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Pblya’s countingtheoryprovidesa wonderfulandalmostmagicalmethodto solve alarge variety
of combinatoricgproblemswherethe numberof solutionsis reducedbecausesomeof themare
consideredo bethe sameasothersdueto somesymmetryof the problem.

1 Warm-Up Problems

As awarm-up,try to work someof thefollowing problems.Thefirst coupleareeasyandthenthey
getharder At leastreadandunderstanall the problemsbeforegoingon. Try to seethe common
threadthatrunsthroughthem.

1. Benzenas achemicalwith theformulaCg Hg. The 6 carbonatomsarearrangedn aring,
and all are equivalent. If two bromine (Br) atomsare addedto make a chemicalwith
formulaCg Hy Brs, therearethreepossiblestructures:

H H Br H H Br

H H H H H H

How mary structuresare possiblewith the following formulas? In part (a) therearefour
hydrogenatoms,onechlorine,andonebromineatomarrangedaroundthe benzeneing; in
(b), two hydrogensiwo chlorines,andtwo bromines;in (c), two hydrogensaniodine, a
chlorine,andtwo bromineatoms.The 6 carbonatoms(the C part) form thebenzeneing
in the center Rotatinga moleculeor turningit overdo notturnit into anew chemical.

(a) CeH.CIBr
(b) CﬁHQClQBT‘Q
(© CsHoICIBrsg
2. In how mary ways can a strip of cloth with n stripeson it be coloredwith & different
colors? Do not countasdifferentpatternghat areequialentif the clothis turnedaround.

For example,thefollowing two stripsareequivalent,where“R” standgfor “Red”, “G” for
“Green”and“B” for “Blue™:

[RIG[R[B[R[R]|B]
[BIR[R[B|R[G[R]




3. In how mary wayscana tablecloththatis divided into n x n squarese coloredwith &
colors?Therearetwo answersgdependingon whetherthetableclothcanbeflippedoverand
rotatedor simply rotatedto make equivalentpatterns.

4. In how mary wayscana necklacewith 12 beadse madewith 4 redbeads3 greenbeads,
and>5 bluebeadsHow mary necklacesrepossiblewith n beadf & differentcolors?

5. How mary wayscanyou colorthecornersof acubesuchthat3 arecoloredred, 2 aregreen,
and3 areblue?

6. How mary wayscanyou color thefacesof a dodecahedrowith 5 differentcolors?

2 lllustrati ve Solutions

We'll begin with a few problemsthatare simple enoughto solve without Pélya’s method,which
we will do,andthenwe will simply applythe magicmethod shawving thetechnique put without
explainingwhy it works,andwe’ll seethatthe sameansweiis obtainedn bothcases.

2.1 A Striped Cloth

e In how mary ways can a strip of cloth with n stripeson it be coloredwith & different
colors?Do not countasdifferentpatternghatareequivalentif the cloth is turnedaround.
For example,the following two stripsareequialent,where“R” standgor “Red”, “G” for
“Green”and“B” for “Blue™:

[RIGIR[B[R[R[B]
[B[R[R[B[R]G[R]
We will considera coloring valid if two or more adjacentstripeshave the samecolor. In

particular a solidly-coloredstrip will be a perfectlygoodsolution(whereall the stripesare
the samecolor).

If we did not considerstripsto bethe samewhenturnedaround,the answeris obvious—eacthof
then stripescanbefilled with any of & colors,makinga grandtotal of ™ possiblestrips. But
this answeris too big, becausavhenyou turn the strip around,it matcheswith onethathasthe
oppositecoloring. At first it looks like we have double-counte@verything,sinceeachstrip will
matchwith its reverse,but this is obviously wrong, if we considey say a strip with 2 stripesand
threecolors. Thereare3? = 9 colorings(ignoringturningthe strip around),but the total number
of uniquecoloringsgiventhatwe areallowedto turn the strip aroundis obviously not9/2, which
is notaninteger.
The problem,of coursejs thatsomeof the coloringsaresymmetric(in the caseabove, 3 of them
are symmetric),so the real answeris gottenby addingthe numberof symmetriccasesto the
numberof non-symmetricaseglividedby 2. In this casethe calculationgives:

9-3

3+ ——=6.
+2



With thisin mind, the generaproblemis nottoo hardto solve; we justneedto beableto countthe
symmetriccases But a symmetricstrip hasthe samestuff on theright ason theleft, sooncewe
know what'sontheleft, thestuff ontherightis determinedTheresaminor problemwith oddand
evensizedstrips,but it's not difficult. For anevennumberof stripes,sayn = 2m, therearek™

differentsymmetricpossibilities.If n is odd,n = 2m + 1, therearek™*! symmetricpossibilities.
Using the floor notation| z| to meanthe smallestinteger larger thanor equalto z, we canwrite

thisin termsof k andn asfollows:

pln+1)/2)

