

MATROIDS

MATROIDS

Hereditary Families

Given a Ground Set *E*, a Hereditary Family *A* on *E* is collection of subsets $\mathcal{I} = \{l_1, l_2, ..., l_m\}$ (the independent sets) such that

 $I \in \mathcal{I}$ and $J \subseteq I$ implies that $J \in \mathcal{I}$.

- The set \mathcal{M} of matchings of a graph G = (V, E).
- 2 The set of (edge-sets of) forests of a graph G = (V, E).
- The set of stable sets of a graph G = (V, E). We say that *S* is stable if it contains no edges.
- If G = (A, B, E) is a bipartite graph and $\mathcal{I} = \{S \subseteq B : \exists \text{ a matching } M \text{ that covers } S\}$.
- Solution Let $c_1, c_2, ..., c_n$ be the columns of an $m \times n$ matrix **A**. Then E = [n] and $\mathcal{I} = \{S \subseteq [n] : \{c_i, i \in S\}$ are linearly independent $\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Matroids

An independence system is a matroid if whenever $I, J \in \mathcal{I}$ with |J| = |I| + 1 there exists $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$. We call this the Independent Augmentation Axiom – IAA.

Matroid independence is a generalisation of linear independence in vector spaces. Only Examples 2,4 and 5 above are matroids.

To check Example 5, let \mathbf{A}_I be the $m \times |I|$ sub-matrix of \mathbf{A} consisting of the columns in I. If there is no $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$ then $\mathbf{A}_J = \mathbf{A}_I \mathbf{M}$ for some $|I| \times |J|$ matrix \mathbf{M} .

Matrix **M** has more columns than rows and so there exists $\mathbf{x} \neq \mathbf{0}$ such that $\mathbf{M}\mathbf{x} = \mathbf{0}$. But then $\mathbf{A}_{J}\mathbf{x} = \mathbf{0}$, implying that the columns of \mathbf{A}_{J} are linearly dependent. Contradiction.

These are called Representable Matroids.

Cycle Matroids/Graphic Matroids

To check Example 2 we define the vertex-edge incidence matrix A_G of graph G = (V, E) over GF_2 .

 A_G has a row for each vertex $v \in V$ and a column for each edge $e \in E$. There is a 1 in row v, column e iff $v \in e$.

We verify that a set of columns c_i , $i \in I$ are linearly dependent iff the corresponding edges contain a cycle.

If the edges contain a cycle $(v_1, v_2, ..., v_k, v_1)$ then the sum of the columns corresponding to the vertices of the cycle is **0**.

To show that a forest *F* defines a linearly independent set of columns I_F , we use induction on the number of edges in the forest. This is trivial if |E(F)| = 1.

Cycle Matroids/Graphic Matroids

Let A_F denote the submatrix of A made up of the columns corresponding F.

Now a forest *F* must contain a vertex *v* of degree one. This means that the row corresponding to *v* in A_F has a single one, in column *e* say.

Consider the forest $F' = F \setminus \{e\}$. Its corresponding columns $I_{F'}$ are linearly independent, by induction. Adding back *e* adds a row with a single one and preserves independence. Let **B** denote $A_{F'}$ minus row *e*.

$$\mathbf{A}_{\mathcal{F}} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ & \mathbf{B} \end{bmatrix}.$$

イロト イポト イヨト イヨト 三日

Transversal Matroids

We now check Example 4. These are called Transversal Matroids. If M_1 , M_2 are two matchings in a graph G then $M_1 \oplus M_2 = (M_1 \setminus M_2) \cup (M_2 \setminus M_1)$ consists of alternating paths and cycles.

 $\bullet \stackrel{M_1}{\bullet} \stackrel{M_2}{\bullet} \stackrel{M_1}{\bullet} \bullet$

Suppose now that we have two matchings M_1 , M_2 in bipartite graph G = (A, B, E). Let I_j , j = 1, 2 be the vertices in B covered by M_j . Suppose that $|I_1| > |I_2|$.

