PARTIALLY ORDERED SETS

A partially ordered set or poset is a set P and a binary relation \preceq such that for all $a, b, c \in P$
(1) $a \preceq a$ (reflexivity).
(2) $a \preceq b$ and $b \preceq c$ implies $a \preceq c$ ((ransitivity).
(0) $a \preceq b$ and $b \preceq$ a implies $a=b$. (anti-symmetry).

Examples

(1) $P=\{1,2, \ldots$,$\} and a \leq b$ has the usual meaning.
(2) $P=\{1,2, \ldots$,$\} and a \preceq b$ if a divides b.
(3) $P=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ where the A_{i} are sets and $\preceq=\subseteq$.

A pair of elements a, b are comparable if $a \preceq b$ or $b \preceq a$. Otherwise they are incomparable.

A poset without incomparable elements (Example 1) is a linear or total order.

We write $a<b$ if $a \preceq b$ and $a \neq b$.

A chain is a sequence $a_{1}<a_{2}<\cdots<a_{s}$.

A set A is an anti-chain if every pair of elements in A are incomparable.

Thus a Sperner family is an anti-chain in our third example.

Theorem

Let P be a finite poset, then
$\min \left\{m: \exists\right.$ anti-chains $A_{1}, A_{2}, \ldots, A_{\mu}$ with $\left.P=\bigcup_{i=1}^{\mu} A_{i}\right\}=$ $\max \{|C|: A$ is a chain $\}$.

The minimum number of anti-chains needed to cover P is at least the size of any chain, since a chain can contain at most one element from each anti-chain.

We prove the converse by induction on the maximum length μ of a chain. We have to show that P can be partitioned into μ anti-chains.

If $\mu=1$ then P itself is an anti-chain and this provides the basis of the induction.

So now suppose that $C=x_{1}<x_{2}<\cdots<x_{\mu}$ is a maximum length chain and let A be the set of maximal elements of P.
(An element is x maximal if $\nexists y$ such that $y>x$.)
A is an anti-chain.

Now consider $P^{\prime}=P \backslash A$. P^{\prime} contains no chain of length μ. If it contained $y_{1}<y_{2}<\cdots<y_{\mu}$ then since $y_{\mu} \notin A$, there exists $a \in A$ such that P contains the chain $y_{1}<y_{2}<\cdots<y_{\mu}<a$, contradiction.

Thus the maximum length of a chain in P^{\prime} is $\mu-1$ and so it can be partitioned into anti-chains $A_{1} \cup A_{2} \cup \cdots A_{\mu-1}$. Putting $A_{\mu}=A$ completes the proof.

Suppose that $C_{1}, C_{2}, \ldots, C_{m}$ are a collection of chains such that $P=\bigcup_{i=1}^{m} C_{i}$.

Suppose that A is an anti-chain. Then $m \geq|A|$ because if $m<|A|$ then by the pigeon-hole principle there will be two elements of A in some chain.

Theorem

(Dilworth) Let P be a finite poset, then
$\min \left\{m: \exists\right.$ chains $C_{1}, C_{2}, \ldots, C_{m}$ with $\left.P=\bigcup_{i=1}^{m} C_{i}\right\}=$ $\max \{|A|: A$ is an anti-chain $\}$.

We have already argued that $\max \{|A|\} \leq \min \{m\}$.
We will prove there is equality here by induction on $|P|$.

The result is trivial if $|P|=0$.

Now assume that $|P|>0$ and that μ is the maximum size of an anti-chain in P. We show that P can be partitioned into μ chains.

Let $C=x_{1}<x_{2}<\cdots<x_{p}$ be a maximal chain in P i.e. we cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in $P \backslash C$ has $\leq \mu-1$ elements. Then by induction $P \backslash C=\bigcup_{i=1}^{\mu-1} C_{i}$ and then $P=C \cup \bigcup_{i=1}^{\mu-1} C_{i}$ and we are done.

Case 2

There exists an anti-chain $A=\left\{a_{1}, a_{2}, \ldots, a_{\mu}\right\}$ in $P \backslash C$. Let

- $P^{-}=\left\{x \in P: x \preceq a_{i}\right.$ for some $\left.i\right\}$.
- $P^{+}=\left\{x \in P: x \succeq a_{i}\right.$ for some $\left.i\right\}$.