Sincethis is the numberof symmetriccolorings,the total numberof coloringscanbe obtained
with thefollowing formula:

kn — glin+1)/2] + plovn2) k" 4 glint1)/2]
2 N 2

We canusethis formulawith n = 5 andk = 3 to solve the original problem,andthe answeris
135. In addition,checkthatthe following arealsotrue:

o If all five slotsaregreenclearly, theresonly onewayto doit.
o If thefive slotsmustbefilled with threeredsandtwo greensthereare6 waysto doit.

o |If youcanusetwo reds,two greensandablue,thereare16 waysto colorit.

Now we will illustratea methodthatwill solve the problem(andmary similar problemsbesides),
but we will not, atfirst, explain how or why it works.

For whatappeard$o beno apparenteason]ook atthetwo permutation®f the square®f thestrip
of cloth. Call the coloredlocationsa, b, ¢, d, ande from left to right. Therearetwo symmetry
operationsileave it alone,or flip it over. In cycle notation,thesecorrespondo: (a)(b)(c)(d)(e)

and(ae)(bd)(c).

Thefirst one(leaveit alone)has5 1-cycles. Thesecondflip it over) hasl 1-cycleand?2 2-cycles.
Let f; standfor 1-cycles, fs standfor 2-cycles.In this casethereareonly 1- and2-cycles.If there
were3-cycles,we would usefs, etcetera.

Indicatethe two permutationsasfollows: f and f{ f2. Thereis oneof thefirst type andone of

thesecondype,sowrite thefollowing polynomialwhich we shallcall the“cycle index”:

le-ff+21-f%f§_

The2 in thedenominatoris thetotal numberof permutationgndthe 1 in front of eachtermin the
numeratotindicatesthatthereis exactly onepermutatiorwith this structure.

Now, do thefollowing strangée'substitution”. Sincewe're interestedn threecolors,we’ll substi-
tutefor f; theterm(z + y + 2) andfor fs, theterm (z2 + 32 + 22). We only have f; and f, in
this example,but if therewerean f5, we’d substitute(z® + y° + 2°). Similarly, if therewere4
colorsinsteadof 3, we'd usefour unknavnsinsteadof justz, y, andz.



Doing the substitutionwe obtain:

(x+y+2°+(+y+2)(@?+y?+22)2
2 bl

P = )

which,whenexpandedgives:

10zy°2+10zy2® + 162y 2° +2° + 45+ 2°
+1622y2 2 +1023y 2 + 1622y 22 + 32y + 32 2 + 32y
+3220 +62% Y2 +62% 22 +62%y° + 62222 +3y21 + 3912
+6y% 22 +69%28

Heresthemagic.If youaddall thecoeficientsin front of all theterms:10+ 104+ 16+ ---+3 +
6 + 6 = 135. And 135is thetotal numberof colorings! But theres more. Theterm16zy22z2 has
acoeficientof 16, andthat's exactly the numberof waysof coloringthe strip with a blue (z) two
reds(y?), andtwo greengz2). Why on earthdoesthis work?

Actually, thereis a much betterway to “add all the coeficients"—noticethatif we simply sub-
stitute 1 for z, y, andz, we getthe sumof the coeficients. But thereis no needto expandequa-
tion (1) beforedoingthis—justletz = y = z = 1 in equation(1). Thisgivesus(3® + 3-32)/2 =
(243 + 27)/2 = 135.

Dependingon how you learnthings,you maywantto jump aheado section3.1wherewe look in
detailatthis simpleexampleof a stripedcloth. Alternatively, you cancontinuereadingin orderto
seeafew moreexamplesn detail first beforelooking atthe underlyingmathematics.

2.2 Beadson a Necklace

e Countthenumberof waysto arrangebeadon anecklacewheretherearek differentcolors
of beadsandn total beadsarrangedn the necklace.

With a necklacewe canolviously rotateit around,soif we numberthe beadsn orderas
1, 2, 3, 4, thenfor atiny necklacewith only four beadsthe pattern“red, red, blue, blue” is
clearlythe sameas*“red, blue, blue, red”, et cetera.Also, sincethe necklaces just made
of beadswe canturnit over, soif therewerefour colors,althoughwe cannotrotate“red,
greenyellow, blue” into “blue, yellow, greenred”, we canflip overthenecklaceandmake
thosetwo coloringsidentical.

