MATROIDS

Hereditary Families

Given a Ground Set E, a Hereditary Family \mathcal{A} on E is collection of subsets $\mathcal{I}=\left\{I_{1}, I_{2}, \ldots, I_{m}\right\}$ (the independent sets) such that

$$
I \in \mathcal{I} \text { and } J \subseteq I \text { implies that } J \in \mathcal{I} \text {. }
$$

(1) The set \mathcal{M} of matchings of a graph $G=(V, E)$.
(2) The set of (edge-sets of) forests of a graph $G=(V, E)$.
(3) The set of stable sets of a graph $G=(V, E)$. We say that S is stable if it contains no edges.
(1) If $G=(A, B, E)$ is a bipartite graph and $\mathcal{I}=\{S \subseteq B: \exists$ a matching M that covers $S\}$.
(0) Let $\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}$ be the columns of an $m \times n$ matrix \mathbf{A}. Then $E=[n]$ and
$\mathcal{I}=\left\{S \subseteq[n]:\left\{\mathbf{c}_{i}, i \in S\right\}\right.$ are linearly independent $\}$.

Matroids

An independence system is a matroid if whenever $I, J \in \mathcal{I}$ with $|J|=|I|+1$ there exists $e \in J \backslash I$ such that $I \cup\{e\} \in \mathcal{I}$. We call this the Independent Augmentation Axiom - IAA.

Matroid independence is a generalisation of linear independence in vector spaces. Only Examples 2,4 and 5 above are matroids.

To check Example 5, let $\mathbf{A}_{/}$be the $m \times|I|$ sub-matrix of \mathbf{A} consisting of the columns in I. If there is no $e \in J \backslash I$ such that $I \cup\{e\} \in \mathcal{I}$ then $\mathbf{A}_{J}=\mathbf{A}_{/} \mathbf{M}$ for some $|I| \times|J|$ matrix \mathbf{M}.
Matrix \mathbf{M} has more columns than rows and so there exists $\mathbf{x} \neq 0$ such that $\mathbf{M x}=\mathbf{0}$. But then $\mathbf{A}_{J} \mathbf{x}=\mathbf{0}$, implying that the columns of \mathbf{A}_{J} are linearly dependent. Contradiction.
These are called Representable Matroids.

Cycle Matroids/Graphic Matroids

To check Example 2 we define the vertex-edge incidence matrix \mathbf{A}_{G} of graph $G=(V, E)$ over $G F_{2}$.
\mathbf{A}_{G} has a row for each vertex $v \in V$ and a column for each edge $e \in E$. There is a 1 in row v, column e iff $v \in e$.

We verify that a set of columns $\mathbf{c}_{i}, i \in I$ are linearly dependent iff the corresponding edges contain a cycle.

If the edges contain a cycle $\left(v_{1}, v_{2}, \ldots, v_{k}, v_{1}\right)$ then the sum of the columns corresponding to the vertices of the cycle is 0 .

To show that a forest F defines a linearly independent set of columns I_{F}, we use induction on the number of edges in the forest. This is trivial if $|E(F)|=1$.

Cycle Matroids/Graphic Matroids

Let \mathbf{A}_{F} denote the submatrix of \mathbf{A} made up of the columns corresponding F.

Now a forest F must contain a vertex v of degree one. This means that the row corresponding to v in \mathbf{A}_{F} has a single one, in column e say.

Consider the forest $F^{\prime}=F \backslash\{e\}$. Its corresponding columns $I_{F^{\prime}}$ are linearly independent, by induction. Adding back e adds a row with a single one and preserves independence. Let \mathbf{B} denote $\mathbf{A}_{F^{\prime}}$ minus row e.

$$
\mathbf{A}_{F}=\left[\begin{array}{ll}
1 & 0 \\
& \mathbf{B}
\end{array}\right] .
$$

Transversal Matroids

We now check Example 4. These are called Transversal Matroids. If M_{1}, M_{2} are two matchings in a graph G then $M_{1} \oplus M_{2}=\left(M_{1} \backslash M_{2}\right) \cup\left(M_{2} \backslash M_{1}\right)$ consists of alternating paths and cycles.

