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Part I. Impartial Combinatorial Games

1. Take-Away Games.

Combinatorial games are two-person games with perfect information and no chance
moves, and with a win-or-lose outcome. Such a game is determined by a set of positions,
including an initial position, and the player whose turn it is to move. Play moves from one
position to another, with the players usually alternating moves, until a terminal position
is reached. A terminal position is one from which no moves are possible. Then one of the
players is declared the winner and the other the loser.

There are two main references for the material on combinatorial games. One is the
research book, On Numbers and Games by [J. H. Conway] Academic Press, 1976. This
book introduced many of the basic ideas of the subject and led to a rapid growth of the
area that continues today. The other reference, more appropriate for this class, is the
two-volume book, Winning Ways for your mathematical plays by Berlekamp, Conway and
Guy, Academic Press, 1982, in paperback. There are many interesting games described in
this book and much of it is accessible to the undergraduate mathematics student. This
theory may be divided into two parts, impartial games in which the set of moves available
from any given position is the same for both players, and partizan games in which each
player has a different set of possible moves from a given position. Games like chess or
checkers in which one player moves the white pieces and the other moves the black pieces
are partizan. In Part I, we treat only the theory of impartial games. An elementary
introduction to impartial combinatorial games is given in the book Fair Game by Richard
K. Guy, published in the COMAP Mathematical Exploration Series, 1989. We start with
a simple example.

1.1 A Simple Take-Away Game. Here are the rules of a very simple impartial
combinatorial game of removing chips from a pile of chips.

(1) There are two players. We label them I and II.

(2) There is a pile of 21 chips in the center of a table.

(3) A move consists of removing one, two, or three chips from the pile. At least one
chip must be removed, but no more than three may be removed.

(4) Players alternate moves with Player I starting.

(5) The player that removes the last chip wins. (The last player to move wins. If you
can’t move, you lose.)

How can we analyze this game? Can one of the players force a win in this game?
Which player would you rather be, the player who starts or the player who goes second?
What is a good strategy?

We analyze this game from the end back to the beginning. This method is sometimes
called backward induction.
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If there are just one, two, or three chips left, the player who moves next wins
simply by taking all the chips.

Suppose there are four chips left. Then the player who moves next must
leave either one, two or three chips in the pile and his opponent will be able to
win. So four chips left is a loss for the next player to move and a win for the
previous player, i.e. the one who just moved.

With 5, 6, or 7 chips left, the player who moves next can win by moving to
the position with four chips left.

With 8 chips left, the next player to move must leave 5, 6, or 7 chips, and so
the previous player can win.

We see that positions with 0,4,8,12,16,... chips are target positions; we
would like to move into them. We may now analyze the game with 21 chips.
Since 21 is not divisible by 4, the first player to move can win. The unique
optimal move is to take one chip and leave 20 chips which is a target position.

1.2 What is a Combinatorial Game? We now define the notion of a combinatorial
game more precisely. It is a game that satisfies the following conditions.

(1) There are two players.
(2) There is a set, usually finite, of possible positions of the game.

(3) The rules of the game specify for both players and each position which moves to
other positions are legal moves. If the rules make no distinction between the players, that
is if both players have the same options of moving from each position, the game is called
impartial; otherwise, the game is called partizan.

(4) The players alternate moving.

(5) The game ends when a position is reached from which no moves are possible for
the player whose turn it is to move. Under the normal play rule, the last player to move
wins. Under the misere play rule the last player to move loses.

If the game never ends, it is declared a draw. However, we shall nearly always add
the following condition, called the ending condition. This eliminates the possibility of
a draw.

(6) The game ends in a finite number of moves no matter how it is played.

It is important to note what is omitted in this definition. No random moves such as the
rolling of dice or the dealing of cards are allowed. This rules out games like backgammon
and poker. A combinatorial game is a game of perfect information: simultaneous moves
and hidden moves are not allowed. This rules out battleship and scissors-paper-rock. No
draws in a finite number of moves are possible. This rules out tic-tac-toe. In these notes,
we restrict attention to impartial games, generally under the normal play rule.

1.3 P-positions, N-positions. Returning to the take-away game of Section 1.1,
we see that 0,4,8,12,16,... are positions that are winning for the Previous player (the
player who just moved) and that 1,2,3,5,6,7,9,10,11, ... are winning for the Next player
to move. The former are called P-positions, and the latter are called N-positions. The

I-4



P-positions are just those with a number of chips divisible by 4, called target positions in
Section 1.1.

In impartial combinatorial games, one can find in principle which positions are P-
positions and which are N-positions by (possibly transfinite) induction using the following
labeling procedure starting at the terminal positions. We say a position in a game is a
terminal position, if no moves from it are possible. This algorithm is just the method
we used to solve the take-away game of Section 1.1.

Step 1: Label every terminal position as a P-position.

Step 2: Label every position that can reach a labelled P-position in one move as an
N-position.

Step 3: Find those positions whose only moves are to labelled N-positions; label such
positions as P-positions.

Step 4: If no new P-positions were found in step 3, stop; otherwise return to step 2.

It is easy to see that the strategy of moving to P-positions wins. From a P-position,
your opponent can move only to an N-position (3). Then you may move back to a P-
position (2). Eventually the game ends at a terminal position and since this is a P-position,
you win (1).

Here is a characterization of P-positions and N-positions that is valid for impartial
combinatorial games satisfying the ending condition, under the normal play rule.

P-positions and N-positions are defined recursively by the following three statements.
(1) All terminal positions are P-positions.
(2) From every N-position, there is at least one move to a P-position.
(3) From every P-position, every move is to an N-position.

For games using the misére play rule, condition (1) should be replaced by the condition
that all terminal positions are N-positions.

1.4 Subtraction Games. Let us now consider a class of combinatorial games that
contains the take-away game of Section 1.1 as a special case. Let S be a set of positive
integers. The subtraction game with subtraction set S is played as follows. From a pile
with a large number, say n, of chips, two players alternate moves. A move consists of
removing s chips from the pile where s € S. Last player to move wins.

The take-away game of Section 1.1 is the subtraction game with subtraction set S =
{1,2,3}. In Exercise 1.2, you are asked to analyze the subtraction game with subtraction
set S =1{1,2,3,4,5,6}.

For illustration, let us analyze the subtraction game with subtraction set S = {1, 3,4}
by finding its P-positions. There is exactly one terminal position, namely 0. Then 1, 3,
and 4 are N-positions, since they can be moved to 0. But 2 then must be a P-position
since the only legal move from 2 is to 1, which is an N-position. Then 5 and 6 must be
N-positions since they can be moved to 2. Now we see that 7 must be a P-position since
the only moves from 7 are to 6, 4, or 3, all of which are N-positions.

Now we continue similarly: we see that 8, 10 and 11 are N-positions, 9 is a P-position,
12 and 13 are N-positions and 14 is a P-position. This extends by induction. We find
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that the set of P-positions is P = {0,2,7,9,14,16,...}, the set of nonnegative integers
leaving remainder 0 or 2 when divided by 7. The set of N-positions is the complement,
N ={1,3,4,5,6,8,10,11,12,13,15,...}.

x 0 1 2 3 4 5 6 7 &8 9 10 11 12 13 14...
position. P N P N N N N P N P N N N N P...

The pattern PNPNNNN of length 7 repeats forever.

Who wins the game with 100 chips, the first player or the second? The P-positions
are the numbers equal to 0 or 2 modulus 7. Since 100 has remainder 2 when divided by 7,
100 is a P-position; the second player to move can win with optimal play.