Using standardcountingmethods let’s solve this problemin the specialcasewherek = 2 and
n = 4 (two colorsof beadsandonly 4 beads—it$ a very shortnecklace). Thenwe will apply
Pblya’'s methodandseethatit yieldsthe sameresult.

With 4 beadsandtwo colors,we canjustlist the possibilities.Thereis obviously only oneway to

doit with eitherall redbeador all bluebeads.If thereis oneredandthreeblue or thereverse—
threeredsandoneblue, similarly, theres only onewayto doit. If therearetwo of each theblue

beadscaneitherbetogetheyor canbe separatedsotherearetwo waysto doit. In total, thereare
thus6 solutions.

Now let's try Pblya’s method:



If thebeadpositionsarecalleda, b, ¢, andd, herearethe permutationghatmapthe necklacanto
itself:

(a)(b)(c)(d), (adch), (ac)(bd), (abed), (ad)(be), (ac)(b)(d), (ab)(cd), and (bd)(a)(c). (Check
these.)Note thatwe arelisting eventhe 1-cycles(the beadshatdon’t move) becausét will help
usin settingup the equation.

In the notationwe usedpreviously, we canwrite down the cycle index:

p_ Ui +2/ife+3f5 +2/4
- ; _

Sincetherearethreepermutationsaving 2 2-cycles,thereis a3 in front of theterm 2, etcetera.
Let i = (x +y), fo = (2% + y?), andf4 = (z* + y*). Sincethereareonly two colors,we only
needz andy. Substituteasbeforeto obtain:

p_ @+t +2@+y) @ +47) + 3" +4%)* + 2" +y") o
: .

If we expand,we obtain:
zt + 23y + 222% + 2 + 4t

It' seasyto checkthatthesetermscorrespondo the 6 waysbeadscouldbearrangedwheretheres
auniquewayto doit unlessherearetwo of eachcolor, in which casetherearetwo arrangements.
Also noticethatit givesour detailedcountaswell. If wethink of thex ascorrespondingo a“red”
beadandy to a“blue” bead thecoeficientin front of thetermz* (whichis 1) correspondso the
numberof waysof makinga necklacewith four redbeadsThe2 in front of thez%y? termmeans
thattherearetwo necklacesvith two beadof eachcolor, et cetera.

And noticeagainthatby substitutingr = y = 1 into equation(2) we obtainthetotal count:

294+2-22.2+43.2242-2 16+16+12+4

6.
8 8

Now let’s try somethingslightly moreinteresting. Whatif therearethreecolors? Let’s call the

colors“R”, “G” and“B”, for “red”, “green”,and“blue”.
Heres a brute-forcecount. Checkto seethatyou agreewith the countsbelow:

o All thesamecolor (3 ways)
e Threeof onecolor andoneof another(6 ways)
o Two of onecolorandtwo of another(3 ways)

o Two of onecolorandtwo differentcolors(3 ways)

In the previous example(4 beadsand2 colors)we worked out how mary waystherewereto do
all but the lastone—oneway with all the samecolor or with 3 of onecolor, andtwo wayswith
two of eachof two colors.

A little bit of scratchwork shouldcorvince you thattherearealsoonly two waysto do the last
case(thetwo beadsof the samecolor canbe adjacenor not).



Thusthe grandnumberof waysto placebeadsof 3 differentcolorson a necklacewith 4 beadss:
3-1+46-14+3-24+3-2=21.
With threebeadsthe equationfor thecycle index P (correspondingo equation(2) above)is:
(+y+2)'+2@+y+2)>°+y° +2%)

+3(@2 + 2+ 22+ 202 + 9 + 2

P =
8

®3)

If we justwantthegrandtotal, we cansubstituter = y = z = 1 into equation(3) to obtain:

34+2-32-3+3-32+2-3_81+54+27+6_168_21
8 - 8 8 T

We can,of course gxpandequation(3) andobtain:

(@ +yt+ )+ @By + 22ty 2 %2+ g
+(22%y* + 22°2° + 29°2%) + (22%y2 + 22y2® + 22y°2).

Notethatgroupscorrespondingo the variouscombinationof beadsn thelist above aregathered
togethemwith parentheses.

Clearly with a small numbersof beadsand colors, it’s probablyeasierjust to do a brute-force
enumerationbput if the numberof beadsor colorsgetslarge, Polya’s methodbecomesnoreand
moreattractve.