Then $M_1 \oplus M_2$ must contain an alternating path P with end points $b \in I_1 \setminus I_2$, $a \in A$. Let E_1 be the M_1 edges in P and let E_2 be the M_2 edges of P. Then $(M_1 \cup E_1) \setminus E_2$ is a matching that covers $I_1 \cup \{b\}$.

<ロ> (四) (四) (三) (三) (三)

A matroid is binary if is representable by a matrix over GF_2 .

So a graphic matroid is binary.

A matroid is regular if it can be represented by a matrix of elements in $\{0, \pm 1\}$ for which every square sub-matrix has determinant $0, \pm 1$. These are called totally unimodular matrices

A matrix with 2 non-zeros in each column, one equal to +1 and the other equal to -1 is totally unimodular. This implies that graphic matroids are regular. (Take the vertex-edge incidence matrix and replace one of the ones in each column by a -1.)

Partition Matroids

Given a partition E_1, E_2, \ldots, E_m of E and non-negative integers k_1, k_2, \ldots, k_m we define the associated partition matroid as follows:

 $I \in \mathcal{I}$ iff $|I \cap E_i| \leq k_i, i = 1, 2, \ldots, m$.

Partition matroids are representable.

イロト イ押ト イヨト イヨトー

æ

A matroid basis is a maximal independent set i.e. *B* is a basis if there does **not** exist an independent set $I \neq B$ such that $I \supset B$.

So the bases of the cycle matroid of a graph G consist of the spanning trees of G.

Lemma

If B_1 , B_2 are bases of a matroid \mathcal{M} , then $|B_1| = |B_2|$.

Proof: If $|B_1| > |B_2|$ then there exists $e \in B_1 \setminus B_2$ such that $B_2 \cup \{e\}$ is independent. Contradicting the fact that B_2 is maximal.

ヘロト ヘアト ヘヨト ヘ

Theorem

A collection $\mathcal{B} = \{B_1, B_2, ..., B_m\}$ of subsets of E form the bases of a matroid on E iff for all i, j and $e \in B_i \setminus B_j$ there exists $f \in B_j \setminus B_i$ such that $(B_i \cup \{f\}) \setminus \{e\} \in \mathcal{B}$.

Proof: Suppose first that \mathcal{B} are the bases of a matroid with independent sets \mathcal{I} and that $e \in B_i$ and $e \notin B_j$. Then $B'_i = B_i \setminus \{e\} \in \mathcal{I}$ and $|B'_i| < |B_j|$. So there exists $f \in B_j \setminus B'_i$ such that $B''_i = B'_i \cup \{f\} \in \mathcal{I}$. Now $f \neq e$ since $e \notin B_j$ and $|B''_i| = |B_i|$. So B''_i must be a basis.

Conversely, suppose that \mathcal{B} satisfies the conditions of the theorem and that $\mathcal{I} = \{S : \exists i \ s.t. \ S \subseteq B_i\}$. Clearly \mathcal{I} is hereditary.

ヘロト 人間 ト ヘヨト ヘヨト

We first argue that all the sets in \mathcal{B} are of the same size.

Suppose that $A = \{i : |B_i| = \max\{|B| : B \in B\}\}$ and suppose that $A \neq [m]$. Suppose that

 $\min\{|B_i - B_j| : i \in A, j \notin A\} = |B_1 \setminus B_2|.$

Let $x \in B_1 \setminus B_2$ and let $y \in B_2 \setminus B_1$ be such that $B' = ((B_1 \cup y) \setminus \{x\}) \in \mathcal{B}$.

Then we have $B' \in A$ and $|B' \setminus B_2| < |B_1 \setminus B_2|$, contradiction.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Suppose now that $l_1, l_2 \in \mathcal{I}$ with $|l_2| > |l_1|$ and there does not exist $e \in l_2 \setminus l_1$ for which $l_1 \cup \{e\} \in \mathcal{I}$.

Choose $B_j \supseteq I_j$, j = 1, 2 such that $|B_2 \setminus (I_2 \cup B_1)|$ is minimal.

