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A partially ordered set or poset is a set P and a binary
relation � such that for all a,b, c ∈ P

1 a � a (reflexivity).
2 a � b and b � c implies a � c (transitivity).
3 a � b and b � a implies a = b. (anti-symmetry).

Examples
1 P = {1,2, . . . , } and a ≤ b has the usual meaning.
2 P = {1,2, . . . , } and a � b if a divides b.
3 P = {A1,A2, . . . ,Am} where the Ai are sets and �=⊆.
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A pair of elements a,b are comparable if a � b or b � a.
Otherwise they are incomparable.

A poset without incomparable elements (Example 1) is a linear
or total order.

We write a < b if a � b and a 6= b.

A chain is a sequence a1 < a2 < · · · < as.

A set A is an anti-chain if every pair of elements in A are
incomparable.

Thus a Sperner family is an anti-chain in our third example.
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Theorem
Let P be a finite poset, then
min{m : ∃ anti-chains A1,A2, . . . ,Aµ with P =

⋃µ
i=1 Ai}=

max{|C| : A is a chain}.

The minimum number of anti-chains needed to cover P is at
least the size of any chain, since a chain can contain at most
one element from each anti-chain.
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We prove the converse by induction on the maximum length µ
of a chain. We have to show that P can be partitioned into µ
anti-chains.

If µ = 1 then P itself is an anti-chain and this provides the basis
of the induction.

So now suppose that C = x1 < x2 < · · · < xµ is a maximum
length chain and let A be the set of maximal elements of P.

(An element is x maximal if 6 ∃y such that y > x . )

A is an anti-chain.
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Now consider P ′ = P \ A. P ′ contains no chain of length µ. If it
contained y1 < y2 < · · · < yµ then since yµ /∈ A, there exists
a ∈ A such that P contains the chain y1 < y2 < · · · < yµ < a,
contradiction.

Thus the maximum length of a chain in P ′ is µ− 1 and so it can
be partitioned into anti-chains A1 ∪ A2 ∪ · · ·Aµ−1. Putting
Aµ = A completes the proof. �
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Suppose that C1,C2, . . . ,Cm are a collection of chains such
that P =

⋃m
i=1 Ci .

Suppose that A is an anti-chain. Then m ≥ |A| because if
m < |A| then by the pigeon-hole principle there will be two
elements of A in some chain.

Theorem
(Dilworth) Let P be a finite poset, then
min{m : ∃ chains C1,C2, . . . ,Cm with P =

⋃m
i=1 Ci}=

max{|A| : A is an anti-chain}.
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We have already argued that max{|A|} ≤ min{m}.

We will prove there is equality here by induction on |P|.

The result is trivial if |P| = 0.

Now assume that |P| > 0 and that µ is the maximum size of an
anti-chain in P. We show that P can be partitioned into µ
chains.

Let C = x1 < x2 < · · · < xp be a maximal chain in P i.e. we
cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in P \ C has ≤ µ− 1 elements. Then
by induction P \ C =

⋃µ−1
i=1 Ci and then P = C ∪

⋃µ−1
i=1 Ci and

we are done.
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Case 2

There exists an anti-chain A = {a1,a2, . . . ,aµ} in P \ C. Let
P− = {x ∈ P : x � ai for some i}.
P+ = {x ∈ P : x � ai for some i}.

Note that
1 P = P− ∪ P+. Otherwise there is an element x of P which

is incomparable with every element of A and so µ is not the
maximum size of an anti-chain.

2 P− ∩ P+ = A. Otherwise there exists x , i , j such that
ai < x < aj and so A is not an anti-chain.

3 xp /∈ P−. Otherwise xp < ai for some i and the chain C is
not maximal.
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Applying the inductive hypothesis to P− (|P−| < |P| follows
from 3) we see that P− can be partitioned into µ chains
C−1 ,C

−
2 , . . . ,C

−
µ .

Now the elements of A must be distributed one to a chain and
so we can assume that ai ∈ C−i for i = 1,2, . . . , µ.

ai must be the maximum element of chain C−i , else the
maximum of C−i is in (P− ∩ P+) \ A, which contradicts 2.