1.5 Exercises.

1. Consider the misere version of the take-away game of Section 1.1, where the last
player to move loses. The object is to force your opponent to take the last chip. Analyze
this game. What are the target positions (P-positions)? (You can play the normal version
of the game at http://207.106.82.89/puzzles/23match /23match.htm .)

2. Generalize the Take-Away Game: (a) Suppose in a game with a pile containing a
large number of chips, you can remove any number from 1 to 6 chips at each turn. What
is the winning strategy? What are the P-positions? (b) If there are initially 31 chips in
the pile, what is your winning move, if any?

3. The Thirty-one Game. (Geoffrey Mott-Smith (1954)) From a deck of cards,
take the Ace, 2, 3, 4, 5, and 6 of each suit. These 24 cards are laid out face up on a table.
The players alternate turning over cards and the sum of the turned over cards is computed
as play progresses. Each Ace counts as one. The player who first makes the sum go above
31 loses. It would seem that this is equivalent to the game of the previous exercise played
on a pile of 31 chips. But there is a catch. No integer may be chosen more than four times.
(a) If you are the first to move, and if you use the strategy found in the previous exercise,
what happens if the opponent keeps choosing 47
(b) Nevertheless, the first player can win with optimal play. How?

4. Find the set of P-positions for the subtraction games with subtraction sets
(a) S =11,3,5,7}.
(b) S ={1,3,6}.
(c) S ={1,2,4,8,16,...} = all powers of 2.
(d) Who wins each of these games if play starts at 100 chips, the first player or the second?
5. Empty and Divide. There are two boxes. Initially, one box contains m chips
and the other contains n chips. Such a position is denoted by (m,n), where m > 0 and
n > 0. The two players alternate moving. A move consists of emptying one of the boxes,
and dividing the contents of the other between the two boxes with at least one chip in each
box. There is a unique terminal position, namely (1,1). Last player to move wins. Find
all P-positions.

6. Chomp! A game invented by Fred. Schuh (1952) in an arithmetical form was
discovered independently in a completely different form by David Gale (1974). Gale’s
version of the game involves removing squares from a rectangular board, say an m by n
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board. A move consists in taking a square and removing it and all squares to the right
and above. Players alternate moves, and the person to take square (1,1) loses. The
name “Chomp” comes from imagining the board as a chocolate bar, and moves involving
breaking off some corner squares to eat. The square (1, 1) is poisoned though; the player
who chomps it loses. You can play this game on the web at

http://207.106.82.89 /puzzles/chomp /chomp.htm .

For example, starting with an 8 by 3 board, suppose the first player chomps at (6, 2)
gobbling 6 pieces, and then second player chomps at (2,3) gobbling 4 pieces, leaving the
following board, where @) denotes the poisoned piece.

® [ 1]

(a) Show that this position is a N-position, by finding a winning move for the first
player. (It is unique.)

(b) It is known that the first player can win all rectangular starting positions. The
proof, though ingenious, is not hard. However, it is an “existence” proof. It shows that
there is a winning strategy for the first player, but gives no hint on how to find the first
move! See if you can find the proof. Here is a hint: Does removing the upper right corner
constitute a winning move?

7. Dynamic subtraction. One can enlarge the class of subtraction games by letting
the subtraction set depend on the last move of the opponent. Many early examples appear
in Chapter 12 of Schuh (1968). Here are two other examples. (For a generalization, see
Schwenk (1970).)

(a) There is one pile of n chips. The first player to move may remove as many chips as
desired, at least one chip but not the whole pile. Thereafter, the players alternate moving,
each player not being allowed to remove more chips than his opponent took on the previous
move. What is an optimal move for the first player if n = 447 For what values of n does
the second player have a win?

(b) Fibonacci NimJ (Whinihan (1963)) The same rules as in (a), except that a player
may take at most twice the number of chips his opponent took on the previous move.
The analysis of this game is more difficult than the game of part (a) and depends on the
sequence of numbers named after [Leonardo Pisano Fibonacci] which may be defined as
=1, F, =2 and F,+1 = F, + F,,—1 for n > 2. The Fibonacci sequence is thus:
1,2,3,5,8,13,21,34,55,.... The solution is facilitated by

’s Theorem. Every positive integer can be written uniquely as a sum of
distinct non-neighboring Fibonacci numbers.

There may be many ways of writing a number as a sum of Fibonacci numbers, but
there is only one way of writing it as a sum of non-neighboring Fibonacci numbers. Thus,
43=34+8+1 is the unique way of writing 43, since although 43=34+5+3+1, 5 and 3 are
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neighbors. What is an optimal move for the first player if n = 43?7 For what values of n
does the second player have a win?

8. The SOS Game. (From the 28th Annual USA Mathematical Olympiad, 1999)
The board consists of a row of n squares, initially empty. Players take turns selecting an
empty square and writing either an S or an O in it. The player who first succeeds in
completing SOS in consecutive squares wins the game. If the whole board gets filled up
without an SOS appearing consecutively anywhere, the game is a draw.

(a) Suppose n = 4 and the first player puts an S in the first square. Show the second
player can win.

(b) Show that if n = 7, the first player can win the game.

(c) Show that if n = 2000, the second player can win the game.

(d) Who wins the game if n = 147



2. The Game of Nim.

The most famous take-away game is the game of Nim, played as follows. There
are three piles of chips containing x1, 2, and x3 chips respectively. (Piles of sizes 5,
7, and 9 make a good game.) Two players take turns moving. Each move consists of
selecting one of the piles and removing chips from it. You may not remove chips from
more than one pile in one turn, but from the pile you selected you may remove as many
chips as desired, from one chip to the whole pile. The winner is the player who re-
moves the last chip. You can play this game on the web with four piles at Game of Nim
http://www.thebestweb.com /iss/testOfGame.asp ), or with even more piles at Nim Game
http://www.dotsphinx.com /nim /).

~~

—~

2.1 Preliminary Analysis. There is exactly one terminal position, namely (0,0, 0),
which is therefore a P-position. The solution to one-pile Nim is trivial: you simply remove
the whole pile. Any position with exactly one non-empty pile, say (0,0,z) with z > 0
is therefore an N-position. Consider two-pile Nim. It is easy to see that the P-positions
are those for which the two piles have an equal number of chips, (0,1,1), (0,2,2), etc.
This is because if it is the opponent’s turn to move from such a position, he must change
to a position in which the two piles have an unequal number of chips, and then you can
immediately return to a position with an equal number of chips (perhaps the terminal
position).

If all three piles are non-empty, the situation is more complicated. Clearly, (1,1, 1),
(1,1,2), (1,1,3) and (1,2,2) are all N-positions because they can be moved to (1,1,0) or
(0,2,2). The next simplest position is (1,2,3) and it must be a P-position because it can
only be moved to one of the previously discovered N-positions. We may go on and discover
that the next most simple P-positions are (1,4,5), and (2,4,6), but it is difficult to see
how to generalize this. Is (5,7,9) a P-position? Is (15,23,30) a P-position?

If you go on with the above analysis, you may discover a pattern. But to save us
some time, I will describe the solution to you. Since the solution is somewhat fanciful and
involves something called nim-sum, the validity of the solution is not obvious. Later, we
prove it to be valid using the elementary notions of P-position and N-position.

2.2 Nim-Sum. The nim-sum of two non-negative integers is their addition without
carry in base 2. Let us make this notion precise.