Suppose now that we have two matchings M_{1}, M_{2} in bipartite graph $G=(A, B, E)$. Let $I_{j}, j=1,2$ be the vertices in B covered by M_{j}. Suppose that $\left|I_{1}\right|>\left|I_{2}\right|$.

Then $M_{1} \oplus M_{2}$ must contain an alternating path P with end points $b \in I_{1} \backslash I_{2}, a \in A$. Let E_{1} be the M_{1} edges in P and let E_{2} be the M_{2} edges of P. Then $\left(M_{1} \cup E_{1}\right) \backslash E_{2}$ is a matching that covers $I_{1} \cup\{b\}$.

Representable Matroids

A matroid is binary if is representable by a matrix over GF_{2}.
So a graphic matroid is binary.

A matroid is regular if it can be represented by a matrix of elements in $\{0, \pm 1\}$ for which every square sub-matrix has determinant $0, \pm 1$. These are called totally unimodular matrices

A matrix with 2 non-zeros in each column, one equal to +1 and the other equal to -1 is totally unimodular. This implies that graphic matroids are regular. (Take the vertex-edge incidence matrix and replace one of the ones in each column by a - 1 .)

Given a partition $E_{1}, E_{2}, \ldots, E_{m}$ of E and non-negative integers $k_{1}, k_{2}, \ldots, k_{m}$ we define the associated partition matroid as follows:
$I \in \mathcal{I}$ iff $\left|I \cap E_{i}\right| \leq k_{i}, i=1,2, \ldots, m$.

Partition matroids are representable.

Bases

A matroid basis is a maximal independent set i.e. B is a basis if there does not exist an independent set $I \neq B$ such that $I \supset B$.

So the bases of the cycle matroid of a graph G consist of the spanning trees of G.

Lemma

If B_{1}, B_{2} are bases of a matroid \mathcal{M}, then $\left|B_{1}\right|=\left|B_{2}\right|$.
Proof: If $\left|B_{1}\right|>\left|B_{2}\right|$ then there exists $e \in B_{1} \backslash B_{2}$ such that $B_{2} \cup\{e\}$ is independent. Contradicting the fact that B_{2} is maximal.

Bases

Theorem

A collection $\mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{m}\right\}$ of subsets of E form the bases of a matroid on E iff for all i, j and $e \in B_{i} \backslash B_{j}$ there exists $f \in B_{j} \backslash B_{i}$ such that $\left(B_{i} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}$.

Proof: Suppose first that \mathcal{B} are the bases of a matroid with independent sets \mathcal{I} and that $e \in B_{i}$ and $e \notin B_{j}$. Then $B_{i}^{\prime}=B_{i} \backslash\{e\} \in \mathcal{I}$ and $\left|B_{i}^{\prime}\right|<\left|B_{j}\right|$. So there exists $f \in B_{j} \backslash B_{i}^{\prime}$ such that $B_{i}^{\prime \prime}=B_{i}^{\prime} \cup\{f\} \in \mathcal{I}$. Now $f \neq e$ since $e \notin B_{j}$ and $\left|B_{i}^{\prime \prime}\right|=\left|B_{i}\right|$. So $B_{i}^{\prime \prime}$ must be a basis.

Conversely, suppose that \mathcal{B} satisfies the conditions of the theorem and that $\mathcal{I}=\left\{S: \exists i\right.$ s.t. $\left.S \subseteq B_{i}\right\}$. Clearly \mathcal{I} is hereditary.

