MATROIDS
Hereditary Families

Given a **Ground Set** E, a **Hereditary Family** \mathcal{A} on E is a collection of subsets $\mathcal{I} = \{I_1, I_2, \ldots, I_m\}$ (the **independent sets**) such that

\[I \in \mathcal{I} \text{ and } J \subseteq I \text{ implies that } J \in \mathcal{I}. \]

1. The set \mathcal{M} of matchings of a graph $G = (V, E)$.
2. The set of (edge-sets of) forests of a graph $G = (V, E)$.
3. The set of **stable** sets of a graph $G = (V, E)$. We say that S is stable if it contains no edges.
4. If $G = (A, B, E)$ is a bipartite graph and $\mathcal{I} = \{S \subseteq B : \exists \text{ a matching } M \text{ that covers } S\}$.
5. Let c_1, c_2, \ldots, c_n be the columns of an $m \times n$ matrix A. Then $E = [n]$ and $\mathcal{I} = \{S \subseteq [n] : \{c_i, i \in S\} \text{ are linearly independent}\}$.
An independence system is a matroid if whenever $I, J \in \mathcal{I}$ with $|J| = |I| + 1$ there exists $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$. We call this the Independent Augmentation Axiom – IAA.

Matroid independence is a generalisation of linear independence in vector spaces. Only Examples 2, 4 and 5 above are matroids.

To check Example 5, let A_I be the $m \times |I|$ sub-matrix of A consisting of the columns in I. If there is no $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$ then $A_J = A_I M$ for some $|I| \times |J|$ matrix M.

Matrix M has more columns than rows and so there exists $x \neq 0$ such that $Mx = 0$. But then $A_J x = 0$, implying that the columns of A_J are linearly dependent. Contradiction.

These are called Representable Matroids.
To check Example 2 we define the vertex-edge incidence matrix A_G of graph $G = (V, E)$ over GF_2.

A_G has a row for each vertex $v \in V$ and a column for each edge $e \in E$. There is a 1 in row v, column e iff $v \in e$.

We verify that a set of columns $c_i, i \in I$ are linearly dependent iff the corresponding edges contain a cycle.

If the edges contain a cycle $(v_1, v_2, \ldots, v_k, v_1)$ then the sum of the columns corresponding to the vertices of the cycle is 0.

To show that a forest F defines a linearly independent set of columns I_F, we use induction on the number of edges in the forest. This is trivial if $|E(F)| = 1$.

MATROIDS
Let A_F denote the submatrix of A made up of the columns corresponding F.

Now a forest F must contain a vertex v of degree one. This means that the row corresponding to v in A_F has a single one, in column e say.

Consider the forest $F' = F \setminus \{e\}$. Its corresponding columns $I_{F'}$ are linearly independent, by induction. Adding back e adds a row with a single one and preserves independence. Let B denote $A_{F'}$ minus row e.

$$A_F = \begin{bmatrix} 1 & 0 \\ B \end{bmatrix}.$$
We now check Example 4. These are called Transversal Matroids. If M_1, M_2 are two matchings in a graph G then $M_1 \oplus M_2 = (M_1 \setminus M_2) \cup (M_2 \setminus M_1)$ consists of alternating paths and cycles.

Suppose now that we have two matchings M_1, M_2 in bipartite graph $G = (A, B, E)$. Let $I_j, j = 1, 2$ be the vertices in B covered by M_j. Suppose that $|I_1| > |I_2|$.

Then $M_1 \oplus M_2$ must contain an alternating path P with end points $b \in I_1 \setminus I_2, a \in A$. Let E_1 be the M_1 edges in P and let E_2 be the M_2 edges of P. Then $(M_1 \cup E_1) \setminus E_2$ is a matching that covers $I_1 \cup \{b\}$.
A matroid is **binary** if it is representable by a matrix over \mathbb{GF}_2.

So a graphic matroid is binary.