We must have $I_2 \setminus B_1 = I_2 \setminus I_1$. If $x \in I_2 \cap B_1$ and $x \notin I_1$ then $I_1 \cup \{x\} \subseteq B_1$ and so $I_1 \cup \{x\} \in \mathcal{I}$.

Suppose there exists $x \in B_2 \setminus (I_2 \cup B_1)$. Then by assumption there is $y \in B_1 \setminus B_2$ such that $B' = (B_2 \cup \{y\}) \setminus \{x\} \in \mathcal{B}$. But then $B' \setminus (I_2 \cup B_1) = (B_2 \setminus (I_2 \cup B_1)) \setminus \{x\}$, contradicting the definition of B_2 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

So $B_2 \subseteq (I_2 \cup B_1) = (I_2 \setminus B_1) \cup (B_1 \setminus I_2) = (I_2 \setminus I_1) \cup (B_1 \setminus I_2)$ and so

$$B_2 \setminus B_1 = I_2 \setminus I_1. \tag{1}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

We show next that $B_1 \subseteq (I_1 \cup B_2)$. If there exists $x \in B_1 \setminus (I_1 \cup B_2)$ then there exists $y \in B_2 \setminus B_1$ such that $B' = (B_1 \cup \{y\}) \setminus \{x\} \in \mathcal{B}$. But $(I_1 \cup \{x\}) \subseteq B'$, contradiction.

So, $B_1 \setminus B_2 = I_1 \setminus B_2 \subseteq I_1 \setminus I_2$. Since $|B_1 \setminus B_2| = |B_2 \setminus B_1|$ we see from this and (1) that $|I_1 \setminus I_2| \ge |I_2 \setminus I_1|$ and so $|I_1| \ge |I_2|$, contradiction.

Rank

If $S \subseteq E$ then its rank

 $r(S) = \max |\{I \in \mathcal{I} : I \subseteq S\}|.$

So $S \in \mathcal{I}$ iff r(S) = |S|. We show next that r is submodular.

Theorem

If $S, T \subseteq E$ then $r(S \cup T) + r(S \cap T) \leq r(S) + r(T)$.

Proof: Let l_1 be a maximal independent subset of $S \cap T$ and let l_2 be a maximal independent subset of $S \cup T$ that contains l_2 . (Such a set exists because of the IAA.)

But then

 $r(S \cap T) + r(S \cup T) = |I_1| + |I_2| = |I_2 \cap S| + |I_2 \cap T| \le r(S) + r(T).$

For representable matroids this coresponds to the usual definition of rank.

For the cycle matroid of graph G = (V, E), if $S \subseteq E$ is a set of edges and G_S is the graph (V, S) then $r(S) = |V| - \kappa(G_S)$, where $\kappa(G_S)$ is the number of components of G_S .

This clearly true for connected graphs and so if $C_1, C_2, ..., C_s$ are the components of G_S then $r(S) = \sum_{i=1}^{s} |C_i| - 1 = |V| - s$.

For a partition matroid as defined above,

$$r(S) = \sum_{i=1}^{m} \min\{k_i, |S \cap E_i|\}.$$

MATROIDS

ヘロン 人間 とくほ とくほ とう

Circuits

A circuit of a matroid \mathcal{M} is a minimal dependent set. If a set $S \subseteq E, S \notin \mathcal{I}$ then S contains a circuit.

So the circuits of the cycle matroid of a graph G are the cycles.

Theorem

If C_1, C_2 are circuits of \mathcal{M} and $e \in C_1 \cap C_2$ then there is a circuit $C \subseteq (C_1 \cup C_2) \setminus \{e\}$.

Proof: We have $r(C_i) = |C_i| - 1, i = 1, 2$. Also,

 $r(C_1 \cap C_2) = |C_1 \cap C_2|$ since $C_1 \cap C_2$ is a proper subgraph of C_1 .