Bases

We first argue that all the sets in \mathcal{B} are of the same size.
Suppose that $A=\left\{i:\left|B_{i}\right|=\max \{|B|: B \in \mathcal{B}\}\right\}$ and suppose that $A \neq[m]$. Suppose that

$$
\min \left\{\left|B_{i}-B_{j}\right|: i \in A, j \notin A\right\}=\left|B_{1} \backslash B_{2}\right| .
$$

Let $x \in B_{1} \backslash B_{2}$ and let $y \in B_{2} \backslash B_{1}$ be such that $B^{\prime}=\left(\left(B_{1} \cup y\right) \backslash\{x\}\right) \in \mathcal{B}$.

Then we have $B^{\prime} \in A$ and $\left|B^{\prime} \backslash B_{2}\right|<\left|B_{1} \backslash B_{2}\right|$, contradiction.

Bases

Suppose now that $I_{1}, I_{2} \in \mathcal{I}$ with $\left|I_{2}\right|>\left|l_{1}\right|$ and there does not exist $e \in I_{2} \backslash I_{1}$ for which $I_{1} \cup\{e\} \in \mathcal{I}$.

Choose $B_{j} \supseteq l_{j}, j=1,2$ such that $\left|B_{2} \backslash\left(I_{2} \cup B_{1}\right)\right|$ is minimal.

We must have $I_{2} \backslash B_{1}=I_{2} \backslash I_{1}$. If $x \in I_{2} \cap B_{1}$ and $x \notin I_{1}$ then $I_{1} \cup\{x\} \subseteq B_{1}$ and so $I_{1} \cup\{x\} \in \mathcal{I}$.

Suppose there exists $x \in B_{2} \backslash\left(I_{2} \cup B_{1}\right)$. Then by assumption there is $y \in B_{1} \backslash B_{2}$ such that $B^{\prime}=\left(B_{2} \cup\{y\}\right) \backslash\{x\} \in \mathcal{B}$. But then $B^{\prime} \backslash\left(I_{2} \cup B_{1}\right)=\left(B_{2} \backslash\left(I_{2} \cup B_{1}\right)\right) \backslash\{x\}$, contradicting the definition of B_{2}.

Bases

So $B_{2} \subseteq\left(I_{2} \cup B_{1}\right)=\left(I_{2} \backslash B_{1}\right) \cup\left(B_{1} \backslash I_{2}\right)=\left(I_{2} \backslash I_{1}\right) \cup\left(B_{1} \backslash I_{2}\right)$ and so

$$
\begin{equation*}
B_{2} \backslash B_{1}=I_{2} \backslash I_{1} . \tag{1}
\end{equation*}
$$

We show next that $B_{1} \subseteq\left(I_{1} \cup B_{2}\right)$. If there exists $x \in B_{1} \backslash\left(I_{1} \cup B_{2}\right)$ then there exists $y \in B_{2} \backslash B_{1}$ such that $B^{\prime}=\left(B_{1} \cup\{y\}\right) \backslash\{x\} \in \mathcal{B}$. But $\left(I_{1} \cup\{x\}\right) \subseteq B^{\prime}$, contradiction.

So, $B_{1} \backslash B_{2}=I_{1} \backslash B_{2} \subseteq I_{1} \backslash I_{2}$. Since $\left|B_{1} \backslash B_{2}\right|=\left|B_{2} \backslash B_{1}\right|$ we see from this and (1) that $\left|I_{1} \backslash I_{2}\right| \geq\left|I_{2} \backslash I_{1}\right|$ and so $\left|I_{1}\right| \geq\left|I_{2}\right|$, contradiction.

Rank

If $S \subseteq E$ then its rank

$$
r(S)=\max |\{I \in \mathcal{I}: I \subseteq S\}|
$$

So $S \in \mathcal{I}$ iff $r(S)=|S|$. We show next that r is submodular.
Theorem
If $S, T \subseteq E$ then $r(S \cup T)+r(S \cap T) \leq r(S)+r(T)$.
Proof: Let I_{1} be a maximal independent subset of $S \cap T$ and let I_{2} be a maximal independent subset of $S \cup T$ that contains I_{2}. (Such a set exists because of the IAA.)