A matroid is **regular** if it can be represented by a matrix of elements in $\{0, \pm 1\}$ for which every square sub-matrix has determinant $0, \pm 1$. These are called **totally unimodular matrices**.

A matrix with 2 non-zeros in each column, one equal to $+1$ and the other equal to -1 is totally unimodular. This implies that graphic matroids are regular. (Take the vertex-edge incidence matrix and replace one of the ones in each column by a -1.)
Partition Matroids

Given a partition E_1, E_2, \ldots, E_m of E and non-negative integers k_1, k_2, \ldots, k_m we define the associated partition matroid as follows:

$$I \in \mathcal{I} \text{ iff } |I \cap E_i| \leq k_i, \ i = 1, 2, \ldots, m.$$

Partition matroids are representable.
A matroid **basis** is a maximal independent set i.e. \(B \) is a basis if there does **not** exist an independent set \(I \neq B \) such that \(I \supset B \).

So the bases of the cycle matroid of a graph \(G \) consist of the spanning trees of \(G \).

Lemma

If \(B_1, B_2 \) are bases of a matroid \(\mathcal{M} \), then \(|B_1| = |B_2|\).

Proof: If \(|B_1| > |B_2|\) then there exists \(e \in B_1 \setminus B_2 \) such that \(B_2 \cup \{e\} \) is independent. Contradicting the fact that \(B_2 \) is maximal. □
Theorem

A collection $\mathcal{B} = \{B_1, B_2, \ldots, B_m\}$ of subsets of E form the bases of a matroid on E iff for all i, j and $e \in B_i \setminus B_j$ there exists $f \in B_j \setminus B_i$ such that $(B_i \cup \{f\}) \setminus \{e\} \in \mathcal{B}$.

Proof: Suppose first that \mathcal{B} are the bases of a matroid with independent sets \mathcal{I} and that $e \in B_i$ and $e \notin B_j$. Then $B'_i = B_i \setminus \{e\} \in \mathcal{I}$ and $|B'_i| < |B_j|$. So there exists $f \in B_j \setminus B'_i$ such that $B''_i = B'_i \cup \{f\} \in \mathcal{I}$. Now $f \neq e$ since $e \notin B_j$ and $|B''_i| = |B_i|$. So B''_i must be a basis.

Conversely, suppose that \mathcal{B} satisfies the conditions of the theorem and that $\mathcal{I} = \{S : \exists i \text{ s.t. } S \subseteq B_i\}$. Clearly \mathcal{I} is hereditary.
We first argue that all the sets in \mathcal{B} are of the same size.

Suppose that $A = \{i : |B_i| = \max\{|B| : B \in \mathcal{B}\}\}$ and suppose that $A \neq [m]$. Suppose that

$$\min\{|B_i - B_j| : i \in A, j \notin A\} = \left|B_1 \setminus B_2\right|.$$

Let $x \in B_1 \setminus B_2$ and let $y \in B_2 \setminus B_1$ be such that $B' = ((B_1 \cup y) \setminus \{x\}) \in \mathcal{B}$.

Then we have $B' \in A$ and $|B' \setminus B_2| < |B_1 \setminus B_2|$, contradiction.
Suppose now that \(I_1, I_2 \in \mathcal{I} \) with \(|I_2| > |I_1| \) and there does not exist \(e \in l_2 \setminus I_1 \) for which \(I_1 \cup \{ e \} \in \mathcal{I} \).

Choose \(B_j \supseteq I_j, j = 1, 2 \) such that \(|B_2 \setminus (I_2 \cup B_1)| \) is minimal.

We must have \(l_2 \setminus B_1 = l_2 \setminus I_1 \). If \(x \in l_2 \cap B_1 \) and \(x \notin I_1 \) then \(I_1 \cup \{ x \} \subseteq B_1 \) and so \(I_1 \cup \{ x \} \in \mathcal{I} \).