Every non-negative integer x has a unique base 2 representation of the form =z =
T 2™ + T 12m 7 - 4 2124 2 for some m, where each z; is either zero or one. We use
the notation (2, Tm—1---x120)2 to denote this representation of z to the base two. Thus,
22=1-16+0-8+1-44+1-2+0-1=(10110)2. The nim-sum of two integers is found
by expressing the integers to base two and using addition modulo 2 on the corresponding
individual components:

Definition. The nim-sum of (T, -+ x¢)2 and (Ym - Yo)2 iS (2m - 20)2, and we write
(T - 20)2 ® (Ym - Y0)2 = (2m -+ 20)2, where for all k, z, = x + yi (mod 2), that is,

2z = 1 if xp, + yr = 1 and 2, = 0 otherwise.
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For example, (10110)2 @ (110011)2 = (100101)5. This says that 22 @ 51 = 37. This is
easier to see if the numbers are written vertically (we also omit the parentheses for clarity):

22 = 101109
51 = 110011,

nim-sum = 1001015 = 37

Nim-sum is associative (i.e. @ (y @ 2z) = (x @ y) ® z) and commutative (i.e. zHy =
y @ x), since addition modulo 2 is. Thus we may write z @ y @ z without specifying the
order of addition. Furthermore, 0 is an identity for addition (0 x = z), and every number
is its own inverse (z @ x = 0), so that the cancellation law holds: = @ y = = @ 2z implies
y=z Hrdy=xdz, thenzdrdy=2@x® 2z, andso y = z.)

Thus, nim-sum has a lot in common with ordinary addition, but what does it have to

do with playing the game of Nim? The answer is contained in the following theorem of C.
L. Bouton (1902).

Theorem 1. A position, (x1,x2,x3), in Nim is a P-position if and only if the nim-sum of
its components is zero, x1 b o B 3 = 0.

As an example, take the position (21, z2,x3) = (13,12, 8). Is this a P-position? If not,
what is a winning move? We compute the nim-sum of 13, 12 and 8:

13 = 1101,
12 = 11002
8 = 10002

nim-sum = 10015 =9

Since the nim-sum is not zero, this is an N-position according to Theorem 1. Can you find
a winning move? You must find a move to a P-position, that is, to a position with an even
number of 1’s in each column. One such move is to take away 9 chips from the pile of 13,
leaving 4 there. The resulting position has nim-sum zero:

4 = 1009
12 = 11002
8 = 10002

nim-sum = 00005 =0

Another winning move is to subtract 7 chips from the pile of 12, leaving 5. Check it out.
There is also a third winning move. Can you find it?

2.3 Nim with a Larger Number of Piles. We saw that 1-pile nim is trivial, and
that 2-pile nim is easy. Since 3-pile nim is much more complex, we might expect 4-pile
nim to be much harder still. But that is not the case. Theorem 1 also holds for a larger
number of piles! A nim position with four piles, (x1,x2, 23, z4), is a P-position if and only
if 21 ® xo P x3 P x4 = 0. The proof below works for an arbitrary finite number of piles.

2.4 Proof of Bouton’s Theorem. Let P denote the set of Nim positions with nim-
sum zero, and let N denote the complement set, the set of positions of positive nim-sum.
We check the three conditions of the definition in Section 1.3.
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(1) All terminal positions are in P. That’s easy. The only terminal position is the
position with no chips in any pile, and 0 06 --- = 0.

(2) From each position in N, there is a move to a position in P. Here’s how we
construct such a move. Form the nim-sum as a column addition, and look at the leftmost
(most significant) column with an odd number of 1’s. Change any of the numbers that
have a 1 in that column to a number such that there are an even number of 1’s in each
column. This makes that number smaller because the 1 in the most significant position
changes to a 0. Thus this is a legal move to a position in P.

(3) Every move from a position in P is to a position in N. If (z1,z2,...) is in P
and x1 is changed to x} < x1, then we cannot have 71 Qo ®--- =0=2] a2 ® - -+,
because the cancellation law would imply that 1 = 2. So ] ® x2 & --- # 0, implying
that (2, x2,...) is in N.

These three properties show that P is the set of P-positions. m

It is interesting to note from (2) that in the game of nim the number of winning
moves from an N-position is equal to the number of 1’s in the leftmost column with an
odd number of 1’s. In particular, there is always an odd number of winning moves.

2.5 Misere Nim. What happens when we play nim under the misere play rule? Can
we still find who wins from an arbitrary position, and give a simple winning strategy? This
is one of those questions that at first looks hard, but after a little thought turns out to be
easy.

Here is Bouton’s method for playing misere nim optimally. Play it as you would play
nim under the normal play rule as long as there are at least two heaps of size greater than
one. When your opponent finally moves so that there is exactly one pile of size greater
than one, reduce that pile to zero or one, whichever leaves an odd number of piles of size
one remaining.

This works because your optimal play in nim never requires you to leave exactly one
pile of size greater than one (the nim sum must be zero), and your opponent cannot move
from two piles of size greater than one to no piles greater than one. So eventually the game
drops into a position with exactly one pile greater than one and it must be your turn to
move.

A similar analysis works in many other games. But in general the misere play theory is
much more difficult than the normal play theory. Some games have a fairly simple normal
play theory but an extraordinarily difficult miseére theory, such as the games of Kayles and
Dawson’s chess, presented in Section 1.4.

2.6 Exercises.

1. (a) What is the nim-sum of 27 and 177
(b) The nim-sum of 38 and z is 25. Find z.
2. Find all winning moves in the game of nim,
(a) with three piles of 12, 19, and 27 chips.
(b) with four piles of 13, 17, 19, and 23 chips.
(c) What is the answer to (a) and (b) if the misére version of nim is being played?
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3. Nimble. Nimble is played on a game board consisting of a line of squares labelled:
0,1, 2,3, .... A finite number of coins is placed on the squares with possibly more than
one coin on a single square. A move consists in taking one of the coins and moving it to
any square to the left, possibly moving over some of the coins, and possibly onto a square
already containing one or more coins. The players alternate moves and the game ends
when all coins are on the square labelled 0. The last player to move wins. Show that this
game is just nim in disguise. In the following position with 6 coins, who wins, the next
player or the previous player? If the next player wins, find a winning move.

0 1 2 3 4O 5 6 7 @QO 1@ 11 12 1@ 14

4. Turning Turtles. Another class of games, due to H. W. Lenstra, is played with
a long line of coins, with moves involving turning over some coins from heads to tails or
from tails to heads. See Winning Ways, Chapter 14 for some of the remarkable theory.
Here is a simple example called Turning Turtles.

A horizontal line of n coins is laid out randomly with some coins showing heads and
some tails. A move consists of turning over one of the coins from heads to tails, and in
addition, if desired, turning over one other coin to the left of it (from heads to tails or tails
to heads). For example consider the sequence of n = 13 coins:

T H T T H T T T HH T H T
1 2 3 4 5 6 7 8 9 10 11 12 13

One possible move in this position is to turn the coin in place 9 from heads to tails, and
also the coin in place 4 from tails to heads.

(a) Show that this game is just nim in disguise if an H in place n is taken to represent a
nim pile of n chips.

(b) Assuming (a) to be true, find a winning move in the above position.

(c) Try this game and some other related games at
http://www.chlond.demon.co.uk/Coins.html] .

5. Northcott’s Game. A position in Northcott’s game is a checkerboard with one
black and one white checker on each row. “White” moves the white checkers and “Black”
moves the black checkers. A checker may move any number of squares along its row, but
may not jump over or onto the other checker. Players move alternately and the last to
move wins. Try out this game at http://www.chlond.demon.co.uk/Northcott.html] .

Note two points:
1. This is a partizan game, because Black and White have different moves from a given
position.
2. This game does not satisfy the ending condition, (6) of Section 1.2. The players could
move around endlessly.

Nevertheless, knowing how to play nim is a great advantage in this game. In the
position below, who wins, Black or White? or does it depend on who moves first?