But then
$r(S \cap T)+r(S \cup T)=\left|I_{1}\right|+\left|I_{2}\right|=\left|I_{2} \cap S\right|+\left|I_{2} \cap T\right| \leq r(S)+r(T)$.

For representable matroids this coresponds to the usual definition of rank.

For the cycle matroid of graph $G=(V, E)$, if $S \subseteq E$ is a set of edges and G_{S} is the graph (V, S) then $r(S)=|V|-\kappa\left(G_{S}\right)$, where $\kappa\left(G_{S}\right)$ is the number of components of G_{S}.

This clearly true for connected graphs and so if $C_{1}, C_{2}, \ldots, C_{s}$ are the components of G_{S} then $r(S)=\sum_{i=1}^{s}\left|C_{i}\right|-1=|V|-s$.

For a partition matroid as defined above,

$$
r(S)=\sum_{i=1}^{m} \min \left\{k_{i},\left|S \cap E_{i}\right|\right\}
$$

Circuits

A circuit of a matroid \mathcal{M} is a minimal dependent set. If a set $S \subseteq E, S \notin \mathcal{I}$ then S contains a circuit.

So the circuits of the cycle matroid of a graph G are the cycles.

Theorem

If C_{1}, C_{2} are circuits of \mathcal{M} and $e \in C_{1} \cap C_{2}$ then there is a circuit $C \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\}$.

Proof: We have $r\left(C_{i}\right)=\left|C_{i}\right|-1, i=1,2$. Also,
$r\left(C_{1} \cap C_{2}\right)=\left|C_{1} \cap C_{2}\right|$ since $C_{1} \cap C_{2}$ is a proper subgraph of C_{1}.
If $C^{\prime}=\left(C_{1} \cup C_{2}\right) \backslash\{e\}$ contains no circuit then
$r\left(C_{1} \cup C_{2}\right) \geq r\left(C^{\prime}\right)=\left|C_{1} \cup C_{2}\right|-1$. But then

$$
\begin{aligned}
&\left|C_{1} \cup C_{2}\right|-1 \leq r\left(C_{1} \cup C_{2}\right) \leq r\left(C_{1}\right)+r\left(C_{2}\right)-r\left(C_{1} \cap C_{2}\right) \\
&=\left(\left|C_{1}\right|-1\right)+\left(\left|C_{2}\right|-1\right)-\left|C_{1} \cap C_{2}\right| .
\end{aligned}
$$

Contradiction.

Circuits

Theorem

If B is a basis of \mathcal{M} and $e \in E \backslash B$ then $B^{\prime}=B \cup\{e\}$ contains a unique circuit $C(e, B)$. Furthermore, if $f \in C(e, B)$ then $(B \cup\{e\}) \backslash\{f\}$ is also a basis of \mathcal{M}.

Proof: $B^{\prime} \notin \mathcal{I}$ because B is maximal. So B^{\prime} must contain at least one circuit.

Suppose it contains distinct circuits C_{1}, C_{2}. Then $e \in C_{1} \cap C_{2}$ and so B^{\prime} contains a circuit $C_{3} \subseteq\left(C_{1} \cup C_{2}\right) \backslash\{e\}$.

But then $C_{3} \subseteq B$, contradiction.

Dual Matroid

Theorem
If \mathcal{B} denotes the set of bases of a matroid \mathcal{M} on ground set E then $\mathcal{B}^{*}=\{E \backslash B: B \in \mathcal{B}\}$ is the set of bases of a matroid \mathcal{M}^{*}, the dual matroid.

Proof: Suppose that $B_{1}^{*}, B_{2}^{*} \in \mathcal{B}^{*}$ and $e \in B_{1}^{*} \backslash B_{2}^{*}$.

Let $B_{i}=E \backslash B_{i}^{*}, i=1,2$. Then $e \in B_{2} \backslash B_{1}$.