Suppose there exists \(x \in B_2 \setminus (I_2 \cup B_1) \). Then by assumption there is \(y \in B_1 \setminus B_2 \) such that \(B' = (B_2 \cup \{ y \}) \setminus \{ x \} \in \mathcal{B} \). But then \(B' \setminus (I_2 \cup B_1) = (B_2 \setminus (I_2 \cup B_1)) \setminus \{ x \} \), contradicting the definition of \(B_2 \).
So $B_2 \subseteq (l_2 \cup B_1) = (l_2 \backslash B_1) \cup (B_1 \backslash l_2) = (l_2 \backslash l_1) \cup (B_1 \backslash l_2)$ and so

$$B_2 \backslash B_1 = l_2 \backslash l_1. \quad (1)$$

We show next that $B_1 \subseteq (l_1 \cup B_2)$. If there exists $x \in B_1 \backslash (l_1 \cup B_2)$ then there exists $y \in B_2 \backslash B_1$ such that $B' = (B_1 \cup \{y\}) \backslash \{x\} \in \mathcal{B}$. But $(l_1 \cup \{x\}) \subseteq B'$, contradiction.

So, $B_1 \backslash B_2 = l_1 \backslash B_2 \subseteq l_1 \backslash l_2$. Since $|B_1 \backslash B_2| = |B_2 \backslash B_1|$ we see from this and (1) that $|l_1 \backslash l_2| \geq |l_2 \backslash l_1|$ and so $|l_1| \geq |l_2|$, contradiction.
If $S \subseteq E$ then its rank

$$r(S) = \max \{|I \in \mathcal{I} : I \subseteq S|\}.$$

So $S \in \mathcal{I}$ iff $r(S) = |S|$. We show next that r is submodular.

Theorem

If $S, T \subseteq E$ then $r(S \cup T) + r(S \cap T) \leq r(S) + r(T)$.

Proof: Let I_1 be a maximal independent subset of $S \cap T$ and let I_2 be a maximal independent subset of $S \cup T$ that contains I_2. (Such a set exists because of the IAA.)

But then

$$r(S \cap T) + r(S \cup T) = |I_1| + |I_2| = |I_2 \cap S| + |I_2 \cap T| \leq r(S) + r(T).$$
For representable matroids this corresponds to the usual definition of rank.

For the cycle matroid of graph $G = (V, E)$, if $S \subseteq E$ is a set of edges and G_S is the graph (V, S) then $r(S) = |V| - \kappa(G_S)$, where $\kappa(G_S)$ is the number of components of G_S.

This clearly true for connected graphs and so if C_1, C_2, \ldots, C_s are the components of G_S then $r(S) = \sum_{i=1}^{s} |C_i| - 1 = |V| - s$.

For a partition matroid as defined above,

$$r(S) = \sum_{i=1}^{m} \min\{k_i, |S \cap E_i|\}.$$
A circuit of a matroid \mathcal{M} is a minimal dependent set. If a set $S \subseteq E, S \notin \mathcal{I}$ then S contains a circuit.

So the circuits of the cycle matroid of a graph G are the cycles.

Theorem

If C_1, C_2 are circuits of \mathcal{M} and $e \in C_1 \cap C_2$ then there is a circuit $C \subseteq (C_1 \cup C_2) \setminus \{e\}$.

Proof: We have $r(C_i) = |C_i| - 1$, $i = 1, 2$. Also, $r(C_1 \cap C_2) = |C_1 \cap C_2|$ since $C_1 \cap C_2$ is a proper subgraph of C_1.