I-12


http://www.chlond.demon.co.uk/Coin .html
http://www.chlond.demon.co.uk/Northcott.html

O

O
O [ J
O [ )
® O

6. Staircase Nim. (Sprague (1937)) A staircase of n steps contains coins on some
of the steps. Let (x1,22,...,2,) denote the position with x; coins on step j, j =1,...,n.
A move of staircase nim consists of moving any positive number of coins from any step, 7,
to the next lower step, j — 1. Coins reaching the ground (step 0) are removed from play.
Such a move would take, say, x chips from step j, where 1 < z < z;, and put them on
step 7 — 1, leaving x; — = coins on step j and resulting in z;_; + x coins on step j — 1.
The game ends when all coins are on the ground. Players alternate moves and the last to
move wins.

Show that (z1,x2,...,2,) is a P-position if and only if the numbers of coins on the
odd numbered steps, (x1,x3,...,2r) where k = n if n is odd and k = n — 1 if n is even,
forms a P-position in ordinary nim.

7. Moore’s Nim|;,. A generalization of nim with a similar elegant theory was pro-
posed by [E. H. Moorg] (1910), called Nimy. There are n piles of chips and play proceeds
as in nim except that in each move a player may remove as many chips as desired from
any k piles, where k is fixed. At least one chip must be taken from some pile. For k =1
this reduces to ordinary nim, so ordinary nim is Nimj.

Moore’s Theorem states that a position (z1,z2,...,2,), is a P-position in Nimy if
and only if when x; to z, are expanded in base 2 and added in base k + 1 without carry,
the result is zero. (In other words, the number of 1’s in each column must be divisible by
k+1.)

(a) Consider the game of Nimble of Exercise 3 but suppose that at each turn a player
may move one or two coins to the left as many spaces as desired. Note that this is really
Moore’s Nimy, with & = 2. Using Moore’s Theorem, show that the Nimble position of
Exercise 3 is an N-position, and find a move to a P-position.

(b) Prove Moore’s Theorem.
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3. Graph Games.

We now give an equivalent description of a combinatorial game as a game played on a
directed graph. This will contain the games described in Sections 1 and 2. This is done by
identifying positions in the game with vertices of the graph and moves of the game with
edges of the graph. Then we will define a function known as the Sprague-Grundy function
that contains more information than just knowing whether a position is a P-position or an
N-position.

3.1 Games Played on Directed Graphs. We first give the mathematical definition
of a directed graph.

Definition. A directed graph, G, is a pair (X, F') where X is a nonempty set of vertices
(positions) and F' is a function that gives for each x € X a subset of X, F(z) C X. For
a given © € X, F(x) represents the positions to which a player may move from z (called
the followers of x). If F(x) is empty, x is called a terminal position.

A two-person win-lose game may be played on such a graph G = (X, F') by stipulating
a starting position xp € X and using the following rules:

(1) Player I moves first, starting at xo.

(2) Players alternate moves.

(3) At position x, the player whose turn it is to move chooses a position y € F(z).

(4) The player who is confronted with a terminal position at his turn, and thus cannot
move, loses.

As defined, graph games could continue for an infinite number of moves. To avoid
this possibility and other problems, we restrict attention to graphs that have the property
that no matter what starting point z¢ is used, there is a number n, possibly depending on
Zo, such that every path from xg has length less than or equal to n. (A path is a sequence
X0, L1, X2, ..., Ty such that z; € F(z;_1) for alli =1,...,m, where m is the length of the
path.) Such graphs are called progressively bounded. (If X itself is finite, this merely
means that there are no circuits. A circuit is a path, zg,x1,..., 2, with g = x,, and
distinct vertices g, 1, ..., Tm—-1, m > 1.)

As an example, the subtraction game with subtraction set S = {1,2,3}, analyzed in
Section 1.1, that starts with a pile of n chips has a representation as a graph game. Here
X =1{0,1,...,n} is the set of vertices. The empty pile is terminal, so F'(0) = (), the empty
set. We also have F'(1) = {0}, F/(2) = {0,1},and for 2 < k < n, F(k) = {k—3,k—2,k—1}.
This completely defines the game.

Fig. 3.1 The Subtraction Game with S = {1,2,3}.

It is useful to draw a representation of the graph. This is done using dots to represent
vertices and lines to represent the possible moves. An arrow is placed on each line to
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indicate which direction the move goes. The graphic representation of this subtraction
game played on a pile of 10 chips is given in Figure 3.1.

3.2 The Sprague-Grundy Function. Graph games may be analyzed by consid-
ering P-positions and N-positions. It may also be analyzed through the Sprague-Grundy
function.

Definition. The Sprague-Grundy function of a progressively bounded graph (X, F)
is a function, g, defined on X taking non-negative integer values such that

g(x) =min{n >0:n #g(y) for ye F(zx)}.

In words, g(x) the smallest non-negative integer not found among the Sprague-Grundy
values of the followers of x. If we define the minimal excludant, or mex, of a set of
non-negative integers as the smallest non-negative integer not in the set, then we may
write simply

g9(x) = mex{g(y) : y € F(z)}.

Note that g(x) is defined recursively. That is, g(x) is defined in terms of g(y) for
all followers y of . Moreover, the recursion is self-starting. For terminal vertices, =,
the definition implies that g(z) = 0, since F(x) = ) for terminal x. For non-terminal z,
all of whose followers are terminal, g(z) = 1, and so forth. In the examples in the next
sctions, we find g(z) inductively. However, some graphs require more subtle techniques;
see Exercise 5(c) for an example. The Sprague-Grundy function exists uniquely and is
finite for all progressively bounded graphs. See Fraenkel (2000) for an efficient algorithm
that computes it.

3.3 Examples.
1. Find the Sprague-Grundy function.

Fig. 3.2
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2. What is the Sprague-Grundy function of the subtraction game with subtraction set
S ={1,2,3}7 The terminal vertex, 0, has SG-value 0. The vertex 1 can only be moved to
0 and ¢g(0) =0, so g(1) = 1. Similarly, 2 can move to 0 and 1 with g(0) =0 and g(1) =1,
so g(2) = 2, and 3 can move to 0, 1 and 2, with g(0) = 0, g(1) = 1 and ¢(2) = 2, so
g(3) = 3. But 4 can only move to 1, 2 and 3 with SG-values 1, 2 and 3, so g(4) = 0.
Continuing in this way we see

T

01 23456 7 89 10 11 12 13 14...
gz) 01 2 301 2 30 1 2

3 0 1 2...

In general g(z) = x (mod 4), i.e. g(z) is the remainder when z is divided by 4.

3. At-Least-Half. Consider the one-pile game with the rule that you must remove
at least half of the counters. The only terminal position is zero. We may compute the
Sprague-Grundy function inductively as

X

3 4
g(x 2 3

0 1 2 5 6 7
0 1 2 3 3 3
We see that g(z) may be expressed as the exponent in the smallest power of 2 greater than
z: g(z) = min{k : 28 > z}.

3.4 The Use of the Sprague-Grundy Function. Given the Sprague-Grundy
function g of a graph, it is easy to analyze the corresponding graph game. Positions x
for which g(z) = 0 are P-positions and all other positions are N-positions. The winning
procedure is to choose at each move to move to a vertex with Sprague-Grundy value zero.
This is easily seen by checking the conditions of Section 1.3:

(1) If = is a terminal position, g(z) = 0.
(2) At positions z for which g(z) = 0, every follower y of x is such that g(y) # 0, and
(3) At positions z for which g(z) # 0, there is at least one follower y such that

9(y) = 0.

The Sprague-Grundy function thus contains a lot more information about a game
than just the P- and N-positions. What is this extra information used for? As we will see
in the Section 4, the Sprague-Grundy function allows us to analyze sums of graph games.