So there exists $f \in B_{1} \backslash B_{2}$ such that $\left(B_{2} \cup\{e\}\right) \backslash\{f\} \in \mathcal{B}$.

This implies that $\left(\mathcal{B}_{2}^{*} \cup\{f\}\right) \backslash\{e\} \in \mathcal{B}^{*}$.

Greedy Algorithm

Suppose that each $e \in E$ is given a weight w_{e} and that the weight $w(I)$ of an independent set $/$ is given by $w(I)=\sum_{e \in I} C_{e}$. The problem we discuss is

$$
\text { Maximize } w(I) \text { subject to } I \in \mathcal{I} \text {. }
$$

Greedy Algorithm:

begin

$$
\text { Sort } E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\} \text { so } w\left(e_{i}\right) \geq w\left(e_{i+1}\right) \text { for } 1 \leq i<m ;
$$

$S \leftarrow \emptyset ;$
for $i=1,2, \ldots, m ;$
begin
if $S \cup\left\{e_{i}\right\} \in \mathcal{I}$ then;
begin;

$$
S \leftarrow S \cup\left\{e_{i}\right\} ;
$$

end;
end;
end

Greedy Algorithm

Theorem

The greedy algorithm finds a maximum weight independent set for all choices of w if and only if it is a matroid.

Suppose first that the Greedy Algorithm always finds a maximum weight independent set. Suppose that $\emptyset \neq I, J \in \mathcal{I}$ with $|J|=|I|+1$. Define

$$
w(e)= \begin{cases}1+\frac{1}{2 \mid I} & e \in I \\ 1 & e \in J \backslash I \\ 0 & e \notin I \cup J\end{cases}
$$

If there does not exist $e \in J \backslash /$ such that $I \cup\{e\} \in \mathcal{I}$ then the Greedy Algorithm will choose the elements of I and stop. But I does not have maximum weight. Its weight is $|I|+1 / 2<|J|$. So if Greedy succeeds, then the IAA holds.

Greedy Algorithm

Conversely, suppose that our independence system is a matroid. We can assume that $w(e)>0$ for all $e \in E$. Otherwise we can restrict ourselves to the matroid defined by
$\mathcal{I}^{\prime}=\left\{I \subseteq E^{+}\right\}$where $E^{+}=\{e \in E: w(e)>0\}$.
Suppose now that Greedy chooses $I_{G}=e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{k}}$ where $i_{t}<i_{t+1}$ for $1 \leq t<k$. Let $I=e_{j_{1}}, e_{j_{2}}, \ldots, e_{j_{t}}$ be any other independent set and assume that $j_{t}<j_{t+1}$ for $1 \leq t<\ell$. We can assume that $\ell \geq k$, for otherwise we can add something from I_{G} to $/$ to give it larger weight.

We show next that $k=\ell$ and that $i_{t} \leq j_{t}$ for $1 \leq t \leq k$. This implies that $w\left(I_{G}\right) \geq w(I)$.

Greedy Algorithm

Suppose then that there exists t such that $i_{t}>j_{t}$ and let t be as small as possible for this to be true.

Now consider $I=\left\{e_{i_{s}}: s=1,2, \ldots, t-1\right\}$ and $J=\left\{e_{j_{s}}: s=1,2, \ldots, t\right\}$. Now there exists $e_{j_{s}} \in J \backslash /$ such that $I \cup\left\{e_{j_{s}}\right\} \in \mathcal{I}$.

But $j_{s} \leq j_{t}<i_{t}$ and Greedy should have chosen $e_{j_{s}}$ before choosing $e_{i_{t+1}}$.

Also, $i_{k} \leq j_{k}$ implies that $k=\ell$. Otherwise Greedy can find another element from $I \backslash I_{G}$ to add.

Minors

Given a graph $G=(V, E)$ and an edge e we can get new graphs by deleting e or contracting e.