If $C' = (C_1 \cup C_2) \setminus \{e\}$ contains no circuit then $r(C_1 \cup C_2) \geq r(C') = |C_1 \cup C_2| - 1$. But then

$$|C_1 \cup C_2| - 1 \leq r(C_1 \cup C_2) \leq r(C_1) + r(C_2) - r(C_1 \cap C_2)$$

$$= (|C_1| - 1) + (|C_2| - 1) - |C_1 \cap C_2|.$$

Contradiction.
Theorem

If B is a basis of \mathcal{M} and $e \in E \setminus B$ then $B' = B \cup \{e\}$ contains a unique circuit $C(e, B)$. Furthermore, if $f \in C(e, B)$ then $(B \cup \{e\}) \setminus \{f\}$ is also a basis of \mathcal{M}.

Proof: $B' \notin \mathcal{I}$ because B is maximal. So B' must contain at least one circuit.

Suppose it contains distinct circuits C_1, C_2. Then $e \in C_1 \cap C_2$ and so B' contains a circuit $C_3 \subseteq (C_1 \cup C_2) \setminus \{e\}$.

But then $C_3 \subseteq B$, contradiction.
Theorem

If \(\mathcal{B} \) denotes the set of bases of a matroid \(\mathcal{M} \) on ground set \(E \) then \(\mathcal{B}^* = \{ E \setminus B : B \in \mathcal{B} \} \) is the set of bases of a matroid \(\mathcal{M}^* \), the dual matroid.

Proof: Suppose that \(B_1^*, B_2^* \in \mathcal{B}^* \) and \(e \in B_1^* \setminus B_2^* \).

Let \(B_i = E \setminus B_i^*, i = 1, 2 \). Then \(e \in B_2 \setminus B_1 \).

So there exists \(f \in B_1 \setminus B_2 \) such that \((B_2 \cup \{ e \}) \setminus \{ f \} \in \mathcal{B} \).

This implies that \((B_2^* \cup \{ f \}) \setminus \{ e \} \in \mathcal{B}^* \). \(\square \)
Suppose that each $e \in E$ is given a weight w_e and that the weight $w(I)$ of an independent set I is given by $w(I) = \sum_{e \in I} c_e$. The problem we discuss is

$$\text{Maximize } w(I) \text{ subject to } I \in \mathcal{I}.$$

Greedy Algorithm:

begin

Sort $E = \{e_1, e_2, \ldots, e_m\}$ so $w(e_i) \geq w(e_{i+1})$ for $1 \leq i < m$;

$S \leftarrow \emptyset$;

for $i = 1, 2, \ldots, m$;

begin

if $S \cup \{e_i\} \in \mathcal{I}$ then;

begin;

$S \leftarrow S \cup \{e_i\}$;

end;

end;

end
Theorem

The greedy algorithm finds a maximum weight independent set for all choices of w if and only if it is a matroid.

Suppose first that the Greedy Algorithm always finds a maximum weight independent set. Suppose that $\emptyset \neq I, J \in \mathcal{I}$ with $|J| = |I| + 1$. Define

$$w(e) = \begin{cases}
1 + \frac{1}{2|I|} & e \in I, \\
1 & e \in J \setminus I, \\
0 & e \notin I \cup J.
\end{cases}$$

If there does not exist $e \in J \setminus I$ such that $I \cup \{e\} \in \mathcal{I}$ then the Greedy Algorithm will choose the elements of I and stop. But I does not have maximum weight. Its weight is $|I| + 1/2 < |J|$. So if Greedy succeeds, then the IAA holds.
Conversely, suppose that our independence system is a matroid. We can assume that $w(e) > 0$ for all $e \in E$. Otherwise we can restrict ourselves to the matroid defined by $\mathcal{I}' = \{ I \subseteq E^+ \}$ where $E^+ = \{ e \in E : w(e) > 0 \}$.

Suppose now that Greedy chooses $I_G = e_{i_1}, e_{i_2}, \ldots, e_{i_k}$ where $i_t < i_{t+1}$ for $1 \leq t < k$. Let $I = e_{j_1}, e_{j_2}, \ldots, e_{j_\ell}$ be any other independent set and assume that $j_t < j_{t+1}$ for $1 \leq t < \ell$. We can assume that $\ell \geq k$, for otherwise we can add something from I_G to I to give it larger weight.