Note that
(1) $P=P^{-} \cup P^{+}$. Otherwise there is an element x of P which is incomparable with every element of A and so μ is not the maximum size of an anti-chain.
(2) $P^{-} \cap P^{+}=A$. Otherwise there exists x, i, j such that $a_{i}<x<a_{j}$ and so A is not an anti-chain.
(3) $x_{p} \notin P^{-}$. Otherwise $x_{p}<a_{i}$ for some i and the chain C is not maximal.

Applying the inductive hypothesis to $P^{-}\left(\left|P^{-}\right|<|P|\right.$ follows from 3) we see that P^{-}can be partitioned into μ chains $C_{1}^{-}, C_{2}^{-}, \ldots, C_{\mu}^{-}$.

Now the elements of A must be distributed one to a chain and so we can assume that $a_{i} \in C_{i}^{-}$for $i=1,2, \ldots, \mu$.
a_{i} must be the maximum element of chain C_{i}^{-}, else the maximum of C_{i}^{-}is in $\left(P^{-} \cap P^{+}\right) \backslash A$, which contradicts 2 .

Applying the same argument to P^{+}we get chains $C_{1}^{+}, C_{2}^{+}, \ldots, C_{\mu}^{+}$with a_{i} as the minimum element of C_{i}^{+}for $i=1,2, \ldots, \mu$.

Then from 2 we see that $P=C_{1} \cup C_{2} \cup \cdots \cup C_{\mu}$ where $C_{i}=C_{i}^{-} \cup C_{i}^{+}$is a chain for $i=1,2, \ldots, \mu$.

Three applications of Dilworth's Theorem

(i) Another proof of

Theorem

Erdős and Szekerés
$a_{1}, a_{2}, \ldots, a_{n^{2}+1}$ contains a monotone subsequence of length $n+1$.

Let $P=\left\{\left(i, a_{i}\right): 1 \leq i \leq n^{2}+1\right\}$ and let say $\left(i, a_{i}\right) \preceq\left(j, a_{j}\right)$ if $i<j$ and $a_{i} \leq a_{j}$.

A chain in P corresponds to a monotone increasing subsequence. So, suppose that there are no monotone increasing sequences of length $n+1$. Then any cover of P by chains requires at least $n+1$ chains and so, by Dilworths theorem, there exists an anti-chain A of size $n+1$.

Let $A=\left\{\left(i_{t}, a_{i_{t}}\right): 1 \leq t \leq n+1\right\}$ where $i_{1}<i_{2} \leq \cdots<i_{n+1}$.

Observe that $a_{i_{t}}>a_{i_{t+1}}$ for $1 \leq t \leq n$, for otherwise $\left(i_{t}, a_{i_{t}}\right) \preceq\left(i_{t+1}, a_{i_{t+1}}\right)$ and A is not an anti-chain.

Thus A defines a monotone decreasing sequence of length $n+1$.

Matchings in bipartite graphs

Re-call that a matching is a set of vertex disjoint edges.

Let $G=(A \cup B, E)$ be a bipartite graph with bipartition A, B. For $S \subseteq A$ let $N(S)=\{b \in B: \exists a \in S,(a, b) \in E\}$.

N
Clearly, $|M| \leq|A|,|B|$ for any matching M of G.

Theorem

(Hall) G contains a matching of size $|A|$ iff

$$
|N(S)| \geq|S| \quad \forall S \subseteq A
$$

$N\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)=\left\{b_{1}, b_{2}\right\}$ and so at most 2 of a_{1}, a_{2}, a_{3} can be saturated by a matching.

If G contains a matching M of size $|A|$ then
$M=\{(a, f(a)): a \in A\}$, where $f: A \rightarrow B$ is a 1-1 function.

But then,

$$
|N(S)| \geq|f(S)|=S
$$

for all $S \subseteq A$.

Let $G=(A \cup B, E)$ be a bipartite graph which satisfies Hall's condition. Define a poset $P=A \cup B$ and define $<$ by $a<b$ only if $a \in A, b \in B$ and $(a, b) \in E$.

Suppose that the largest anti-chain in P is
$A=\left\{a_{1}, a_{2}, \ldots, a_{h}, b_{1}, b_{2}, \ldots, b_{k}\right\}$ and let $s=h+k$.

Now

$$
N\left(\left\{a_{1}, a_{2}, \ldots, a_{h}\right\}\right) \subseteq B \backslash\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}
$$

for otherwise A will not be an anti-chain.