We may generalize the theory by replacing the hypothesis that the graph be progres-
sively bounded by the hypothesis that the graph be progressively finite: every path has
a finite length. This is essentially equivalent to the ending condition (6) of Section 1.2.
Circuits would still be ruled out if we made such a change.

As an example of a graph that is progressively finite but not progressively bounded,
consider the graph of the game in Figure 3.3 in which the first move is to choose the
number of chips in a pile, and from then on to treat the pile as a nim pile. From the initial
position each path has a finite length so the graph is progressively finite. But the graph
is not progressively bounded since there is no upper limit to the length of a path from
the initial position. The Sprague-Grundy theory can be extended to progressively finite
graphs, but transfinite induction must be used. The SG-value of the initial position above
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would be the smallest ordinal greater than all integers, usually denoted by w. We may

also define nim positions with SG-values w+1,w+2,...,2w,...,w?,...,w", etc., etc., etc.

Except for Exercise 7, we do not pursue this topic further.

Fig 3.3 A progressively finite graph that is not progressively bounded.

3.5 Exercises.
1.

Fig 3.4 Find the Sprague-Grundy function.

2. Find the Sprague-Grundy function of the subtraction game with subtraction set
S ={1,3,4}.

3. Consider the one-pile game with the rule that you may remove at most half the
chips. Of course, you must remove at least one, so the terminal positions are 0 and 1. Find
the Sprague-Grundy function.

4. (a) Consider the one-pile game with the rule that you may remove ¢ chips from a
pile of n chips if and only if ¢ is a divisor of n, including 1 and n. For example, from a
pile of 12 chips, you may remove 1, 2, 3, 4, 6, or 12 chips. The only terminal position is 0.
Find the Sprague-Grundy function.

(b) Suppose the above rules are in force with the exception that it is not allowed
to remove the whole pile. This is called the Aliquot game by Silverman, (1971). (See
http://www.cut-the-knot.com/SimpleGames/Aliquot.htm] .) Thus, if there are 12 chips,
you may remove 1, 2, 3, 4, or 6 chips. The only terminal position is 1. Find the Sprague-
Grundy function.
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5. The following directed graphs are not progressively finite. See if you can find the
P- and N- positions and the Sprague-Grundy function.

(a) (b) ()

6. Wythoff’s Game. (Wythoff (1907)) The positions of the Wythoff’s game are
given by a queen on a chessboard. Players, sitting on the same side of the board, take
turns moving the queen. But the queen may only be moved vertically down, or horizon-
tally to the left or diagonally down to the left. When the queen reaches the lower left
corner, the game is over and the player to move last wins. Thinking of the squares of
the board as vertices and the allowed moves of the queen as edges of a graph, this be-
comes a graph game. Find the Sprague-Grundy function of the graph by writing in each
square of the 8 by 8 chessboard its Sprague-Grundy value. (You may play this game at
http://www.chlond.demon.co.uk/Queen.htm] .)

7. Two-Dimensional Nim is played on a quarter-infinite board with a finite number
of counters on the squares. A move consists in taking a counter and moving it any number
of squares to the left on the same row, or moving it to any square whatever on any lower
row. A square is allowed to contain any number of counters. If all the counters are on the
lowest row, this is just the game Nimble of Exercise 2.3.

(a) Find the Sprague-Grundy values of the squares.

(b) After you learn the theory contained in the next section, come back and see if you
can solve the position represented by the figure below. Is the position below a P-position
or an N-position? If it is an N-position, what is a winning move? How many moves will
this game last? Can it last an infinite number of moves?
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4. Sums of Combinatorial Games.

Given several combinatorial games, one can form a new game played according to the
following rules. A given initial position is set up in each of the games. Players alternate
moves. A move for a player consists in selecting any one of the games and making a legal
move in that game, leaving all other games untouched. Play continues until all of the
games have reached a terminal position, when no more moves are possible. The player
who made the last move is the winner.

The game formed by combining games in this manner is called the (disjunctive)
sum of the given games. We first give the formal definition of a sum of games and then
show how the Sprague-Grundy functions for the component games may be used to find the
Sprague-Grundy function of the sum. This theory is due independently to R. P. Sprague
(1935-6) and P. M. Grundy (1939).

4.1 The Sum of n Graph Games. Suppose we are given n progressively bounded
graphs, G; = (X1, F1),G2 = (Xo, F»),...,G,, = (X,, F,). One can combine them into a
new graph, G = (X, F), called the sum of G1,Ga, ..., G, and denoted by G = G1+- - -+G,,
as follows. The set X of vertices is the Cartesian product, X = X7 x---xX,,. This is the set
of all n-tuples (z1,...,z,) such that z; € X; for all i. For a vertex = = (z1,...,2,) € X,
the set of followers of x is defined as

F(z)=F(z1,...,2n) = Fi(z1) X {2} x -+ x {x,}
U {.771} X FQ(Q?Q) X oo X {xn}
U---
U {.771} X {.772} X X Fn(a;n)

Thus, a move from = = (z1,...,x,) consists in moving exactly one of the x; to one of its
followers (i.e. a point in F;(z;)). The graph game played on G is called the sum of the
graph games Gy, ...,Gy.

If each of the graphs G; is progressively bounded, then the sum G is progressively
bounded as well. The maximum number of moves from a vertex z = (z1,...,2,) is the
sum of the maximum numbers of moves in each of the component graphs.

As an example, the 3-pile game of nim may be considered as the sum of three one-pile
games of nim. This shows that even if each component game is trivial, the sum may be
complex.

4.2 The Sprague-Grundy Theorem. The following theorem gives a method for
obtaining the Sprague-Grundy function for a sum of graph games when the Sprague-
Grundy functions are known for the component games. This involves the notion of nim-sum
defined earlier. The basic theorem for sums of graph games says that the Sprague-Grundy
function of a sum of graph games is the nim-sum of the Sprague-Grundy functions of its
component games. It may be considered a rather dramatic generalization of Theorem 1 of
Bouton.

The proof is similar to the proof of Theorem 1.
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Theorem 2. If g; is the Sprague-Grundy function of G;, i = 1,...,n, then G = G1 +
-+« + Gy, has Sprague-Grundy function g(x1,...,2,) = g1(x1) B -+ & gn(zp).

Proof. Let x = (z1,...,x,) be an arbitrary point of X. Let b = g1 (1)@ - - ® gn(xn).

We are to show two things for the function g(z1,...,x,):
(1) For every non-negative integer a < b, there is a follower of
(1,...,zy) that has g-value a.

(2) No follower of (x1,...,z,) has g-value b.

Then the SG-value of x, being the smallest SG-value not assumed by one of its followers,
must be b.

To show (1), let d = a & b, and k be the number of digits in the binary expansion of
d, so that 28=1 < d < 2¥ and d has a 1 in the kth position (from the right). Since a < b, b
has a 1 in the kth position and @ has a 0 there. Since b = g1(x1) @ - - - ® gn(xy), there is at
least one z; such that the binary expansion of g;(z;) has a 1 in the kth position. Suppose
for simplicity that ¢ = 1. Then d ® g1(z1) < g1(x1) so that there is a move from z1 to
some 7} with g1(2}) = d® g1(x1). Then the move from (z1,z2,...,2,) to (2}, z2,...,z,)
is a legal move in the sum, G, and

91(2)) ® g2(2) ® -+ D gn(@n) = d D g1(21) ® g2(22) B+ D gn(an) =d Db =a.