If $C' = (C_1 \cup C_2) \setminus \{e\}$ contains no circuit then $r(C_1 \cup C_2) \ge r(C') = |C_1 \cup C_2| - 1$. But then

 $\begin{aligned} |C_1 \cup C_2| - 1 &\leq r(C_1 \cup C_2) \leq r(C_1) + r(C_2) - r(C_1 \cap C_2) \\ &= (|C_1| - 1) + (|C_2| - 1) - |C_1 \cap C_2|. \end{aligned}$

Contradiction.

Theorem

If *B* is a basis of \mathcal{M} and $e \in E \setminus B$ then $B' = B \cup \{e\}$ contains a unique circuit C(e, B). Furthermore, if $f \in C(e, B)$ then $(B \cup \{e\}) \setminus \{f\}$ is also a basis of \mathcal{M} .

Proof: $B' \notin \mathcal{I}$ because *B* is maximal. So *B'* must contain at least one circuit.

Suppose it contains distinct circuits C_1, C_2 . Then $e \in C_1 \cap C_2$ and so B' contains a circuit $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.

But then $C_3 \subseteq B$, contradiction.

Theorem

If \mathcal{B} denotes the set of bases of a matroid \mathcal{M} on ground set E then $\mathcal{B}^* = \{E \setminus B : B \in \mathcal{B}\}$ is the set of bases of a matroid \mathcal{M}^* , the dual matroid.

Proof: Suppose that $B_1^*, B_2^* \in \mathcal{B}^*$ and $e \in B_1^* \setminus B_2^*$.

Let $B_i = E \setminus B_i^*$, i = 1, 2. Then $e \in B_2 \setminus B_1$.

So there exists $f \in B_1 \setminus B_2$ such that $(B_2 \cup \{e\}) \setminus \{f\} \in \mathcal{B}$.

This implies that $(\mathcal{B}_2^* \cup \{f\}) \setminus \{e\} \in \mathcal{B}^*$.

Greedy Algorithm

Suppose that each $e \in E$ is given a weight w_e and that the weight w(I) of an independent set I is given by $w(I) = \sum_{e \in I} c_e$. The problem we discuss is

Maximize w(I) subject to $I \in \mathcal{I}$.

Greedy Algorithm:

```
begin
```

end

```
Sort E = \{e_1, e_2, \dots, e_m\} so w(e_i) \ge w(e_{i+1}) for 1 \le i < m;
S \leftarrow \emptyset:
for i = 1, 2, ..., m;
beain
    if S \cup \{e_i\} \in \mathcal{I} then;
    begin;
         S \leftarrow S \cup \{e_i\};
    end:
end:
                                                    ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの
```

Theorem

The greedy algorithm finds a maximum weight independent set for all choices of w if and only if it is a matroid.

Suppose first that the Greedy Algorithm always finds a maximum weight independent set. Suppose that $\emptyset \neq I, J \in \mathcal{I}$ with |J| = |I| + 1. Define

$$w(e) = \begin{cases} 1 + \frac{1}{2|I|} & e \in I. \\ 1 & e \in J \setminus I. \\ 0 & e \notin I \cup J. \end{cases}$$

If there does not exist $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$ then the Greedy Algorithm will choose the elements of I and stop. But I does not have maximum weight. Its weight is |I| + 1/2 < |J|. So if Greedy succeeds, then the IAA holds.

Greedy Algorithm

Conversely, suppose that our independence system is a matroid. We can assume that w(e) > 0 for all $e \in E$. Otherwise we can restrict ourselves to the matroid defined by $\mathcal{I}' = \{I \subseteq E^+\}$ where $E^+ = \{e \in E : w(e) > 0\}$.

Suppose now that Greedy chooses $I_G = e_{i_1}, e_{i_2}, \ldots, e_{i_k}$ where $i_t < i_{t+1}$ for $1 \le t < k$. Let $I = e_{j_1}, e_{j_2}, \ldots, e_{j_\ell}$ be any other independent set and assume that $j_t < j_{t+1}$ for $1 \le t < \ell$. We can assume that $\ell \ge k$, for otherwise we can add something from I_G to I to give it larger weight.

We show next that $k = \ell$ and that $i_t \le j_t$ for $1 \le t \le k$. This implies that $w(I_G) \ge w(I)$.