We describe a corresponding notion for matroids. Suppose that $F \subseteq E$ then we define the matroid $\mathcal{M}_{\backslash F}$ with independent sets $\mathcal{I}_{\backslash_{F}}$ obtained by deleting $F: I \in \mathcal{I}_{\backslash F}$ if $I \in \mathcal{I}, I \cap F=\emptyset$.

It is clear that the IAA holds for $\mathcal{M}_{\backslash F}$ and so it is a matroid.
For contraction we will assume that $F \in \mathcal{I}$. Then contracting F defines \mathcal{M}. F with independent sets
$\mathcal{I} . F=\{I \in \mathcal{I}: I \cap F=\emptyset, I \cup F \in \mathcal{I}\}$.
We argue next that $\mathcal{M} . F$ is also a matroid.

Minors

Lemma

$\mathcal{M} . F=\left(\mathcal{M}_{\backslash F}^{*}\right)^{*}$ and $\mathcal{M}_{\backslash F}=\left(\mathcal{M}^{*} . F\right)^{*}$.

Proof:

$$
\begin{aligned}
I \in \mathcal{I} . F & \leftrightarrow \exists B \in \mathcal{B}_{\backslash F}, I \subseteq B \\
& \leftrightarrow \exists B^{*} \in \mathcal{B}_{\backslash F}^{*}, I \cap B^{*}=\emptyset \\
& \leftrightarrow I \in\left(\mathcal{I}_{\backslash F}^{*}\right)^{*} .
\end{aligned}
$$

For the second claim we use

$$
\mathcal{M}^{*} . F=\left(\mathcal{M}_{\backslash F}^{* *}\right)^{*}=\left(\mathcal{M}_{\backslash F}\right)^{*}
$$

Matroid Intersection

Suppose we are given two matroids $\mathcal{M}_{1}, \mathcal{M}_{2}$ on the same ground set E with $\mathcal{I}_{1}, \mathcal{I}_{2}$ and r_{1}, r_{2} etc. having there obvious meaning.

An intersection is a set $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. We give a min-max relation for the size of the largest independent intersection. Let \mathcal{J} denote the set of intersections.

Theorem (Edmonds)

$$
\max \{J \in \mathcal{J}\}=\min \left\{r_{1}(A)+r_{2}(E \backslash A): A \subseteq E\right\}
$$

Matroid Intersection

Before proving the theorem let us see a couple of applications:

Hall's Theorem: suppose we are given a bipartite graph $G=(A, B, E)$. Let $\mathcal{M}_{A}, \mathcal{M}_{B}$ be the following two partition matroids.

For \mathcal{M}_{A} we define the partition $E_{a}=\{e \in x: a \in e\}, a \in A$. We let $k_{a}=1$ for $a \in A$. We define \mathcal{M}_{B} similarly.

Intersections correspond to matchings and $r_{1}(A)$ is the number of vertices in A that are incident with an edge of A. Similarly $r_{2}(E \backslash A)$ is the number of vertices in B that are incident with an edge not in A.

Matroid Intersection

For $X \subseteq A$, let

$$
A_{X}=\{v \in A: v \in e \text { for some } e \in X\}
$$

Define B_{X} similarly.

So

$$
\max \{|M|\}=\min \left\{\left|A_{X}\right|+\left|B_{E \backslash X}\right|: X \subseteq E\right\}
$$

Now we can assume that if $e \in E \backslash X$ then $e \cap A_{X}=\emptyset$, otherwise moving e to X does not increase the RHS of the above.

Let $S=A \backslash A_{X}$. Then $\left|B_{E \backslash X}\right|=|N(A)|$ and so

$$
\max \{|M|\}=\min \{|A|-|S|+|N(S)|: S \subseteq A\}
$$

Matroid Intersection

Rainbow Spanning Trees: we are given a connected graph $G=(V, E)$ where each edge $e \in E$ is given a color $c(e) \in[m]$ where $m \geq n-1$. Let $E_{i}=\{e: c(e)=i\}$ for $i \in[m]$.