From Hall's condition we see that

$$
|B|-k \geq h \text { or equivalently }|B| \geq s
$$

Now by Dilworth's theorem, P is the union of s chains:

A matching M of size $m,|A|-m$ members of A and $|B|-m$ members of B.

But then

$$
m+(|A|-m)+(|B|-m)=s \leq|B|
$$

and so $m \geq|A|$.

Marriage Theorem

Theorem

Suppose $G=(A \cup B, E)$ is k-regular. $(k \geq 1)$ i.e. $d_{G}(v)=k$ for all $v \in A \cup B$. Then G has a perfect matching.

Proof

$$
k|A|=|E|=k|B|
$$

and so $|A|=|B|$.
Suppose $S \subseteq A$. Let m be the number of edges incident with S. Then

$$
k|S|=m \leq k|N(S)|
$$

So Hall's condition holds and there is a matching of size $|A|$ i.e. a perfect matching.

König's Theorem

We will use Hall's Theorem to prove König's Theorem. Given a bipartite graph $G=(A \cup B), E)$ we say that $S \subseteq V$ is a cover if $e \cap S \neq \emptyset$ for all $e \in E$.

Theorem

$$
\min \{|S|: S \text { is a cover }\}=\max \{|M|: M \text { is a matching }\} .
$$

Proof One part is easy. If S is a cover and M is a matching then $|S| \geq|M|$. This is because no vertex in S can belong to more than one edge in M.

To begin the main proof, we first prove a lemma that is a small generalisation of Hall's Theorem.

Lemma

Assume that $|A| \leq|B|$. Let $d=\max \left\{(|X|-|N(X)|)^{+}: X \subseteq A\right\}$ where $\xi^{+}=\max \{0, \xi\}$. Then

$$
\mu=\max \{|M|: M \text { is a matching }\}=|A|-d
$$

Proof That $\mu \leq|\boldsymbol{A}|-d$ is easy. For the lower bound, add d dummy vertices D to B and add an edge between each vertex in D and each vertex in A to create the graph Γ. We now find that Γ satisfies the conditions of Hall's Theorem.

If M_{1} is a matching of size $|A|$ in Γ then removing the edges of M_{1} incident with D gives us a matching of size $|A|-d$ in G.

Continuing the proof of König's Theorem let $S \subseteq A$ be such that $|N(S)|=|S|-d$.

Let $T=A \backslash S$. Then $T \cup N(S)$ is a cover, since there are no edges joining S to $B \backslash N(S)$.

Finally observe that

$$
|T \cup N(S)|=|A|-|S|+|S|-d=|A|-d=\mu .
$$

Intervals Problem

$I_{1}, I_{2}, \ldots, I_{m n+1}$ are closed intervals on the real line i.e.
$l_{j}=\left[a_{j}, b_{j}\right]$ where $a_{j} \leq b_{j}$ for $1 \leq j \leq m n+1$.

Theorem

Either (i) there are $m+1$ intervals that are pair-wise disjoint or (ii) there are $n+1$ intervals with a non-empty intersection

Define a partial ordering \preceq on the intervals by $I_{r} \preceq I_{s}$ iff $b_{r} \leq a_{s}$. Suppose that $I_{i_{1}}, I_{i_{2}}, \ldots, I_{i_{t}}$ is a collection of pair-wise disjoint intervals. Assume that $a_{i_{1}}<a_{i_{2}} \cdots<a_{i_{t}}$. Then $I_{i_{1}}<I_{i_{2}} \cdots<I_{i_{t}}$ form a chain and conversely a chain of length t comes from a set of t pair-wise disjoint intervals.
So if (i) does not hold, then the maximum length of a chain is m.

This means that the minimum number of chains needed to cover the poset is at least $\left\lceil\frac{m n+1}{m}\right\rceil=n+1$.

Dilworth's theorem implies that there must exist an anti-chain $\left\{I_{j_{1}}, I_{j_{2}}, \ldots, I_{j_{n+1}}\right\}$.

Let $a=\max \left\{a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{n+1}}\right\}$ and $b=\min \left\{b_{j_{1}}, b_{j_{2}}, \ldots, b_{j_{n+1}}\right\}$.

We must have $a \leq b$ else the two intervals giving a, b are disjoint.

But then every interval of the anti-chain contains $[a, b]$.

