NETWORK FLOWS

A network consists of a loopless digraph $D=(V, A)$ plus a function $c: A \rightarrow \boldsymbol{R}_{+}$. Here $c(x, y)$ for $(x, y) \in A$ is the capacity of the edge (x, y).

We use the following notation: if $\phi: A \rightarrow \boldsymbol{R}$ and S, T are (not necessarily disjoint) subsets of V then

$$
\phi(S, T)=\sum_{\substack{x \in S \\ y \in T}} \phi(x, y) .
$$

Let s, t be distinct vertices. An $s-t$ flow is a function $f: A \rightarrow \boldsymbol{R}$ such that

$$
f(v, V \backslash\{v\})=f(V \backslash\{v\}, v) \text { for all } v \neq s, t .
$$

In words: flow into v equals flow out of v.

An $s-t$ flow is feasible if

$$
0 \leq f(x, y) \leq c(x, y) \quad \text { for all }(x, y) \in A
$$

An $s-t$ cut is a partition of V into two sets S, \bar{S} such that $s \in S$ and $t \in \bar{S}$.

The value v_{f} of the flow f is given by

$$
v_{f}=f(s, V \backslash\{s\})-f(V \backslash\{s\}, s) .
$$

Thus v_{f} is the net flow leaving s.

The capacity of the cut $S: \bar{S}$ is equal to $c(S, \bar{S})$.

Max-Flow Min-Cut Theorem

Theorem

$$
\max v_{f}=\min c(S, \bar{S})
$$

where the maximum is over feasible $s-t$ flows and the minimum is over $s-t$ cuts.

Proof We observe first that

$$
\begin{aligned}
f(S, \bar{S})-f(\bar{S}, S) & =(f(S, V)-f(S, S))-(f(V, S)-f(S, S)) \\
& =f(S, V)-f(V, S) \\
& =v_{f}+\sum_{v \in S \backslash\{s\}}(f(v, V)-f(V, v)) \\
& =v_{f}
\end{aligned}
$$

So,

$$
v_{f} \leq f(S, \bar{S}) \leq c(S, \bar{S})
$$

This implies that

$$
\begin{equation*}
\max v_{f} \leq \min c(S, \bar{S}) \tag{1}
\end{equation*}
$$

Given a flow f we define a flow augmenting path P to be a sequence of distinct vertices $x_{0}=s, x_{1}, x_{2}, \ldots, x_{k}=t$ such that for all i, either
(3) $\left(x_{i}, x_{i+1}\right) \in A$ and $f\left(x_{i}, x_{i+1}\right)<c\left(x_{i}, x_{i+1}\right)$, or
(2) $\left(x_{i+1}, x_{i}\right) \in A$ and $f\left(x_{i+1}, x_{i}\right)>0$.

If P is such a sequence, then we define $\theta_{P}>0$ to be the minimum over i of $c\left(x_{i}, x_{i+1}\right)-f\left(x_{i}, x_{i+1}\right)$ (Case (F1)) and $f\left(x_{i+1}, x_{i}\right)$ (Case (F2)).

Claim 1: f is a maximum value flow, iff there are no flow augmenting paths.
Proof If P is flow augmenting then define a new flow f^{\prime} as follows:
(1) $f^{\prime}\left(x_{i}, x_{i+1}\right)=f\left(x_{i}, x_{i+1}\right)+\theta_{P}$ or
(2) $f^{\prime}\left(x_{i+1}, x_{i}\right)=f\left(x_{i+1}, x_{i}\right)-\theta_{P}$
(3) For all other edges, (x, y), we have $f^{\prime}(x, y)=f(x, y)$.

We can see
that the flow
stays balanced at x_{i}.

We can see then that if there is a flow augmenting path then the new flow satisfies

$$
v_{f^{\prime}}=v_{f}+\theta_{P}>v_{f}
$$

Let S_{f} denote the set of vertices v for which there is a sequence $x_{0}=s, x_{1}, x_{2}, \ldots, x_{k}=v$ which satisfies F1, F2 of the definition of flow augmenting paths.