Finally, to show (2), suppose to the contrary that (z1,...,x,) has a follower with the
same g-value, and suppose without loss of generality that this involves a move in the first
game. That is, we suppose that (z},z2,...,x,) is a follower of (x1,x2,...,2z,) and that
g1(x)) B ga(x2) & - B gn(zn) = g1(x1) B g2(x2) & - - - B gn(zy). By the cancellation law,
g1(x}) = g1(x1). But this is a contradiction since no position can have a follower of the
same SG-value. m

One remarkable implication of this theorem is that every progressively bounded im-
partial game, when considered as a component in a sum of such games, behaves as if it
were a nim pile. That is, it may be replaced by a nim pile of appropriate size (its Sprague-
Grundy value) without changing the outcome, no matter what the other components of
the sum may be. We express this observation by saying that every (progressively bounded)
impartial game s equivalent to some nim pile.

4.3 Applications. 1. Sums of Subtraction Games. The one-pile subtraction game,
G(m), with subtraction set S,,, = {1,2,...,m}, in which from 1 to m chips may be removed
from the pile, has Sprague-Grundy function g,,(z) =  (mod m + 1), and 0 < g,,,(z) < m.

Consider the sum of three subtraction games. In the first game, m = 3 and the pile
has 9 chips. In the second, m = 5 and the pile has 10 chips. And in the third, m =7
and the pile has 14 chips. Thus, we are playing the game G(3) + G(5) + G(7) and the
initial position is (9,10,14). The Sprague-Grundy value of this position is ¢(9,10,14) =
93(9) ® g5(10) ® g7(14) = 1 &4 & 6 = 3. One optimal move is to change the position in
game G(7) to have Sprague-Grundy value 5. This can be done by removing one chip from
the pile of 14, leaving 13. There is another optimal move. Can you find it?

This shows the importance of knowing the Sprague-Grundy function. We present
further examples of computing the Sprague-Grundy function for various one-pile games.
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Note that although many of these one-pile games are trivial, as is one-pile nim, the Sprague-
Grundy function has its main use in playing the sum of several such games.

2. FEven if Not All — All if Odd. Consider the one-pile game with the rule that you
can remove (1) any even number of chips provided it is not the whole pile, or (2) the whole
pile provided it has an odd number of chips. There are two terminal positions, zero and
two. We compute inductively,

X

01 2 3 45 6 7 8 9 10
gx) 01 0 2 1 3 2 43 5 4
and we see that g(2k) =k —1 and g(2k — 1) =k for £ > 1.

Suppose this game is played with three piles of sizes 10, 15 and 20. The SG-values are
g(10) =4, g(15) = 7 and ¢g(20) = 9. Since 4® 7@ 9 = 10 is nit zero, this is an N-position.
A winning move is to change the SG-value 9 to a 3. For this we may remove 12 chips from
the pile of 20 leaving 8, since ¢(8) = 3.

3. A Sum of Three Different Games. Suppose you are playing a three pile take-away
game. For the first pile of 18 chips, the rules of the previous game, Even if Not All — All
if Odd, apply. For the second pile of 17 chips, the rules of At-Least-Half apply (Example
3.3.3). For the third pile of 7 chips, the rules of nim apply. First, we find the SG-values of
the three piles to be 8, 5, and 7 respectively. This has nim-sum 10 and so is an N-position.
It can be changed to a P-position by changing the SG-value of the first pile to 2. From
the above table, this occurs for piles of 3 and 6 chips. We cannot move from 18 to 3, but
we can move from 18 to 6. Thus an optimal move is to subtract 12 chips from the pile of
18 chips leaving 6 chips.

4.4 Take-and-Break Games. There are any other impartial combinatorial games
that may be solved using the methods of this chapter. We describe Take-and-Break Games
here, and in the next chapter, we look in greater depth at another impartial combinatorial
game called Green Hackenbush. Take-and-Break Games are games where the rules allow
taking and/or splitting one pile into two or more parts under certain conditions, thus
increasing the number of piles.

1. Lasker’s Nim. A generalization of Nim into a Take-and-Break Game is due
to Emanuel Lasker| world chess champion from 1894 to 1921, and found in his book,
Brettspiele der Vélker (1931), 183-196.

Suppose that each player at his turn is allowed (1) to remove any number of chips
from one pile as in nim, or (2) to split one pile containing at least two chips into two
non-empty piles (no chips are removed).

Clearly the Sprague-Grundy function for the one-pile game satisfies g(0) = 0 and
g(1) = 1. The followers of 2 are 0, 1 and (1, 1), with respective Sprague-Grundy values
of 0, 1, and 1 & 1 = 0. Hence, g(2) = 2. The followers of 3 are 0, 1, 2, and (1,2), with
Sprague-Grundy values 0, 1, 2, and 1

@2 = 3. Hence, ¢g(3) = 4. Continuing in this manner,
we see
zx 0 1 2 3 4 5 6 7 8 9 10 11
glx) 01 2 4 3 5 6 8 7 9 10 12


http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lasker.html

We therefore conjecture that g(4k +1) =4k + 1, g(4k +2) = 4k + 2, g(4k +3) = 4k + 4
and g(4k 4+ 4) = 4k + 3, for all £ > 0.

The validity of this conjecture may easily be verified by induction as follows.

(a) The followers of 4k 4 1 that consist of a single pile have Sprague-Grundy
values from 0 to 4k. Those that consist of two piles, (4k, 1), (4k —1,2),...,(2k +
1,2k), have even Sprague-Grundy values, and therefore g(4k + 1) = 4k + 1.

(b) The followers of 4k + 2 that consist of a single pile have Sprague-Grundy
values from 0 to 4k+1. Those that consist of two piles, (4k+1,1), (4k,2),...,(2k+
1,2k +1), have Sprague-Grundy values alternately divisible by 4 and odd, so that
g4k +2) = 4k + 2.

(c) The followers of 4k + 3 that consist of a single pile have Sprague-Grundy
values from 0 to 4k + 2. Those that consist of two piles, (4k + 2,1), (4k +
1,2),...,(2k + 2,2k + 1), have odd Sprague-Grundy values, and in particular
g(4k + 2,1) = 4k + 3. Hence g(4k + 3) = 4k + 4.

(d) Finally, the followers of 4k + 4 that consist of a single pile have Sprague-
Grundy values from 0 to 4k + 2, and 4k + 4. Those that consist of two piles,
(4k+3,1)(4k+2,2),...,(2k+ 2,2k +2), have Sprague-Grundy values alternately
equal to 1 (mod 4) and even. Hence, g(4k + 4) = 4k + 3.

Suppose you are playing Lasker’s nim with three piles of 2, 5, and 7 chips. What
is your move? First, find the Sprague-Grundy value of the component positions to be 2,
5, and 8 respectively. The nim-sum of these three numbers is 15. You must change the
position of Sprague-Grundy value 8 to a position of Sprague-Grundy value 7. This may
be done by splitting the pile of 7 chips into two piles of say 1 and 6 chips. At the next
move, your opponent will be faced with a four pile game of Lasker’s nim with 1, 2, 5 and
6 chips. This has Sprague-Grundy value zero and so is a P-position.

2. The Game of Kayles. This game was introduced a century ago by Sam Loyd
(see Mathematical Puzzles of Sam Loyd, Vol 2., 1960, Dover Publications), and by H. E.
Dudeney (see The Canterbury Puzzles and Other Curious Problems, 1958, Dover Publica-
tions, New York). Two bowlers face a line of 13 bowling pins in a row with the second pin
already knocked down. “It is assumed that the ancient players had become so expert that
they could always knock down any single kayle-pin, or any two kayle-pins that stood close
together (i.e. adjacent pins). They therefore altered the game, and it was agreed that the
player who knocked down the last pin was the winner.”

This is one of our graph games played with piles of chips that can be described as
follows. You may remove one or two chips from any pile after which, if desired, you may
split that pile into two nonempty piles.