To illustrate,look at a necklacewith 17 beadsn it. A little playingaroundwill shov you thatthe
cycle index polynomialyou needis this:

17+ 16f17 + 1711 8

P =
34

Let'stry to solve this with 4 colorsof beadgo obtain:

w+z+y+2)7 +16w'” + 27 +y'7 +2'7T)
+17(w 4z + y + 2)(w? + 22 + 3% + 22)8
34

Substitutingw = z = y = z = 1 into this yields 505421344 solutions. If you have a really
strongstomach,you can multiply out the expressionfor P and get the breakdavn for various
color combinations.

Noticethatif you have a particularproblem,you canoftensolve it without a completeexpansion
of the expressiorfor P. For example,if you wantto know, for the 17-beadhecklacehow mary
examplesthere are with 2 red, 4 blue, 3 yellow, and 8 greenbeads,all you needto do is to
calculatethe coeficient of w2z*y®2® andyou will have the numberyou want. A very valuable
tool is the formulafor multinomial coeficients(which is just a generalizatiorof the formulafor
binomial coeficients). Hereis the multinomial expansionof (z + )™, of (z + y + 2)" andof
(w+z+y+ 2)". It seasyto seewhatthegeneralizatiorio any numberof variableswill be. (The

P = 4




binomial expansionhasbeenwrittenin a slightly differentform thanusualsoyou canseehow it
relatesto themorecomplicatedversions.)

1 n

nl . . n! . ,
(z+y)" = ——z'y = — 'y
% ilj! gz!(n—z)!
2,12
1
(z+y+2)" = Z n ziyl P
k!
TS
n! .
(w+z+y+2)" = Z mw’x’ykzl.
b Y
2,3 R,0 2

Toillustratewith ourexampleaboveto countthenumberof necklacesvith 2 red,4 blue, 3 yellow,
and8 greenbeadswe look atthethreetermsin the numeratoiof equation(4). We arelooking for
coeficientsof termslik e this: w?z%y3 28,

In (w + z + y + 2)'7, the coeficientwill be 17!/(2!4!3!8!). Therewill be no appropriateerms
from theexpansiorof 16(w!” + 217 + y'7 + 217). From17(w + z + y + 2) (w? + 2% + y% + 22)%,
the parton the right will only generatesven powersof the variables,sothe only way to getthe
termwe wantis to pick y from thefirst term,andw?z*y%2® from the secondandthis will occur
81/(11211141) times. Sothe coeficientwe areinterestedn is:

17! 8!
+ 17
2141318] 34 12114 _ g91390.

Thus,thereare901320waysto make suchanecklace.

3 What' s Going On?

The constructionof the functionsabove is rathermysterious so let's spenda little time looking
atwhy it mightwork. We'll begin by examiningsomevery simplecasesf symmetryto seewhy
Pblya’s methodworksonthese.

Note thatnoneof the sectionselow providesa proofthatthe methodworks; eachsectionsimply
providesanothemway to think aboutwhatis goingon.

3.1 Striped Cloth Analysis

Let's examinethefirst problemwe lookedat again,wherewe countedcoloringsof a stripedcloth,
but we'll startfrom the simplestpossibleexample—apieceof cloth with one stripe. Clearly; if
therearen colorsavailable,therearen waysto colorthestripe.

Thereis only onepermutation:(1), sotheassociateéquationfor n colorswill look like this:

P:f_112$1+$2+"'+1:n
1 1 )

Thishasthen termsz, s, ... 2.



But perhapsthat is too simple; let’'s considera cloth with two strips. If the colors are called
A,B,C,---, thenhereare the possibilitiesfor 1,2, 3, and4 colors, where[AC], for example,
representtheclothwith onestripecoloredA andtheothercoloredC'. Of coursg AC] isthesame
as[CA]:

1: [AA]; )
2. [AA)[BB}[4B) ©)
3: [AA][BB][CC); [AB][AC][BC] (7)
4:  [AA)[BB][CC|DD]; [AB]AC][AD|BC)BD)(CD] @)

Notice thatif therearen colors,therewill be (%) stripsof the form [AB], where A and B are
differentcolorsandn of theform [AA]. Thusthetotal numberof coloringsis (3) + n.
Goingbackto the formulationin termsof permutationsthereare only two of them: (a)(b) and
(ab). Theformulafor P is:
p_f T+ f2
2
Doing the magicsubstitutiorfor n colorsgives:
(1 +z2+--+z) + (e + 25+ +22)

P = 5 = ©)

(3 + 25+ +22) + Z ZiLj. (10)
1<i<j<n

Thereare (g) termsof theform z;z; andn termsof theform x% (whichyou canthink of asz;x;
for the benefitof a comparisorto thelistsin (5) through(8), above).