ヘロト ヘアト ヘビト ヘビト

Greedy Algorithm

Suppose then that there exists *t* such that $i_t > j_t$ and let *t* be as small as possible for this to be true.

Now consider $I = \{e_{i_s} : s = 1, 2, \dots, t-1\}$ and $J = \{e_{i_s} : s = 1, 2, \dots, t\}$. Now there exists $e_{i_s} \in J \setminus I$ such that $I \cup \{e_{i_s}\} \in \mathcal{I}$.

But $j_s \leq j_t < i_t$ and Greedy should have chosen e_{j_s} before choosing $e_{i_{t+1}}$.

Also, $i_k \leq j_k$ implies that $k = \ell$. Otherwise Greedy can find another element from $I \setminus I_G$ to add.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Minors

Given a graph G = (V, E) and an edge *e* we can get new graphs by deleting *e* or contracting *e*.

We describe a corresponding notion for matroids. Suppose that $F \subseteq E$ then we define the matroid $\mathcal{M}_{\setminus F}$ with independent sets $\mathcal{I}_{\setminus F}$ obtained by deleting $F: I \in \mathcal{I}_{\setminus F}$ if $I \in \mathcal{I}, I \cap F = \emptyset$.

It is clear that the IAA holds for $\mathcal{M}_{\setminus F}$ and so it is a matroid.

For contraction we will assume that $F \in \mathcal{I}$. Then contracting F defines \mathcal{M} . F with independent sets \mathcal{I} . $F = \{I \in \mathcal{I} : I \cap F = \emptyset, I \cup F \in \mathcal{I}\}.$

We argue next that \mathcal{M} . *F* is also a matroid.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Minors

Lemma

$$\mathcal{M}.F = (\mathcal{M}^*_{\setminus F})^*$$
 and $\mathcal{M}_{\setminus F} = (\mathcal{M}^*.F)^*$

Proof:

$$I \in \mathcal{I}.F \leftrightarrow \exists B \in \mathcal{B}_{\backslash F}, I \subseteq B$$
$$\leftrightarrow \exists B^* \in \mathcal{B}^*_{\backslash F}, I \cap B^* = \emptyset$$
$$\leftrightarrow I \in (\mathcal{I}^*_{\backslash F})^*.$$

For the second claim we use

$$\mathcal{M}^*.F = (\mathcal{M}^{**}_{\setminus F})^* = (\mathcal{M}_{\setminus F})^*.$$

₹ 990

・ロト ・聞ト ・ヨト ・ヨト

Suppose we are given two matroids $\mathcal{M}_1, \mathcal{M}_2$ on the same ground set *E* with $\mathcal{I}_1, \mathcal{I}_2$ and r_1, r_2 etc. having there obvious meaning.

An intersection is a set $I \in \mathcal{I}_1 \cap \mathcal{I}_2$. We give a min-max relation for the size of the largest independent intersection. Let \mathcal{J} denote the set of intersections.

Theorem (Edmonds)

 $\max\{J \in \mathcal{J}\} = \min\{r_1(A) + r_2(E \setminus A) : A \subseteq E\}.$

MATROIDS

Before proving the theorem let us see a couple of applications:

Hall's Theorem: suppose we are given a bipartite graph G = (A, B, E). Let $\mathcal{M}_A, \mathcal{M}_B$ be the following two partition matroids.

For \mathcal{M}_A we define the partition $E_a = \{e \in x : a \in e\}, a \in A$. We let $k_a = 1$ for $a \in A$. We define \mathcal{M}_B similarly.

Intersections correspond to matchings and $r_1(A)$ is the number of vertices in *A* that are incident with an edge of *A*. Similarly $r_2(E \setminus A)$ is the number of vertices in *B* that are incident with an edge not in *A*.

(日)

Matroid Intersection

For $X \subseteq A$, let

 $A_X = \{ v \in A : v \in e \text{ for some } e \in X \}.$

Define B_X similarly.