Applying the same argument to P+ we get chains
C+

1 ,C
+
2 , . . . ,C

+
µ with ai as the minimum element of C+

i for
i = 1,2, . . . , µ.

Then from 2 we see that P = C1 ∪ C2 ∪ · · · ∪ Cµ where
Ci = C−i ∪ C+

i is a chain for i = 1,2, . . . , µ. �
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Three applications of Dilworth’s Theorem

(i) Another proof of

Theorem
Erdős and Szekerés
a1,a2, . . . ,an2+1 contains a monotone subsequence of length
n + 1.

Let P = {(i ,ai) : 1 ≤ i ≤ n2 + 1} and let say (i ,ai) � (j ,aj) if
i < j and ai ≤ aj .

A chain in P corresponds to a monotone increasing
subsequence. So, suppose that there are no monotone
increasing sequences of length n + 1. Then any cover of P by
chains requires at least n + 1 chains and so, by Dilworths
theorem, there exists an anti-chain A of size n + 1.
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Let A = {(it ,ait ) : 1 ≤ t ≤ n + 1} where i1 < i2 ≤ · · · < in+1.

Observe that ait > ait+1 for 1 ≤ t ≤ n, for otherwise
(it ,ait ) � (it+1,ait+1) and A is not an anti-chain.

Thus A defines a monotone decreasing sequence of length
n + 1. �

PARTIALLY ORDERED SETS



Matchings in bipartite graphs

Re-call that a matching is a set of vertex disjoint edges.

P
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Let G = (A ∪ B,E) be a bipartite graph with bipartition A,B.
For S ⊆ A let N(S) = {b ∈ B : ∃a ∈ S, (a,b) ∈ E}.

a1

a2

a3

a4

b1

b2

b3

b4

N

Clearly, |M| ≤ |A|, |B| for any matching M of G.
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Theorem
(Hall) G contains a matching of size |A| iff

|N(S)| ≥ |S| ∀S ⊆ A.

a1

a2

a3

a4

b1

b2

b3

b4

N({a1,a2,a3}) = {b1,b2} and so at most 2 of a1,a2,a3 can be
saturated by a matching.
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If G contains a matching M of size |A| then
M = {(a, f (a)) : a ∈ A}, where f : A→ B is a 1-1 function.

But then,
|N(S)| ≥ |f (S)| = S

for all S ⊆ A.
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Let G = (A ∪ B,E) be a bipartite graph which satisfies Hall’s
condition. Define a poset P = A ∪ B and define < by a < b only
if a ∈ A,b ∈ B and (a,b) ∈ E .

Suppose that the largest anti-chain in P is
A = {a1,a2, . . . ,ah,b1,b2, . . . ,bk} and let s = h + k .

Now
N({a1,a2, . . . ,ah}) ⊆ B \ {b1,b2, . . . ,bk}

for otherwise A will not be an anti-chain.

From Hall’s condition we see that

|B| − k ≥ h or equivalently|B| ≥ s.
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Now by Dilworth’s theorem, P is the union of s chains:

A matching M of size m, |A| −m members of A and |B| −m
members of B.

But then
m + (|A| −m) + (|B| −m) = s ≤ |B|

and so m ≥ |A|. �
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Marriage Theorem

Theorem
Suppose G = (A ∪ B,E) is k-regular. (k ≥ 1) i.e. dG(v) = k for
all v ∈ A ∪ B. Then G has a perfect matching.

Proof
k |A| = |E | = k |B|

and so |A| = |B|.
Suppose S ⊆ A. Let m be the number of edges incident with S.
Then

k |S| = m ≤ k |N(S)|.

So Hall’s condition holds and there is a matching of size |A| i.e.
a perfect matching.
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König’s Theorem

We will use Hall’s Theorem to prove König’s Theorem. Given a
bipartite graph G = (A ∪ B),E) we say that S ⊆ V is a cover if
e ∩ S 6= ∅ for all e ∈ E .

Theorem

min{|S| : S is a cover} = max{|M| : M is a matching}.

Proof One part is easy. If S is a cover and M is a matching
then |S| ≥ |M|. This is because no vertex in S can belong to
more than one edge in M.
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To begin the main proof, we first prove a lemma that is a small
generalisation of Hall’s Theorem.