Removing one chip from a pile without splitting the pile corresponds to knocking down
the end chip of a line. Removing one chip with splitting the pile into two parts corresponds
to knocking down a pin in the interior of the line. Similarly for removing two chips.

Let us find the Sprague-Grundy function, g(z), for this game. The only terminal
position is a pile with no chips, so g(0) = 0. A pile on one chip can be moved only to
an empty pile, so g(1) = 1. A pile of two chips can be moved either to a pile of one or
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zero chips, so g(2) = 2. A pile of three chips can be moved to a pile of two or one chips,
(SG-value 1 and 2) or to two piles of one chip each (SG-value 0), so ¢g(3) = 3. Continuing
in this way, we find more of the Sprague-Grundy values in Table 4.1.

y\z o 1 2 3 4 5 6 7 8 9 10 11
0 o 1 2 3 1 4 3 2 1 4 2 6
12 4 1 2 7 1 4 3 2 1 4 6 7
24 4 1 2 8 5 4 7 2 1 8 6 7
36 4 1 2 3 1 4 7 2 1 8 2 7
48 4 1 2 8 1 4 7 2 1 4 2 7
60 4 1 2 8 1 4 7 2 1 8 6 7
72 4 1 2 8 1 4 7 2 1 8 2 7

Table 4.1. The SG-values for Kayles. Entries for the Table are for g(y + z)
where y is on the left side and z is at the top.

From z = 72 on, the SG-values are periodic with period 12, with the values in the
last line repeating forever. There are only 14 exceptions to the sequence of the last line.
They are displayed in bold face type. The last exception is at x = 70.

3. Dawson’s Chess. One of T. R. Dawson’s fanciful problems in Caissa’s Wild Roses
(1935), republished in Five Classics of Fairy Chess by Dover (1973), is give-away chess
played with pawns. “Given two equal lines of opposing Pawns, White on 3rd rank, Black
on 5th, n adjacent files, White to play at losing game, what is the result?” (Captures must
be made, last player to move loses.) We treat this game here under the normal ending
rule, that the last player to move wins.

Those unfamiliar with the movement of the pawn in chess might prefer a different way
of describing the game as a kind of misére tic-tac-toe on a line of n squares, with both
players using X as the mark. A player may place an X on any empty square provided it
is not next to an X already placed. (The player who is forced to move next to another X
loses.)

This game may be described as a game of removing chips from a pile and possibly
splitting a pile into two piles. If n = 1 there is only one move to n = 0, ending the game.
For n > 1, a move of placing an X at the end of a line removes the two squares at that end
of the line from the game. This corresponds to removing two chips from the pile. Similarly,
placing an X one square from the end corresponds to removing three chips from the pile.
Placing an X in one of the squares not at the end or next to it corresponds to removing
three chips from the pile and splitting the pile into to parts. Thus the rules of the game
are: (1) You may remove one chip if it is the whole pile, or (2) you may remove two chips
from any pile, or (3) you may remove three chips from any pile and if desired split that
pile into two parts.

The Sprague-Grundy sequence begins 0, 1, 1, 2,0, 3, 1, 1,0, 3, 3, . . . It is eventually
periodic with period 34. There are only 7 exceptions and the last exception occurs at
n =o5l.
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4. Grundy’s Game. The only legal move is to split a single pile into two nonempty
piles of different sizes. Thus the only terminal positions are piles of size one or two. Is the
Sprague Grundy sequence eventually periodic? This is unknown though 10,000,000 values
have been computed as of 1996. (See R. K. Guy (1996).)

4.5 Exercises.

1. Consider the take-away game with the rule that (1) you may remove any even
number of chips from any pile, or (2) you may remove any pile consisting of one chip. The
only terminal position is 0. Find the Sprague-Grundy function.

2. Consider the one-pile game with the rule that you may remove (1) any number of
chips divisible by three provided it is not the whole pile, or (2) the whole pile, but only if
it has 2 (mod 3) chips (that is, only if it has 2, or 5, or 8, ... chips). The terminal positions
are zero, one and three. Find the Sprague-Grundy function.

3. Suppose you are playing a three-pile subtraction game. For the first pile of 18
chips, the rules of Exercise 1 hold. For the second pile of 17 chips, the rules of Exercise 2
apply. For the third pile of 7 chips, the rules of nim apply. What is the Sprague-Grundy
value of this position? Find an optimal move.

4. Solve the Kayles problem of Dudeney and Loyd. Of the 13 bowling pins in a row,
the second has been knocked down, leaving:

} ORe0aeeee

Figure 4.1 The Kayles problem of Dudeney and Loyd

(a) Show this is an N-position. You may use Table 4.1.

(b) Find a winning move. Which pin(s) should be knocked down?

(c) Now that you know the theory and have Table 4.1 at hand, you can go to
http://www.chlond.demon.co.uk/Kayles.htm] and beat the computer.

5. Suppose at each turn a player may (1) remove one or two chips, or (2) remove one
chip and split the remaining chips into two piles.
(a) Find the Sprague-Grundy function.
(b) Suppose the starting position consists of one pile with 15 chips. Find an optimal first
move.

6. Suppose that at each turn a player may (1) remove one chip if it is a whole pile,
or (2) remove two or more chips and, if desired, split the remaining chips into two piles.
Find the Sprague-Grundy function.

7. Suppose that at each turn a player may select one pile and remove ¢ chips if ¢ = 1
(mod 3) and, if desired, split the remaining chips into two piles. Find the Sprague-Grundy
function.
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8. Rims. A position in the game of Rims is a finite set of dots in the plane, possibly
separated by some nonintersecting closed loops. A move consists of drawing a closed loop
passing through any positive number of dots (at least one) but not touching any other
loop. Players alternate moves and the last to move wins.

(a) Show that this game is a disguised form of nim.
(b) In the position given in Figure 4.2, find a winning move, if any.

Figure 4.2 A Rims Position

9. Rayles. There are many geometric games like Rims treated in Winning Ways,
Chapter 17. In one of them, called Rayles, the positions are those of Rims, but in Rayles,
each closed loop must pass through exactly one or two points.

(a) Show that this game is a disguised form of Kayles.
(b) In the position given in Figure 4.2, find a winning move, if any.

10. Grundy’s Game. (a) Compute the Sprague-Grundy function for Grundy’s
game, Example 3 Section 4.5, for a pile of n chips forn =1,2,...,13.

(b) In Grundy’s game with three piles of sizes 5, 8, and 13, find all winning first moves, if
any.
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5. Green Hackenbush

The game of Hackenbush is played by hacking away edges from a rooted graph and
removing those pieces of the graph that are no longer connected to the ground. A rooted
graph is an undirected graph with every edge attached by some path to a special vertex
called the root or the ground. The ground is denoted in the figures that follow by a
dotted line.

In this section, we discuss the impartial version of this game in which either player
at his turn may chop any edge. This version is called Green Hackenbush where each edge
is considered to be colored green. There is also the partizan version of the game, called
Blue-Red Hackenbush, in which some edges are colored blue and some are colored red.
Player I may only chop the blue edges and Player II may only chop the red edges so the
game is no longer impartial. Blue-Red Hackenbush is the first game treated in Winning
Ways. In the general game of Hackenbush, there may be some blue edges available only
to Player I, some red edges available only to Player II, and some green edges that either
player may chop.

5.1 Bamboo Stalks. As an introduction to the game of Green Hackenbush, we
investigate the case where the graph consists of a number of bamboo stalks as in the left
side of Figure 5.1. A bamboo stalk with n segments is a linear graph of n edges with the
bottom of the n edges rooted to the ground. A move consists of hacking away one of the
segments, and removing that segment and all segments above it no longer connected to
the ground. Players alternate moves and the last player to move wins. A single bamboo
stalk of n segments can be moved into a bamboo stalk of any smaller number of segments
from n — 1 to 0. So a single bamboo stalk of n segments is equivalent to a nim pile of n
chips. Playing a sum of games of bamboo stalks is thus equivalent to playing nim.