Every symmetryof the strip reduceghe numberof possiblepatterns.Theinclusionof the permu-
tation (ab) makespatterng AB] and[BA] equivalent,wherethey would be consideredlifferent
withoutthatsymmetry

Considemwhathappengo theequationfor P asadditionalsymmetriesareaddedlandthe number
of distinct coloringsdecreases)The denominatoiof P is increasedy 1 for eachnew permuta-
tion andalthoughnew termsare addedto the numeratorthereare fewer of them. Considerthe
differencebetweenthe two termsin the numeratorfor P in equation(9)—the first expression,
(z1 + - - -+ 2, )? makesn? terms(countingmultiplicity). Thesecondexpression(z? +- - - +z2),

only addsn terms.

In fact,themorethingsa permutatiormovesaround thefewertermsit generates thenumerator
Let's countthetermsfor all the possibleshape®f permutation®f 4 itemswith n colors:

Count Shape Formula Terms
1 (a)(b)(c)(d) 1 nt
6 @)(e)(d  fif n®
3 (ab)(cd) f3 n?
8 (abc)(d) fifs n’
6 (abed) fa n




Thecountis thenumberof permutation$aving thatshapetheformulais whatgoesin thenumer

atorof P, andthe numberof termsis countedwith multiplicity—in otherwords,z; z, is counted
differently from zoz,. Thusthe permutationthat doesnt collapseary colorings, (a)(b)(c)(d),

addsthe mosttermsto the numeratoy n*. The permutationthat moves every color positionto

another (abed), hasthe fewest,n. Eventhough(ab)(cd) moveseverything,it movesthemin a
restrictedway—thecolorsin slotsa andb cannotmix into slotsc andd underthis permutation,
andhence sinceit doeslesscollapsing,it addsmoreto the numeratoof P (n? terms).

3.2 A Fixed Point

As a secondexample,let’s considera situationwherethe allowablesymmetriesalwaysleave one
region fixed. In the exampleof the strip of cloth thatwe consideredn section(2.1), if thereare
an odd numberof stripes,the centerstripeis fixed—it alwaysgoesto itself underary symmetry
operation.Heres anotherexample: imaginea structurebuilt with tinker-toys with a centralhub

andeighthubsextendingfrom it on sticks,asin figure 1. If you've gotn differentcolorsof hubs
andyou want to countthe numberof configurationghat canbe made,it’s pretty clearthat the
centralhub will alwaysgo to itself in any symmetryoperation. It’s quite easyto make up ary

numberof additionalexamples.

Figurel: Tinkertoy Object

In arny examplewhereoneof thepositionsto be coloredis fixedby all of thesymmetryoperations,
it's clearthat if you can countthe numberof configurationsof the restof the objectwhenn
colorsareused o getthegrandtotal whenthe additionalfixed positionis included,you’ll simply
multiply your previous total by n. What doesthis meanin termsof the permutationsand the
polynomialthatwe construct?

If youhavethepolynomialcorrespondingo thefigurewithoutthefixedpoint, to includethefixed
point, you simply needto adda 1-cycle to eachof thoseyou alreadyhave. For example,suppose
your figure consistsof a triangle with the point at the centeraswell that is fixed. If the three
verticesof the trianglearecalleda, b, and¢, andthe point at the centeris calledd, without the
centralpoint herearethe permutations:

(a)(b)(c), (ab)(c), (ac)(b), (bc)(a), (abe), (ach).
With pointd included,herethey are:
(a)(b)(c)(d), (ab)(c)(d), (ac)(b)(d), (be)(a)(d), (abc)(d), (ach)(d).

The new polynomialwill simply have anotherf; in everyterm,soit canbefactoredout, andthe
new polynomialwill simply have anadditionalfactorof (1 + z2 + 23 + - - - + z,) (@ssuming/ou



areworking the problemwith n colors. Thetotal countwill thussimply ben timesthe previous
count,aswe notedabove.

To malke this concrete|ook at this trianglecasewith threecolors. Ignoringpointd, we have:

p— fi +3f16f2+2f3.

If weincluded, we get:

p— fE+3fif+20fs  A(fE+3f1f2 +2fs)

6 6

If we substitute(z + y + z) in theusualway, we obtain:
P=2* 4+ + 22 +2%y+2%2+2p® + 2% + v’z + y2* + zyz,
andfor P’ we obtain:

P = (z+y+2)P
= (@4+y+2)@® +y2+ 22 +2%y+ 2% + 2?22 + yP2 +y2? +zy2).