Lemma
Assume that |A| ≤ |B|. Let d = max{(|X | − |N(X )|)+ : X ⊆ A}
where ξ+ = max{0, ξ}. Then

µ = max{|M| : M is a matching } = |A| − d .

Proof That µ ≤ |A| − d is easy. For the lower bound, add d
dummy vertices D to B and add an edge between each vertex
in D and each vertex in A to create the graph Γ. We now find
that Γ satisfies the conditions of Hall’s Theorem.

If M1 is a matching of size |A| in Γ then removing the edges of
M1 incident with D gives us a matching of size |A| − d in G. �

PARTIALLY ORDERED SETS



Continuing the proof of König’s Theorem let S ⊆ A be such that
|N(S)| = |S| − d .

Let T = A \ S. Then T ∪ N(S) is a cover, since there are no
edges joining S to B \ N(S).

Finally observe that

|T ∪ N(S)| = |A| − |S|+ |S| − d = |A| − d = µ.

�
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Intervals Problem

I1, I2, . . . , Imn+1 are closed intervals on the real line i.e.
Ij = [aj ,bj ] where aj ≤ bj for 1 ≤ j ≤ mn + 1.

Theorem
Either (i) there are m + 1 intervals that are pair-wise disjoint or
(ii) there are n + 1 intervals with a non-empty intersection

Define a partial ordering � on the intervals by Ir � Is iff br ≤ as.
Suppose that Ii1 , Ii2 , . . . , Iit is a collection of pair-wise disjoint
intervals. Assume that ai1 < ai2 · · · < ait . Then Ii1 < Ii2 · · · < Iit
form a chain and conversely a chain of length t comes from a
set of t pair-wise disjoint intervals.
So if (i) does not hold, then the maximum length of a chain is m.
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This means that the minimum number of chains needed to
cover the poset is at least

⌈mn+1
m

⌉
= n + 1.

Dilworth’s theorem implies that there must exist an anti-chain
{Ij1 , Ij2 , . . . , Ijn+1}.

Let a = max{aj1 ,aj2 , . . . ,ajn+1} and b = min{bj1 ,bj2 , . . . ,bjn+1}.

We must have a ≤ b else the two intervals giving a,b are
disjoint.

But then every interval of the anti-chain contains [a,b].
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Möbius Inversion

Suppose that |P| = n. We argue next that we can label the
elements of P = {p1,p2, . . . ,pn} so that

pi � pj implies i ≤ j . (1)

We prove this by induction on n. The base case n = 1 is trivial.

Choose a maximal element of P and label it pn. Assume that
(1) can be achieved for posets with fewer than n elements. Let
P ′ = P \ {pn}.

We can, by induction, re-label P ′ = {p1,p2, . . . ,pn−1} so that
(1) holds. Because pn is maximal, we now have a labelling for
all of P.
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We now define ζ : P2 → {0,1} by

ζ(x , y) =

{
1 x � y .
0 Otherwise.

Given (1) the n × n matrix Aζ = [ζ(x , y)] is an upper triangular
matrix with an all 1’s diagonal.

Aζ is invertible and its inverse is called Aµ = [µ(x , y)]. The
function µ is called the Möbius function of P. The equation
AµAζ = I implies the following:

∑
z∈P

µ(x , z)ζ(z, y) =
∑

x�z�y

µ(x , z) =

{
1 x = y .
0 Otherwise.

(2)
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Theorem
(a) For P equal to the subsets of some finite set X and �=⊆

we have

µ(A,B) =

{
(−1)|A|−|B| A ⊆ B
0 Otherwise.

(b) For P = [n] and a � b if a divides b we have

µ(a,b) =

{
(−1)r b/a is the product of r distinct primes
0 Otherwise.
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Proof

We just have to verify (2):
(a) We have ∑

A⊆C⊆B

x |C|−|A| = (1 + x)|B|−|A|.

Putting x = −1 we get a RHS of zero, unless A = B, in which
case we get 00 = 1.

(b) Suppose that b/a = pk1
1 pk2

2 · · · p
kr
r where p1,p2, . . . ,pr are

primes and k1, k2, . . . , kr ≥ 1.

∑
a|c|b

µ(c,b) =
∑

S⊆[r ]

(−1)|S| =

{
1 r = 0.
0 r ≥ 1.