If $t \in S_{f}$ then the associated sequence defines a flow augmenting path. So, assume that $t \notin S_{f}$. Then we have,
(1) $s \in S_{f}$.
(2) If $x \in S_{f}, y \in \bar{S}_{f},(x, y) \in A$ then $f(x, y)=c(x, y)$, else we would have $y \in S_{f}$.
(3) If $x \in S_{f}, y \in \bar{S}_{f},(y, x) \in A$ then $f(y, x)=0$, else we would have $y \in S_{f}$.

We therefore have

$$
\begin{aligned}
v_{f} & =f\left(S_{f}, \bar{S}_{f}\right)-f\left(\bar{S}_{f}, S\right) \\
& =c\left(S, \bar{S}_{f}\right) .
\end{aligned}
$$

We see from this and (1) that f is a flow of maximum value and that the cut $S_{f}: \bar{S}_{f}$ is of minimum capacity.

This finishes the proof of Claim 1 and the Max-Flow Min-Cut theorem.

Note also that we can construct S_{f} by beginning with $S_{f}=\{s\}$ and then repeatedly adding any vertex $y \notin S_{f}$ for which there is $x \in S_{f}$ such that F 1 or F 2 holds. (A simple inductive argument based on sequence length shows that all of S_{f} is constructed in this way.)

Note also that we can construct S_{f} by beginning with $S_{f}=\{s\}$ and then repeatedly adding any vertex $y \notin S_{f}$ for which there is $x \in S_{f}$ such that F 1 or F 2 holds.

This defines an algorithm for finding a maximum flow. The construction either finishes with $t \in S_{f}$ and we can augment the flow.

Or, we find that $t \notin S_{f}$ and we have a maximum flow.
Note, that if all the capacities $c(x, y)$ are integers and we start with the all zero flow then we find that θ_{f} is always a positive integer (formally one can use induction to verify this).

It follows that in this case, there is always a maximum flow that only takes integer values on the edges.

Hall's Theorem.

Let $G=(A, B, E)$ be a bipartite graph with $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$. A matching M is a set of edges that meets each vertex at most once. A matching is perfect if it meets each vertex.
Hall's theorem:

Theorem

G contains a perfect matching iff $|N(S)| \geq|S|$ for all $S \subseteq A$.
Here $N(S)=\{b \in B: \exists a \in A$ s.t. $\{a, b\} \in E\}$.

Define a digraph Γ by adding vertices $s, t \notin A \cup B$. Then add edges $\left(s, a_{i}\right)$ and $\left(b_{i}, t\right)$ of capacity 1 for $i=1,2, \ldots, n$. Orient the edges E for A to B and give them capacity ∞.
G has a matching of size m iff there is an $s-t$ flow of value m. An $s-t$ cut $X: \bar{X}$ has capacity

$$
|A \backslash X|+|B \cap X|+|\{a \in X \cap A, b \in B \backslash X:\{a, b\} \in E\}| \times \infty .
$$

It follows that to find a minimum cut, we need only consider X such that

$$
\begin{equation*}
\{a \in X \cap A, b \in B \backslash X:\{a, b\} \in E\}=\emptyset . \tag{2}
\end{equation*}
$$

For such a set, we let $S=A \cap X$ and $T=X \cap B$. Condition (2) means that $T \supseteq N(S)$. The capacity of $X: \bar{X}$ is now $(n-|S|)+|T|$ and for a fixed S this is minimised for $T=N(S)$.

Thus, by the Max-Flow Min-Cut theorem

$$
\max \{|M|\}=\min _{X}\{c(X: \bar{X})\}=\min _{S}\{n-|S|+\mid N(S)\} .
$$

This implies Hall's theorem.

Graph orientation problem

Let $G=(V, E)$ be a graph. When is it possible to orient the edges of G to create a digraph $\Gamma=(V, A)$ so that every vertex has out-degree at least d. We say that G is d-orientable.

