant community. At an interme-
diate value ofφ around 0.458 we find a distribution of com-
munity sizes that appears to follow a power lawP(s) ∼ s−α

over a significant part of its range, another typical signature
of criticality. The exponentα of the power law is measured to
be 3.5± 0.3, which is incompatible with the value 2.5 of the
corresponding exponent for the phase transition at which a gi-
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FIG. 3 Finite size scaling analysis fork̄ = 4 andγ = 10. (a) Crossing
plot used to determine the critical pointφc and exponenta. We find
φc = 0.458± 0.008 anda = 0.61± 0.05. The inset shows a blow-
up of the region around the critical point. (b) Scaling collapse used
to determine the exponentb which is found to take the valueb =
0.7 ± 0.1. The data are averaged over 104 realizations forφ-value.
Error bars are shown where they are larger than the symbol size.

ant component forms in a random graph (a transition which
belongs to the mean-field percolation universality class).

To further investigate our transition, we perform a finite size
scaling analysis in the critical region. To do this, we need
first to choose an order parameter for the model. The obvious
choice is the sizeS of the largest community in the consensus
state as a fraction of system size. The arguments above sug-
gest that this quantity should be of sizeO(N−1) for values of
φ above the phase transition (and hence zero in the thermody-
namic limit) andO(1) below it. We assume a scaling relation
of the form

S = N−a F
(

Nb(φ − φc)
)

, (1)

whereφc is the critical value ofφ (which is presumably a func-
tion of k̄ andγ), F is a universal scaling function (bounded as
its argument tends to±∞), anda andb are critical exponents.
To estimateφc we plotNaS againstφ and tunea such that the
results for simulations at differentN but fixedk̄ andγ cross at
a single point, which is the critical point. Such a plot fork̄ = 4
andγ = 10 is shown in Fig. 3(a). Witha = 0.61± 0.05 we
obtain a unique crossing point atφc = 0.458± 0.008, which
agrees well with the previous rough estimate ofφc from Fig. 2.

Using this value we can now determine the exponentb by
plotting NaS againstNb(φ − φc). SinceF(x) is a universal
function, we should, for the correct choice ofb, find a data
collapse in the critical region. In Fig. 3(b) we show that such
a data collapse does indeed occur forb = 0.7± 0.1.
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FIG. 4 Values ofφc as a function ofγ for variousk̄ obtained by finite
size scaling analyses using system sizesN = 200, 400, 800, and 1600
and 104 realizations for each size and set of parameter values. Note
that the horizontal axis is logarithmic.

We have performed similar finite size scaling analyses for
a variety of other points (̄k, γ) in the parameter space and, as
we would expect, we find that the positionφc of the phase
transition varies—see Fig. 4—but that good scaling collapses
exist at all parameter values for values of the critical exponents
consistent with the valuesa = 0.61 andb = 0.7 found above.

Despite the qualitative similarities between the present
phase transition and the percolation transition, our exponent
values fora andb show that the two transitions are in different
universality classes: the corresponding exponents for random
graph percolation area = b = 1

3, which are incompatible with
the values measured above.

IV. DYNAMICAL CRITICAL BEHAVIOR

Our model differs from percolation in another important re-
spect also: percolation is a static, geometric phase transition,
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FIG. 5 Scaling of the average timeτ to reach consensus. (a) Conver-
gence time as a function of system size forφ = 1. The straight line
is a fit to a logarithmic form and indicates thatτ ∼ log N. (b) Coef-
ficient of variation of the convergence time as a function ofφ. The
vertical gray line marks the position of the critical pointφc = 0.458.
(c) Scaling plot used to determine the dynamical exponentz. The
crossing point falls atφ = 0.45± 0.02 consistent with the value ofφc

obtained above. The dynamical exponent is found to take the value
z= 0.61± 0.15. Parameter values arēk = 4 andγ = 10 in all panels.
All data points are averaged over 104 realizations. Symbols are the
same as in Fig. 3. For the sake of clarity, system sizesN = 400 and
N = 1600 are omitted in (b).
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whereas the present model is fundamentally dynamic, the con-
sensus arising as the limiting fixed point of a converging non-
equilibrium dynamics. It is interesting therefore to explore the
way in which our model approaches consensus.

In previous studies of opinion formation models of this type
on fixed networks a key quantity of interest is the average
convergence timeτ, which is the number of updates per ver-
tex needed to reach consensus. Ifφ = 0 thenτ is known to
scale asτ ∼ N as system size becomes large (18). In the
opposite limit (φ = 1), opinions are fixed and convergence
to consensus involves moving edges one by one to fall be-
tween like-minded pairs of individuals. This is a standard
sampling-with-replacement process in which the numberU
of unsatisfied edges is expected to decay asU ∼ Me−t/M for
large timest. Thus the time to reach a configuration in which
U = O(1) is t ∼ M log M, and the convergence time is this
quantity divided by the system sizeN. For fixed average de-
greek̄ = 2M/N, this then implies thatτ ∼ logN. This result
is confirmed numerically in Fig. 5(a).

For φ close toφc, experience with other phase transitions
leads us to expect critical fluctuations and critical slowing
down inτ. Figure 5(b) shows that indeed there are large fluc-
tuations in the convergence time in the critical region. The
figure shows the value of the coefficient of variationVτ of
the consensus time (i.e., the ratio of the standard deviation
of τ to its mean) as a function ofφ and a clear peak is visible
aroundφc ≃ 0.46. To characterize the critical slowing down
we assume thatτ takes the traditional scaling formτ ∼ Nz at
the critical point, wherez is a dynamical exponent (12). Fig-
ure 5(c) shows a plot ofτN−z as a function ofφ. If the system
follows the expected scaling atφc then the resulting curves
should cross at the critical point. Although good numerical
results are considerably harder to obtain in this case than for
the community sizes presented earlier, we find that the curves
cross at a single point ifz= 0.61± 0.15 andφ = 0.44± 0.03,
the latter being consistent with our previous value ofφc = 0.46
for the position of the phase transition.

V. SUMMARY AND CONCLUSIONS

To summarize, we have proposed a simple model for the
simultaneous formation of opinions and social networks in a
situation in which both adapt to the other. Our model con-
trasts with earlier models of opinion formation in which social
structure is regarded as static and opinions are an outcome of
that pre-existing structure (2; 3; 8; 10; 20). Our model is a dy-
namic, non-equilibrium model that reaches a consensus state
in finite time on a finite network. The structure of the con-
sensus state displays clear signatures of a continuous phase
transition as the balance between the two processes of opinion
change and network rewiring is varied. We have demonstrated
a finite size scaling data collapse in the critical region around
this phase transition, characterized by universal critical ex-
ponents independent of model parameters. The approach to
the consensus state displays critical fluctuations in the time
to reach consensus and critical slowing down associated with
an additional dynamical exponent. The phase transition in the

model is of particular interest in that it provides an example of
a simple process in which a fundamental change in the social
structure of the community can be produced by only a small
change in the parameters of the system.

Finally, we note that for the specific example of opinion
formation mentioned in the introduction—that of choice of
religion—it is known that the sizes of the communities of
adherents of religious sects are in fact distributed, roughly
speaking, according to a power law (22). This may be a signa-
ture of critical behavior in opinion formation, as displayed by
the model described here, although other explanations, such
as the Yule process (16; 21), are also possible.
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