�
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Möbius Inversion

Theorem
Suppose that f ,g,h are functions from P to R such that

g(x) =
∑
a�x

f (a) and h(x) =
∑
b�x

f (b). (3)

Then,

f (x) =
∑
a�x

µ(a, x)g(a) and f (x) =
∑
b�x

µ(x ,b)h(b). (4)

Proof Treating f ,g,h as column vectors f,g,h we see that
(3) is equivalent to g = AT

ζ f and h = Aζf. Thus

f = A−T
ζ g = AT

µg and f = A−1
ζ h = Aµh.

�
PARTIALLY ORDERED SETS



Inclusion-Exclusion

Let Ai , i ∈ I be a family of subsets of a finite set X .

For J ⊆ I let f (J) equal the number of elements in
⋂

i∈J Ai that
are also in

⋂
i /∈I(X \ Ai).

Let h(J) be the number of elements in
⋂

i∈J Ai . Then

h(J) =
∑
K⊇J

f (K ) =
∑
K�J

f (K ).

Möbius inversion gives us

f (J) =
∑
K�J

µ(K , J)h(K ) =
∑
K⊇J

(−1)|K |−|J|h(K ).

Putting J = ∅ we get∣∣∣∣∣⋂
i∈I

(X \ Ai)

∣∣∣∣∣ =
∑
K⊆I

(−1)|K |−|J|

∣∣∣∣∣∣
⋂
j∈K

Aj

∣∣∣∣∣∣ .
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Divisibility Poset

Supose now that f : N → R and that g is given by

g(n) =
∑
d |n

f (d).

Then Möbius inversion gives

f (n) =
∑
d |n

µ(d ,n)g(d) =
∑
d |n

n/d square free

(−1)p(n/d)g(d)

where p(m) is the number of distinct prime factors of m.
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Totient function

For a natural number n, let φ(n) denote the number of integers
m ≤ n such that m,n have n common factors (other than one) –
co-prime.

Lemma

n =
∑
d |n

φ(d) =
∑
d |n

φ(n/d). (5)

Proof If (m,n) = d then m = m1d ,n = n1d where
(m1,n1) = 1. So the number of choices for m is the number of
choices for m1 i.e. φ(n1) = φ(n/d). �
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Möbius inversion with g(n) = n and f (n) = φ(n) applied to (5)
gives

φ(n) =
∑
d |n

(−1)p(n/d)d =
∑
d |n

(−1)p(d) n
d
. (6)

φ(n) = n
∑
d |n

(−1)p(d)

d
(7)

= n
k∏

i=1

(
1− 1

pi

)
,

assuming that n = pk1
1 pk2

2 . . . ,pkr
r where p1,p2, . . . ,pr are

primes and k1, k2, . . . , kr ≥ 1.
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2-colored necklace

A necklace is a sequence x1x2 · · · xn of n 0’ and 1’s arranged in
circle.

Two necklaces x , y are said to equivalent if there exists d |n
such that yi = xi+d , i = 1,2, . . . ,n where we interpret i + d
mod n. In this case we say that x is periodic with period d .

Let Nn denote the number of distinct i.e. non-equivalent
necklaces and let M(d) denote the number of aperiodic
necklaces of length d .

Thus
Nn =

∑
d |n

M(d) and
∑
d |n

dM(d) = 2n.
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Nn =
∑
d |n

M(d) and
∑
d |n

dM(d) = 2n.

For the second equation think about rotating a periodic
necklace one step at a time for d steps. If we do this for all
periodic necklaces then we get all 2n sequences.

Applying Möbius inversion to the second equation with
f (d) = dM(d),g(n) = 2n, we get

M(n) =
1
n

∑
d |n

µ(d ,n)2d .
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So,

Nn =
∑
d |n

M(d) =
∑
d |n

∑
`|d

1
d
µ(`,d)2d =

∑
d |n

1
d

∑
`|d

µ(`,d)2`.

Now substitute d = k` and tidy up to get

Nn =
∑
`|n

2`

`

∑
k | n

`

µ(1, k)

k
=

1
n

∑
`|n

φ(n/`)2`.

For the second equation, we use the expression (7).
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