Möbius Inversion

Suppose that $|P|=n$. We argue next that we can label the elements of $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ so that

$$
\begin{equation*}
p_{i} \preceq p_{j} \text { implies } i \leq j . \tag{1}
\end{equation*}
$$

We prove this by induction on n. The base case $n=1$ is trivial.

Choose a maximal element of P and label it p_{n}. Assume that (1) can be achieved for posets with fewer than n elements. Let $P^{\prime}=P \backslash\left\{p_{n}\right\}$.

We can, by induction, re-label $P^{\prime}=\left\{p_{1}, p_{2}, \ldots, p_{n-1}\right\}$ so that (1) holds. Because p_{n} is maximal, we now have a labelling for all of P.

We now define $\zeta: P^{2} \rightarrow\{0,1\}$ by

$$
\zeta(x, y)= \begin{cases}1 & x \preceq y \\ 0 & \text { Otherwise } .\end{cases}
$$

Given (1) the $n \times n$ matrix $A_{\zeta}=[\zeta(x, y)]$ is an upper triangular matrix with an all 1's diagonal.
A_{ζ} is invertible and its inverse is called $A_{\mu}=[\mu(x, y)]$. The function μ is called the Möbius function of P. The equation $A_{\mu} A_{\zeta}=/$ implies the following:

$$
\sum_{z \in P} \mu(x, z) \zeta(z, y)=\sum_{x \unlhd z \preceq y} \mu(x, z)= \begin{cases}1 & x=y . \tag{2}\\ 0 & \text { Otherwise } .\end{cases}
$$

Theorem

(a) For P equal to the subsets of some finite set X and $\preceq=\subseteq$ we have

$$
\mu(A, B)= \begin{cases}(-1)^{|A|-|B|} & A \subseteq B \\ 0 & \text { Otherwise }\end{cases}
$$

(0) For $P=[n]$ and $a \preceq b$ if a divides b we have

$$
\mu(a, b)= \begin{cases}(-1)^{r} & b / a \text { is the product of } r \text { distinct primes } \\ 0 & \text { Otherwise } .\end{cases}
$$

We just have to verify (2):
(a) We have

$$
\sum_{A \subseteq C \subseteq B} x^{|C|-|A|}=(1+x)^{|B|-|A|}
$$

Putting $x=-1$ we get a RHS of zero, unless $A=B$, in which case we get $0^{0}=1$.
(b) Suppose that $b / a=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ where $p_{1}, p_{2}, \ldots, p_{r}$ are primes and $k_{1}, k_{2}, \ldots, k_{r} \geq 1$.

$$
\sum_{a|c| b} \mu(c, b)=\sum_{S \subseteq[r]}(-1)^{|S|}= \begin{cases}1 & r=0 \\ 0 & r \geq 1\end{cases}
$$

Möbius Inversion

Theorem

Suppose that f, g, h are functions from P to \boldsymbol{R} such that

$$
\begin{equation*}
g(x)=\sum_{a \preceq x} f(a) \quad \text { and } \quad h(x)=\sum_{b \succeq x} f(b) . \tag{3}
\end{equation*}
$$

Then,

$$
\begin{equation*}
f(x)=\sum_{a \preceq x} \mu(a, x) g(a) \quad \text { and } \quad f(x)=\sum_{b \succeq x} \mu(x, b) h(b) . \tag{4}
\end{equation*}
$$

Proof Treating f, g, h as column vectors $\mathbf{f}, \mathbf{g}, \mathbf{h}$ we see that (3) is equivalent to $\mathbf{g}=A_{\zeta}^{T} \mathbf{f}$ and $\mathbf{h}=A_{\zeta} \mathbf{f}$. Thus

$$
\mathbf{f}=A_{\zeta}^{-T} \mathbf{g}=A_{\mu}^{T} \mathbf{g} \quad \text { and } \quad \mathbf{f}=A_{\zeta}^{-1} \mathbf{h}=A_{\mu} \mathbf{h} .
$$

Let $A_{i}, i \in I$ be a family of subsets of a finite set X.
For $J \subseteq I$ let $f(J)$ equal the number of elements in $\bigcap_{i \in J} A_{i}$ that are also in $\bigcap_{i \notin \prime}\left(X \backslash A_{i}\right)$.