A set of edges S is said to be rainbow colored if $e, f \in S$ implies that $c(e) \neq c(f)$.

For a set $A \subseteq E$, we let

$$
\begin{aligned}
r_{1}(A) & =c(A)=\mid\{i \in[m]: \exists e \in A \text { s.t. } c(e)=i\} \mid \\
r_{2}(E \backslash A) & =n-\kappa(G \backslash A) .
\end{aligned}
$$

So, G contains a rainbow spanning tree iff

$$
\begin{equation*}
c(A)+(n-\kappa(G \backslash A)) \geq n-1 \text { for all } A \subseteq E . \tag{2}
\end{equation*}
$$

Matroid Intersection

We simplify (2) to obtain

$$
\begin{equation*}
c(A)+1 \geq \kappa(G \backslash A) \tag{3}
\end{equation*}
$$

We can then further simplify (3) as follows: if we add to A all edges that use a color used by some edge of A then we do not change $c(A)$ but we do not decrease $\kappa(G \backslash A)$.

Thus we can restrict our sets A to $E_{I}=\bigcup_{i \in I} E_{i}$ for some $I \subseteq[m]$. Then (3) becomes

$$
\kappa\left(E_{[m] \backslash I}\right) \leq|I|+1 \text { for all } I \subseteq[m]
$$

or

$$
\kappa\left(E_{l}\right) \leq m-|I|+1 \text { for all } I \subseteq[m]
$$

If you think for a moment, you will see that this is obviously necessary.

Matroid Intersection

Proof of the matroid intersection theorem.

For the upper bound consider $J \in \mathcal{J}$ and $A \subseteq E$. Then

$$
|J|=|J \cap A|+|J \backslash A| \leq r_{1}(A)+r_{2}(E \backslash A) .
$$

We assume that $e \in \mathcal{J}$ for all $e \in E$. (Loops can be "ignored".)

We proceed by induction on $|E|$. Let

$$
k=\min \left\{r_{1}(A)+r_{2}(E \backslash A): A \subseteq E\right\} .
$$

Suppose that $|J|<k$ for all $J \in \mathcal{J}$.

Matroid Intersection

Then $\left(\mathcal{M}_{1}\right)_{\backslash\{e\}}$ and $\left(\mathcal{M}_{2}\right)_{\backslash\{e\}}$ have no common independent set of size k. This implies that if $F=E \backslash\{e\}$ then

$$
r_{1}(A)+r_{2}(F \backslash A) \leq k-1 \text { for some } A \subseteq F
$$

Similarly, $\mathcal{M}_{1} \cdot\{e\}$ and $\mathcal{M}_{2} \cdot\{e\}$ have no common independent set of size $k-1$. This implies that

$$
r_{1}(B)-1+r_{2}(E \backslash(B \backslash\{e\}))-1 \leq k-2 \text { for some } e \in B \subseteq E
$$

This gives

$$
r_{1}(A)+r_{2}(E \backslash(A \cup\{e\}))+r_{1}(B)+r_{2}(E \backslash(B \backslash\{e\})) \leq 2 k-1
$$

Matroid Intersection

So, using submodularity and

$$
(E \backslash(A \cup\{e\})) \cup(E \backslash(B \backslash\{e\}))=E \backslash(A \cap B)
$$

and

$$
(E \backslash(A \cup\{e\})) \cap(E \backslash(B \backslash\{e\}))=E \backslash(A \cup B)
$$

We have used $e \notin A$ and $e \in B$ here. So,

$$
\begin{aligned}
r_{1}(A \cup B)+r_{2}(E \backslash(A \cup B))+r_{1}(A \cap B)+r_{2}(E \backslash & (A \cap B)) \\
& \leq 2 k-1 .
\end{aligned}
$$

But, by assumption,
$r_{1}(A \cup B)+r_{2}(E \backslash(A \cup B)) \geq k, r_{1}(A \cap B)+r_{2}(E \backslash(A \cap B)) \geq k$,
contradiction.