3.3 IndependentParts

Assumethattheallowablesymmetriesire,in asensedisconnectedAs asimpleexamplejmagine
achild’s rattletoy thathashollow balls on bothendsof a handle,andone of the balls contains3

marbleswhile the othercontaingwo. In how mary wayscanthis rattle befilled with marblesof 4

differentcolors?Or perhapsa morepracticalexampleis this examplefrom chemistry:Imaginea
carbonatomhookedto a nitrogenatom. You canconnecthreeotheratomsto the carbonandtwo

otheratomsto the nitrogen.If the otheratomsto be hooked on arechoserfrom amonghydrogen,
fluorine,chlorine,andiodine, how mary differenttypesof chemicalsarepossiblé?

In therattle example,thereis no orderingto the threemarbleson oneendof therattle andto the
two onthe otherend,but thetwo endscannotbe swappedsincethey containdifferentnumbersof

marbles.All thesymmetriesnvolve swappingamongthethreeor amongthetwo. Soif a, b, and
¢ representhe marbleson the threeside,andif d ande representhoseon the two side,we can
take what's calledmathematicallya “direct product”of the individual groupsto getthe symmetry
groupfor theentirerattle.

All the entriesin the table belov form the symmetrygroup for the rattle asa whole. Eachis

composeadf a productof onesymmetryfrom thethreesideandonefrom thetwo side:

| @O (a)(be) (ab)(e) (ac)(b) (abe) (acb)
(@)(e) | (@®)(e)(d)(e) (a)(be)(d)(e) (ab)(c)(d)(e) (ac)(B)(d)(e) (abe)(d)(e)  (ach)(d)(e)
(de) (a)(d)(c)(de) (a)(be)(de) (ab)(c)(de) (ac)(b)(de) (abe)(de) (acb)(de)

Thus,whenwe have a term like f; fo from the threegroupand an elementlike f2Z in the two
group,the combinationwill simply generateatermthatis the productof thetwo: f3 fo, andthis

1Althoughit mayseenthatthesetwo examplesareidentical they arenot—themarblesn thethreesidecanbeswapped
in ary way (sothereare6 symmetries)pn the carbonatom,they canonly berotated(sothereareonly 3 symmetries).
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will happenin every case.lt shouldbe easyto see(if you don't seeit, work out the polynomials
andcheck)thatif P; isthecycleindex polynomialfor thetwo groupandPs is theonefor thethree
group,thenthe cycleindex polynomialfor the entirepermutatiorgroupwill simply be P» Ps, and
it's clearthat the countsof possibleconfigurationswill simply be the productsof the individual
configurations.

3.4 Cyclic Permutations

Next, let's look at one examplethatis still simple, but a bit more complicatedthanwhat we've

examinedup to nov—we’ll examinethe casewherethe positionscanbe rotatedby any amount,
but cannotbeflippedover. For concretenessssumehatyou’ve gotacirculartable,andyouwish

to setthe table with platesof & differentcolors, but rotationsof the platesaroundthe table are
consideredo beequialent.In how mary differentwayscanthis bedone?

It seemghatcyclic permutationsarepretty simple,but asyou’ll see atleasta little caremustbe

taken. We’'ll examinetwo exampleghatseemsimilar atfirst, but illustratemostof theinteresting
behavior thatyoucansee . We’ll look atthegroupsof cyclic permutation®f both6 and7 elements.
Call the positionsa, b, ¢, d, e, and f (for the tablewith 6 placesettings),andwe’ll addposition
g for the tablewith seven. Listed belov arethe completesetsof cyclic permutationsof 6 or 7

objects.

(@)(b)(c)(d)(e)(f)
(abedef)
(ace)(bdf)
(ad)(be)(cf)
(aec)(bfd)
(afedcd)

QO Ao
UL O TR OO

(a)(b)(c)(d)(e)()(g)
(abedef g)
(acegbdf)
(adgcfbe)
(aebfcgd)
(afdbgec)
(agfedcd)

O W~ 8 6 oo Qo o oo
O o~ Q8 O o0 0o oo
O A0 o QY |~ ® O O

QO R Q0|0
0O A0 o

e e e - - K
SRR &aa|o

Noticethatthe lowertable(for 7 elementshasevery permutatiorexceptfor theidentity thesame
(in termsof cycle structure),while the table with 6 elementshasa variety of cycle structures.
Thereasonof course,is that 7 is a prime number With the 6-elementexample,threerotations
of two positionsor two rotationsof threepositionsbring you backto whereyou started. If the
platesonthe6-tablearecolored‘red, greenred,greenred,green” they rotateto themselesafter
everyrotationof 2 positionsor if thecoloringis “red, greenblue,red,green blue” they rotateto
themselesafterarotationof threepositions. In fact,it’s easyto seethat somethingsimilar will
happenfor ary integer multiples of the tablesize. If the table, however, hasa prime numberof
positions,the only way to bring it backto theinitial configurationis to leave it alone,or turn it
throughanentire360° rotation.