Y

________________________ .

Figure 5.1

For example, the “forest” of three stalks on the left, is equivalent to the game of nim
with three piles of 3, 4 and 5 chips. Since 3 ® 4 ¢ 5 = 2, this is an N-position which can
be moved to a P-position by hacking the second segment of the stalk with three segments,
leaving a stalk of one segment. The resulting position on the right has Sprague-Grundy
value 0, and so is a P-position.
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5.2 Green Hackenbush on Trees. Played with bamboo stalks, Green Hackenbush
is just nim in a rather transparent disguise. But what happens if we allow more general
structures than these simple bamboo stalks? Suppose we have the “forest” of three rooted
trees found in Figure 5.2. A “rooted tree” is a graph with a distinguished vertex called
the root, with the property that from every vertex there is a unique path to the root.
Essentially this means there are no circuits.

Figure 5.2

Again a move consists of hacking away any segment and removing that segment and
anything not connected to the ground. Since the game is impartial, the general theory of
Section 4 tells us that each such tree is equivalent to some nim pile, or if you will, to some
bamboo stalk. The problem is to find the Sprague-Grundy values of each of the trees.

This may be done using the following principle, known in its more general form as
the Colon Principle: When branches come together at a wvertexr, one may replace the
branches by a non-branching stalk of length equal to their nim sum.

Let us see how this principle works to find the bamboo stalk equivalent to the left
tree of Figure 5.2. There are two vertices with two branches. The higher of these vertices
has two branches each with one edge. The nim sum of one and one is zero; so the two
branches may be replaced by a branch with zero edges. That is to say, the two branches
may be removed. This leaves a Y-shaped tree and the same reasoning may be used to
show that the two branches at the Y may be removed. Thus the tree on the left of Figure
5.2 is equivalent to a nim pile of size one.

This may have been a little too simple for illustrative purposes, so let’s consider the
second tree of Figure 5.2. The leftmost branching vertex has two branches of lengths three
and one. The nim sum of three and one is two, so the two branches may be replaced by a
single branch of length two. The rightmost branching vertex has two branches of lengths
one and two whose nim sum is three, so the two branches may be replaced by a single
branch of length three. See the reduction in Figure 5.3. Continuing in like manner we
arrive at the conclusion that the second tree of Figure 5.2 is equivalent to a nim pile of 8
chips.
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Figure 5.3

Now try your luck with the third tree of Figure 5.2. See if you can show that it is
equivalent to a nim pile of size 4.

Now we can compute the Sprague-Grundy value of the sum of the three trees of Figure
5.2. It is 1 8 @ 4 = 13. Since this is not zero, it is a win for the next person to play.
The next problem is to find a winning move. It is clear that there is a winning move
using the second tree that may be obtained by chopping some edge to arrive at a tree of
Sprague-Grundy value 5. But which edge must be chopped to achieve this?

The last version of the tree in Figure 5.3 has length 8 because the three branches of the
previous tree were 3, 2 and 6, whose nim-sum is 3¢2&6 = 7. To achieve length 5 in the last
tree, we must change one of the three branches to achieve nim-sum 4. This may be done
most easily by chopping the leftmost branch entirely, since 2 & 6 = 4. Alternatively, we
may hack away the top edge of the middle branch leaving one edge, because 3® 1 & 6 = 4.

Each of these moves is easily translated into the corresponding chop on the tree on the
left of Figure 5.3. However, there is another way to reduce this tree to Sprague-Grundy
value 5, that uses the right branch of the tree. See if you can find it.

The method of pruning trees given by the colon principle works to reduce all trees
to a single bamboo stalk. One starts at the highest branches first, and then applies the
principle inductively down to the root. We now show the validity of this principle for
rooted graphs that may have circuits and several edges attached to the ground.

Proof of the Colon Principle. Consider a fixed but arbitrary graph, G, and select
an arbitrary vertex, z, in G. Let H; and Hs be arbitrary trees (or graphs) that have the
same Sprague-Grundy value. Consider the two graphs Gy = G, : H; and Gy = G, : Ho,
where G, : H; represents the graph constructed by attaching the tree H; to the vertex x
of the graph G. The colon principle states that the two graphs GG; and G2 have the same
Sprague-Grundy value. Consider the sum of the two games as in Figure 5.4.

The claim that G; and G2 have the same Sprague-Grundy value is equivalent to the
claim that the sum of the two games has Sprague-Grundy value 0. In other words, we are
to show that the sum G + G2 is a P-position.
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Figure 5.4

Here is a strategy that guarantees you a win if you are the second player to move
in G1 + Go. If the first player moves by chopping one of the edges in G in one of the
games, then you chop the same edge in G in the other game. (Such a pair of moves may
delete H; and Hs from the games, but otherwise H; and Hy are not disturbed.) If the
first player moves by chopping an edge in H; or Hs, then the Sprague-Grundy values of
H; and Hs are no longer equal, so that there exists a move in H; or Hs that keeps the
Sprague-Grundy values the same. In this way you will always have a reply to every move
he may make. This means you will make the last move and so win. m

5.3 Green Hackenbush on general rooted graphs. We now consider arbitrary
graphs. These graphs may have circuits and loops and several segments may be attached
to the ground. Consider Figure 5.5 as an example.

[ ]
*—eo—o
*—eo—o

Figure 5.5

From the general theory of Chapter 4, each separate graph is equivalent to some
nim pile. To find the equivalent nim pile, we look for an equivalent tree, from which the
equivalent nim pile may be found. This is done using the fusion principle. We fuse two
neighboring vertices by bringing them together into a single vertex and bending the edge
joining them into a loop. A loop is an edge joining a vertex to itself, as for example the
head of the juggler on the right of Figure 5.5. As far as Green Hackenbush is concerned,
a loop may be replaced by a leaf (an edge with one end unattached).
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The Fusion Principle: The vertices on any circuit may be fused without changing
the Sprague-Grundy value of the graph.

The fusion principle allows us to reduce an arbitrary rooted graph into an equivalent
tree which can be further reduced to a nim pile by the colon principle. Let us see how this
works on the examples of Figure 5.5.

Consider the door in the house on the left. The two vertices on the ground are the
same vertex (remember the ground is really a single vertex) so the door is really the same
as a triangle with one vertex attached to the ground. The fusion principle says that this is
equivalent to a single vertex with three loops attached. Each loop is equivalent to a nim
pile of size 1, and the nim sum of these is also a nim pile of size 1.

Figure 5.6

We see more generally that a circuit with an odd number of edges reduces to a single
edge, and a circuit with an even number of edges reduces to a single vertex. For example,
the circuit of four edges in the Christmas tree in the center of Figure 5.5 reduces to a
single vertex with four loops, which reduces to a single vertex. So the Christmas tree is
equivalent to a nim pile of size 1. Similarly, the chimney on the house becomes a single
vertex, and the window on the right of the house is also a single vertex. Continuing further,
we find that the house (door included) has SG-value 3.

Figure 5.7

Now see if you can show that the juggler on the right of Figure 5.5 has SG-value 4.
And then see if you can find a winning move in the Hackenbush position given by Figure
5.5.

The proof of the fusion principle is somewhat longer than the proof of the colon
principle, and so is omitted. For a proof, see Winning Ways, Chapter 7.
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5.4 Exercises.

1. (Stolen from Fair Game by Richard Guy.) Find the SG-values of the graphs in
Figure 5.8, and find a winning move, if any.

Figure 5.8
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