So

 $\max\{|\mathbf{M}|\} = \min\{|\mathbf{A}_X| + |\mathbf{B}_{E \setminus X}|: X \subseteq E\}.$

Now we can assume that if $e \in E \setminus X$ then $e \cap A_X = \emptyset$, otherwise moving *e* to *X* does not increase the RHS of the above.

Let $S = A \setminus A_X$. Then $|B_{E \setminus X}| = |N(A)|$ and so

 $\max\{|M|\} = \min\{|A| - |S| + |N(S)| : S \subseteq A\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Matroid Intersection

Rainbow Spanning Trees: we are given a connected graph G = (V, E) where each edge $e \in E$ is given a color $c(e) \in [m]$ where $m \ge n - 1$. Let $E_i = \{e : c(e) = i\}$ for $i \in [m]$.

A set of edges S is said to be rainbow colored if $e, f \in S$ implies that $c(e) \neq c(f)$.

For a set $A \subseteq E$, we let

 $r_1(A) = c(A) = |\{i \in [m] : \exists e \in A \text{ s.t. } c(e) = i\}|$ $r_2(E \setminus A) = n - \kappa(G \setminus A).$

So, G contains a rainbow spanning tree iff

 $c(A) + (n - \kappa(G \setminus A)) \ge n - 1 \text{ for all } A \subseteq E.$ (2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

We simplify (2) to obtain

 $c(A) + 1 \ge \kappa(G \setminus A). \tag{3}$

We can then further simplify (3) as follows: if we add to *A* all edges that use a color used by some edge of *A* then we do not change c(A) but we do not decrease $\kappa(G \setminus A)$.

Thus we can restrict our sets *A* to $E_I = \bigcup_{i \in I} E_i$ for some $I \subseteq [m]$. Then (3) becomes

 $\kappa(E_{[m]\setminus I}) \leq |I| + 1$ for all $I \subseteq [m]$

or

$$\kappa(E_I) \leq m - |I| + 1$$
 for all $I \subseteq [m]$

If you think for a moment, you will see that this is obviously necessary.

Proof of the matroid intersection theorem.

For the upper bound consider $J \in \mathcal{J}$ and $A \subseteq E$. Then

 $|J| = |J \cap A| + |J \setminus A| \le r_1(A) + r_2(E \setminus A).$

We assume that $e \in \mathcal{J}$ for all $e \in E$. (Loops can be "ignored".)

We proceed by induction on |E|. Let

 $k = \min\{r_1(A) + r_2(E \setminus A) : A \subseteq E\}.$

Suppose that |J| < k for all $J \in \mathcal{J}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Matroid Intersection

Then $(\mathcal{M}_1)_{\{e\}}$ and $(\mathcal{M}_2)_{\{e\}}$ have no common independent set of size *k*. This implies that if $F = E \setminus \{e\}$ then

 $r_1(A) + r_2(F \setminus A) \le k - 1$ for some $A \subseteq F$.

Similarly, M_1 .{*e*} and M_2 .{*e*} have no common independent set of size k - 1. This implies that

 $r_1(B) - 1 + r_2(E \setminus (B \setminus \{e\})) - 1 \le k - 2$ for some $e \in B \subseteq E$.

This gives

 $r_1(A)+r_2(E\setminus (A\cup \{e\}))+r_1(B)+r_2(E\setminus (B\setminus \{e\}))\leq 2k-1.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Matroid Intersection

So, using submodularity and

 $(E \setminus (A \cup \{e\})) \cup (E \setminus (B \setminus \{e\})) = E \setminus (A \cap B)$

and

 $(E \setminus (A \cup \{e\})) \cap (E \setminus (B \setminus \{e\})) = E \setminus (A \cup B).$

We have used $e \notin A$ and $e \in B$ here. So,

 $r_1(A \cup B) + r_2(E \setminus (A \cup B)) + r_1(A \cap B) + r_2(E \setminus (A \cap B))$ $\leq 2k - 1.$

But, by assumption,

 $r_1(A \cup B) + r_2(E \setminus (A \cup B)) \ge k, \ r_1(A \cap B) + r_2(E \setminus (A \cap B)) \ge k,$

contradiction.