11



Thusif we are countingcoloringsthat are unigueeven taking rotationsinto account,we should
expectdifferentbehaior if the numberof positionsis prime or not. Clearly the cycle indicesof
thetwo examplesabovelook quitedifferent:

e+ 13 +2f3+2f

Fs = 5

and .
P, = fi ""76f7‘

3.5 ThreeMoreExamples

Now let’s look at threerelatedexamplesin detail to seeexactly how the cycle structureof the
symmetrypermutationaffect the numberof possiblecolorings.

We will look at coloringthethreepointsof atriangle,but with threedifferentinterpretations\We
will call thethreeverticesof thetrianglethatcanbecoloreda, b, ande:

1. No symmetryoperationsare allowed. In otherwords, coloringa red andb andc greenis
differentfrom coloringb red anda andc¢ green. The only symmetryoperationallowed is
to leave it unchanged.The symmetrygroupis this: {(a)(b)(c)}. Thecycle index is this:
P = (f13)/1

2. Rotatingthetriangle (but not flipping it over) is allowed, So the triangle canbe rotatedto
threedifferentpositions,or threedifferentsymmetryoperations. The symmetrygroupis
this: {(a)(b)(c), (abc), (acb)}. Thecycleindex is this: P; = (£ + 2£3)/3.

3. Rotatingandflipping thetriangleis allowed. In this case thereare6 symmetryoperations.
The symmetrygroupis this: {(a)(b)(c), (abe), (acb), (a)(be), (b)(ac), (¢)(ab)}. Thecycle
index is this: Ps = (ff + 3f1 f2 + 2f3)/6.

In eachcase|et’s considerthe situationwith threedifferentcolorsallowed,sowe’ll be plugging
in (z* + y* + 2*) for f; in thecycleindicesabove. Heres whathappensn thethreecasesabove:

1. Firstof all, it's clearin this casethatevery differentassignmenof colorsleadsto a unique
coloringsinceonly theidentity symmetryoperationis allowed. Thusthereshouldbe 3% =
27 colorings.It's probablyeasiesto seewhat’s goingon by expandingP; = (z + y + 2)3
atfirst without usingthe commutatve law to condensehe possibilities:
P = zzz+zzy+ x4+ zyz +xyy + ryz + zx + 22y + 22 +
yrx + yxy + yxz + yyxr + yyy + yyz +yzr + yzy +yzz +
2T + Zxy + 222 + 2yx + 2yy + 2Yyz + z2x + 22y + 222
= 2 +° + 22+ 30y + 2?2+ 2’ + 22% + P2 +y2?) + 6ayz

Beforegroupinglik e elementsthe 27 termscorrespondxactly to the 27 colorings,where
zyy correspondso color z in slota, y in slotb, andy in slote, etcetera.

After grouping,thefactthatthereare3 termslike 22z meanshatthereare3 waysto color
usingtwo zsanday.

Theresonly onesymmetryoperation(theidentity), sowe only divide by 1.
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2. In this case sincerotationscanmalke certaincoloringsidenticalwe’ll expectto have fewer
final configurationsThink of it asmakingall 27 coloringsasin thefirst example,andthen
groupingtogetherthosethatarethe same.

_fi+2fs

=S5

sowe'’re addinga bunchof termsto the numeratomith the 2 f3, but we arealsodividing by
3insteadof by 1.

Notice that the expansionof f{ hasmoretermsthanary of the other possibilities—2f3
in this case,andan additional3 f; f> in the following example. In this case the 25 will

contribute2(z3 +y3 +23)—justsix terms(countingeachonetwice becausef thecoeficient
of 2). Sotherearenow 27 + 6 = 33 termsin the numeratorbut we divide by 3 makingonly
11final terms:

Py

Py =2% + 9% + 2% + 2%y + 2%2 + 2y + 22° + vz + y2?) + 2292

Thereare 2 zyz termssincethreedifferentcolors canbe arrangedclockwise or counter
clockwise,andsincethetrianglecannotbeflippedover, thesearedistinct.

3. In this casewith all possiblerearrangementallowed, thereshouldbe evenfewer examples
(in this small case,it will only be reducedby 1, sincewe only will combinethetwo zyz
terms).