Theorem

G is d-orientable iff

$$
\begin{equation*}
|\{e \in E: e \cap S \neq \emptyset\}| \geq d|S| \text { for all } S \subseteq V \tag{3}
\end{equation*}
$$

Proof If G is d-orientable then

$$
|\{e \in E: e \cap S \neq \emptyset\}| \geq|\{(x, y) \in A: x \in S\}| \geq d|S|
$$

Suppose now that (3) holds. Define a network D as follows; the vertices are s, t, V, E - yes, D has a vertex for each edge of G.

There is an edge of capacity d from s to each $v \in V$ and an edge of capacity one from each $e \in E$ to t. There is an edge of infinite capacity from $v \in V$ to each edge e that contains v.

Consider an integer flow f. Suppose that $e=\{v, w\} \in E$ and $f(e, t)=1$. Then either $f(v, e)=1$ or $f(w, e)=1$. In the former we interpret this as orienting the edge e from v to w and in the latter from w to v.

Under this interpretation, G is d-orientable iff D has a flow of value $d|V|$.

Let $X: \bar{X}$ be an $s-t$ cut in N. Let $S=X \cap V$ and $T=X \cap E$.

To have a finite capacity, there must be no $x \in S$ and $e \in E \backslash T$ such that $x \in e$.

So, the capacity of a finite capacity cut is at least

$$
d(|V|-|S|)+|\{e \in E: e \cap S \neq \emptyset\}|
$$

And this is at least $d|V|$ if (3) holds.

0-1 Matrices

Theorem

Let a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{n} be two sets of non-negative integers where $b_{1} \geq \cdots \geq b_{n}$. Then there is an $m \times n 0-1$ matrix $M=\left(M_{i, j}\right)$ satisfying

$$
\begin{equation*}
\sum_{i=1}^{m} M_{i, j}=b_{j}, j \in[n] \quad \text { and } \quad \sum_{j=1}^{n} M_{i, j} \leq a_{i}, i \in[m] \tag{4}
\end{equation*}
$$

iff

$$
\begin{equation*}
\sum_{j=1}^{k} b_{j} \leq \sum_{i \in A_{k}} a_{i}+k\left(m-\left|A_{k}\right|\right), \quad k=0, \ldots, n-1 \tag{5}
\end{equation*}
$$

where $A_{k}=\left\{i: a_{i}<k\right\}$

Proof Suppose first that the matrix M exists. Fix k and observe that the number of 1 's in the first k rows is $b_{1}+\cdots+b_{k}$.

On the other hand the number of 1 's in the whole matrix is at least $\sum_{i \in A_{k}} a_{i}+k\left(m-\left|A_{k}\right|\right)$ and so (5) holds.

Now suppose that (5) holds. Define a network N as follows; the vertices are s, t, R, C where $R=\left\{r_{1}, \ldots, r_{n}\right\}, C=\left\{c_{1}, \ldots, c_{n}\right\}$.

There is an edge of capacity b_{i} from s to $r_{i}, i \in[n]$; an edge of capacity a_{j} from c_{j} to $t, j \in[n]$; an edge of capacity 1 from r_{i} to b_{j}.

Then matrix M exists if there is a flow f of value $b_{1}+\cdots+b_{n}$ from s to t. It is defined by $M_{i, j}=f\left(r_{i}, c_{j}\right)$.

Let $X: \bar{X}$ be an $s-t$ cut and let $S=X \cap R, T=X \cap C$ where $|S|=k$. The capacity of $X: \bar{X}$ is

$$
\begin{aligned}
& \sum_{i \notin S} b_{i}+\sum_{j \in T} a_{j}+|S|(n-|T|) \\
& \geq \sum_{i=k+1}^{n} b_{i}+\sum_{j \in A_{k}} a_{j}+k\left(n-\left|A_{k}\right|\right) \\
& =\sum_{i=1}^{n} b_{i}+\left(\sum_{j \in A_{k}} a_{j}+k\left(n-\left|A_{k}\right|\right)-\sum_{i=1}^{k} b_{i}\right) \\
& \geq \sum_{i=1}^{n} b_{i},
\end{aligned}
$$

as we have assume that (5) holds. Applying the Max-Flow Min-Cut theorem, we see that there is a flow of value $b_{1}+\cdots+b_{n}$.

