21-301 Combinatorics Homework 4

Due: Monday, October 6

- 1. Let \mathcal{A} be a family of sub-sets of [n]. We say that \mathcal{A} is 2-secure if there do not exist $A, B, C, D \in \mathcal{A}$ such that $A \cap B \subseteq C \cup D$. Use the probabilistic method to show the existence of a 2-secure family of exponential size.
- 2. Let G = (V, E) be a graph and suppose each $v \in V$ is associated with a set S(v) of colors of size at least 10d, where $d \ge 1$. Suppose that for every v and $c \in S(v)$ there are at most d neighbors u of v such that c lies in S(u). Use the local lemma to prove that there is a proper coloring of G assigning to each vertex v a color from its class S(v). (By proper we mean that adjacent vertices get distinct colors.)
- 3. Show that if $8nk2^{1-k} < 1$ then one can 2-color the integers $1, 2, \ldots, n$ such that there is no mono-colored arithmetic progression of length k.

 (An arithmetic progression of length k is a set $\{a, a+d, \ldots, a+(k-1)d\}$.)