But let's look at the cycle index. The numeratowill bethe sameasin the exampleabove,
but with theadditionof theterm3f; fo. Thedenominatowill bedoubledto 6.

For threecolors,3f1 fo = 3(z + y + 2)(z? + 32 + 22), which will have 27 terms(again
countingmultiplicity). Socombiningthis with the 33 termswe've alreadyconsideredwe
have (33 + 27)/6 = 10 terms:

Ps=a+2 + 22+ 2Py + 2%z + 2y + 22° + 2 + y2°) + zy2.

It's agoodideato examinethesecases/ourselfa bit morecarefully to seeexactly how theterms
combineto reducethenumberof colorings.You shouldalsotry to construcsomeothercasesFor
example,againwith the sametriangleasabove, supposdhe only symmetryoperationallowedis
to leave a in placeandto swapb ande. Try it with 2 colors,or 4 colors. Try asquarewith various
symmetryoperationset cetera.

3.6 YetAnother Approach

Let usagainconsiderthe simple caseof an objectthat hasthreeslotsto be colored,andwe will
considervarious symmetryoperationson it and what eachwould do to the count of the total
colorings.

3.6.1 Only the Identity

As we've said before,if no symmetryoperationsare allowed, thereis only one symmetryoper
ation, the identity: (a)(b)(c), yielding n® colorings,wheren is the numberof available colors.
P=f2=(x; +---+ z,)® hasn® termssoeverythingworksoutin anobviousway.
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3.6.2 Identity Plusa Transposition

Whatif thereis a singleadditionalsymmetryoperation;namely a transpositior(the exchangeof
thefirst two items)?Thetwo symmetryoperationsncludetheidentity: (a)(b)(c), and(ab)(c).

If a coloring haddifferentcolorsin slotsa andb, this additionalpermutatiorwill collapsethose
two into one. Anotherway of sayingit is thatthetotal numberof coloringswill bereduceddy half
thenumberof original coloringswith differentcolorsin thefirst two slots.

Originally, thereweren? colorings. A roughapproximationof the new countis n?/2, but this
is too small, sinceit alsocutin half the countof coloringswith identicalcolorsin slotsa andb.
Therearen? of those,sothe approximatiom? /2 hastakenout half of thosen?. Thusto getthe
correctcount,we mustaddin n?/2, yielding (n® + n?)/2, whichis exactly what Pblya’s method
givesus.

3.6.3 Identity Plusa Rotation

If we includea rotationinsteadof a transpositionwe have (a)(b)(c) and(abc). Of courseif we
allow rotationby oneunit we canapply it twice sowe have to include (ach) for a total of three
symmetryoperations—Ileee it alone rotateonethird, or rotatetwo thirds.

With both rotationsavailable,the only coloringsthat are unafectedby themarethosewhereall
threecolorsarethe same.With n colors,thereareonly n waysto color all threeslotsidentically.
Sinceary non-uniformcoloring canundego two rotations(or beleft alone),the countof distinct
non-uniformcoloringsis reducedby a factorof three. Thus, asabove, the first approximation
on the numberof distinct coloringsis n® /3, but this hasremoved 2/3 of the uniformly colored
configurationssowe mustaddbackin 2n/3. Thefinal countof distinctcoloringsis thus(n® +
2n)/3, again,exactly theresultpredictedby Polya’s method.

3.6.4 Full Symmetry Group

With the full symmetrygroupof 6 operationsallowed on our threeslots, the numberof distinct
coloringswith n colorsshouldbeevensmaller The completdlist of the 6 symmetriesncludes:

(@) (0)(c), (ab)(c), (ac)(b), (a)(be), (abe), (ach).

Polya’'sformulawill be: P = (f£ 4+ 3f1 f2 + 2f3)/6. With n colors,thiswill giveus(n® + 3n? +
2n) /6 distinctcolorings.
With 6 symmetrygroupelementseachcolor configurationcanberearrangedhn 6 differentways,
so the first approximationto the numberof coloringsis n®/6. But ary coloring that contains2
colorsthesameandonepossiblydifferentcanonly berearrangedh 3 ways. Therearen? of those,
sothedivisionof n® by 6 took outtwice asmary rearrangementssit shouldhave, sowe mustadd
in 3n?/6. Finally, the countof n configurationsvhereall threecolorsarethe samewerereduced
by a factorof 6, sowe've gotto add5/6 of thembackin. But we alreadyaddedin 3/6 of them
whenwe countedconfigurationswith at mosttwo colors,sowe needonly add2n /6. Adding all
three,we obtain:

n® +3n% +2n

6
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