We show next that $k = \ell$ and that $i_t \leq j_t$ for $1 \leq t \leq k$. This implies that $w(I_G) \geq w(I)$.

MATROIDS
Greedy Algorithm

Suppose then that there exists t such that $i_t > j_t$ and let t be as small as possible for this to be true.

Now consider $I = \{e_i : s = 1, 2, \ldots, t - 1\}$ and $J = \{e_j : s = 1, 2, \ldots, t\}$. Now there exists $e_j \in J \setminus I$ such that $I \cup \{e_j\} \in I$.

But $j_s \leq j_t < i_t$ and Greedy should have chosen e_j before choosing e_{i_t+1}.

Also, $i_k \leq j_k$ implies that $k = \ell$. Otherwise Greedy can find another element from $I \setminus I_G$ to add.
Minors

Given a graph $G = (V, E)$ and an edge e we can get new graphs by deleting e or contracting e.

We describe a corresponding notion for matroids. Suppose that $F \subseteq E$ then we define the matroid $M \backslash F$ with independent sets $\mathcal{I}_{\backslash F}$ obtained by deleting F: $I \in I_{\backslash F}$ if $I \in I$, $I \cap F = \emptyset$.

It is clear that the IAA holds for $M \backslash F$ and so it is a matroid.

For contraction we will assume that $F \in I$. Then contracting F defines $M.F$ with independent sets $\mathcal{I}.F = \{I \in I : I \cap F = \emptyset, I \cup F \in I\}$.

We argue next that $M.F$ is also a matroid.
Lemma

$\mathcal{M}.F = (\mathcal{M}_F^*)^*$ and $\mathcal{M}_F = (\mathcal{M}^*.F)^*$.

Proof:

\[
I \in \mathcal{I}.F \iff \exists B \in \mathcal{B}_F, I \subseteq B
\iff \exists B^* \in \mathcal{B}_F^*, I \cap B^* = \emptyset
\iff I \in (\mathcal{I}_F^*)^*.
\]

For the second claim we use

$\mathcal{M}^*.F = (\mathcal{M}_F^{**})^* = (\mathcal{M}_F)^*$.

□
Suppose we are given two matroids $\mathcal{M}_1, \mathcal{M}_2$ on the same ground set E with I_1, I_2 and r_1, r_2 etc. having their obvious meaning.

An **intersection** is a set $I \in I_1 \cap I_2$. We give a min-max relation for the size of the largest independent intersection. Let \mathcal{J} denote the set of intersections.

Theorem (Edmonds)

$$\max\{J \in \mathcal{J}\} = \min\{r_1(A) + r_2(E \setminus A) : A \subseteq E\}.$$
Before proving the theorem let us see a couple of applications:

Hall’s Theorem: suppose we are given a bipartite graph $G = (A, B, E)$. Let $\mathcal{M}_A, \mathcal{M}_B$ be the following two partition matroids.

For \mathcal{M}_A we define the partition $E_a = \{e \in x : a \in e\}, \ a \in A$. We let $k_a = 1$ for $a \in A$. We define \mathcal{M}_B similarly.

Intersections correspond to matchings and $r_1(A)$ is the number of vertices in A that are incident with an edge of A. Similarly $r_2(E \setminus A)$ is the number of vertices in B that are incident with an edge not in A.
For $X \subseteq A$, let

$$A_X = \{v \in A : v \in e \text{ for some } e \in X\}.$$

Define B_X similarly.

So

$$\max\{|M|\} = \min\{|A_X| + |B_{E\setminus X}| : X \subseteq E\}.$$

Now we can assume that if $e \in E \setminus X$ then $e \cap A_X = \emptyset$, otherwise moving e to X does not increase the RHS of the above.