Let $h(J)$ be the number of elements in $\bigcap_{i \in J} A_{i}$. Then

$$
h(J)=\sum_{K \supseteq J} f(K)=\sum_{K \succeq J} f(K) .
$$

Möbius inversion gives us

$$
f(J)=\sum_{K \succeq J} \mu(K, J) h(K)=\sum_{K \supseteq J}(-1)^{|K|-|J|} h(K) .
$$

Putting $J=\emptyset$ we get

$$
\left|\bigcap_{i \in I}\left(X \backslash A_{i}\right)\right|=\sum_{K \subseteq I}(-1)^{|K|-|J|}\left|\bigcap_{j \in K} A_{j}\right| .
$$

Divisibility Poset

Supose now that $f: \boldsymbol{N} \rightarrow \boldsymbol{R}$ and that g is given by

$$
g(n)=\sum_{d \mid n} f(d)
$$

Then Möbius inversion gives

$$
f(n)=\sum_{d \mid n} \mu(d, n) g(d)=\sum_{\substack{d \mid n \\ n / d \text { square free }}}(-1)^{p(n / d)} g(d)
$$

where $p(m)$ is the number of distinct prime factors of m.

Totient function

For a natural number n, let $\phi(n)$ denote the number of integers $m \leq n$ such that m, n have n common factors (other than one) -co-prime.

Lemma

$$
\begin{equation*}
n=\sum_{d \mid n} \phi(d)=\sum_{d \mid n} \phi(n / d) . \tag{5}
\end{equation*}
$$

Proof If $(m, n)=d$ then $m=m_{1} d, n=n_{1} d$ where (m_{1}, n_{1}) $=1$. So the number of choices for m is the number of choices for m_{1} i.e. $\phi\left(n_{1}\right)=\phi(n / d)$.

Möbius inversion with $g(n)=n$ and $f(n)=\phi(n)$ applied to (5) gives

$$
\begin{gather*}
\phi(n)=\sum_{d \mid n}(-1)^{p(n / d)} d=\sum_{d \mid n}(-1)^{p(d)} \frac{n}{d} \tag{6}\\
\phi(n)=n \sum_{d \mid n} \frac{(-1)^{p(d)}}{d} \tag{7}\\
=n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)
\end{gather*}
$$

assuming that $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots, p_{r}^{k_{r}}$ where $p_{1}, p_{2}, \ldots, p_{r}$ are primes and $k_{1}, k_{2}, \ldots, k_{r} \geq 1$.

A necklace is a sequence $x_{1} x_{2} \cdots x_{n}$ of $n 0$ ' and 1's arranged in circle.

Two necklaces x, y are said to equivalent if there exists $d \mid n$ such that $y_{i}=x_{i+d}, i=1,2, \ldots, n$ where we interpret $i+d$ $\bmod n$. In this case we say that x is periodic with period d.

Let N_{n} denote the number of distinct i.e. non-equivalent necklaces and let $M(d)$ denote the number of aperiodic necklaces of length d.

Thus

$$
N_{n}=\sum_{d \mid n} M(d) \quad \text { and } \quad \sum_{d \mid n} d M(d)=2^{n}
$$

$$
N_{n}=\sum_{d \mid n} M(d) \quad \text { and } \quad \sum_{d \mid n} d M(d)=2^{n} .
$$

For the second equation think about rotating a periodic necklace one step at a time for d steps. If we do this for all periodic necklaces then we get all 2^{n} sequences.

Applying Möbius inversion to the second equation with $f(d)=d M(d), g(n)=2^{n}$, we get

$$
M(n)=\frac{1}{n} \sum_{d \mid n} \mu(d, n) 2^{d} .
$$

So,

$$
N_{n}=\sum_{d \mid n} M(d)=\sum_{d \mid n} \sum_{\ell \mid d} \frac{1}{d} \mu(\ell, d) 2^{d}=\sum_{d \mid n} \frac{1}{d} \sum_{\ell \mid d} \mu(\ell, d) 2^{\ell} .
$$

Now substitute $d=k \ell$ and tidy up to get

$$
N_{n}=\sum_{\ell \mid n} \frac{2^{\ell}}{\ell} \sum_{k \left\lvert\, \frac{n}{\ell}\right.} \frac{\mu(1, k)}{k}=\frac{1}{n} \sum_{\ell \mid n} \phi(n / \ell) 2^{\ell} .
$$

For the second equation, we use the expression (7).