Let $S = A \setminus A_X$. Then $|B_{E\setminus X}| = |N(A)|$ and so

$$\max\{|M|\} = \min\{|A| - |S| + |N(S)| : S \subseteq A\}.$$
Rainbow Spanning Trees: we are given a connected graph $G = (V, E)$ where each edge $e \in E$ is given a color $c(e) \in [m]$ where $m \geq n - 1$. Let $E_i = \{e : c(e) = i\}$ for $i \in [m]$.

A set of edges S is said to be rainbow colored if $e, f \in S$ implies that $c(e) \neq c(f)$.

For a set $A \subseteq E$, we let

$$r_1(A) = c(A) = |\{i \in [m] : \exists e \in A \text{ s.t. } c(e) = i\}|$$

$$r_2(E \setminus A) = n - \kappa(G \setminus A).$$

So, G contains a rainbow spanning tree iff

$$c(A) + (n - \kappa(G \setminus A)) \geq n - 1 \text{ for all } A \subseteq E. \quad (2)$$
We simplify (2) to obtain
\[c(A) + 1 \geq \kappa(G \setminus A). \] (3)

We can then further simplify (3) as follows: if we add to \(A \) all edges that use a color used by some edge of \(A \) then we do not change \(c(A) \) but we do not decrease \(\kappa(G \setminus A) \).

Thus we can restrict our sets \(A \) to \(E_I = \bigcup_{i \in I} E_i \) for some \(I \subseteq [m] \). Then (3) becomes
\[\kappa(E_{[m]\setminus I}) \leq |I| + 1 \text{ for all } I \subseteq [m] \]
or
\[\kappa(E_I) \leq m - |I| + 1 \text{ for all } I \subseteq [m] \]

If you think for a moment, you will see that this is obviously necessary.
Proof of the matroid intersection theorem.

For the upper bound consider $J \in \mathcal{J}$ and $A \subseteq E$. Then

$$|J| = |J \cap A| + |J \setminus A| \leq r_1(A) + r_2(E \setminus A).$$

We assume that $e \in \mathcal{J}$ for all $e \in E$. (Loops can be “ignored”.)

We proceed by induction on $|E|$. Let

$$k = \min\{r_1(A) + r_2(E \setminus A) : A \subseteq E\}.$$

Suppose that $|J| < k$ for all $J \in \mathcal{J}$.
Then \((M_1)\setminus\{e\}\) and \((M_2)\setminus\{e\}\) have no common independent set of size \(k\). This implies that if \(F = E \setminus \{e\}\) then

\[
r_1(A) + r_2(F \setminus A) \leq k - 1 \quad \text{for some } A \subseteq F.
\]

Similarly, \((M_1).\{e\}\) and \((M_2).\{e\}\) have no common independent set of size \(k - 1\). This implies that

\[
r_1(B) - 1 + r_2(E \setminus (B \setminus \{e\})) - 1 \leq k - 2 \quad \text{for some } e \in B \subseteq E.
\]

This gives

\[
r_1(A) + r_2(E \setminus (A \cup \{e\})) + r_1(B) + r_2(E \setminus (B \setminus \{e\})) \leq 2k - 1.
\]
Matroid Intersection

So, using submodularity and

\[(E \setminus (A \cup \{e\})) \cup (E \setminus (B \setminus \{e\})) = E \setminus (A \cap B)\]

and

\[(E \setminus (A \cup \{e\})) \cap (E \setminus (B \setminus \{e\})) = E \setminus (A \cup B).\]

We have used \(e \notin A\) and \(e \in B\) here. So,

\[r_1(A \cup B) + r_2(E \setminus (A \cup B)) + r_1(A \cap B) + r_2(E \setminus (A \cap B)) \leq 2k - 1.\]

But, by assumption,

\[r_1(A \cup B) + r_2(E \setminus (A \cup B)) \geq k, \quad r_1(A \cap B) + r_2(E \setminus (A \cap B)) \geq k,\]

contradiction.