## 21-301 Combinatorics Homework 1

Due: Monday, September 8

1. How many sequences  $(a_1, a_2, \ldots, a_m) \in [n]^m$  satisfy  $a_1 < a_2 < \cdots < a_m$ ? How many satisfy  $a_1 \le a_2 \le \cdots \le a_m$ ?

**Solution:** The sequence  $a_1 < a_2 < \cdots < a_m$  defines a subset  $\{a_1, a_2, \ldots, a_m\}$  of [n] and conversely, every subset of size m defines a sequence after ordering the elements. Thus the answer to the first part is  $\binom{n}{m}$ .

For the second part, let  $a_0=0$  and  $a_{m+1}=n$  and let  $b_i=a_i-a_{i-1}$  for  $i=1,2,\ldots,m+1$ . There is a 1-1 correspondence between the sequences  $a_0=0,a_1,a_2,\ldots,a_m,a_{m+1}=n$  and the sequences  $b_1,b_2,\ldots,b_{m+1}$  since we can recover  $a_i=b_1+b_2+\cdots+b_i$  for  $i=1,2,\ldots,m$ . Now we have  $b_1\geq 1$  and  $b_i\geq 0, i=2,3,\ldots,m+1$  and  $b_1+b_2+\cdots+b_{m+1}=n$  and any sequence  $b_1,b_2,\ldots,b_{m+1}$  with these properties gives rise to a sequence  $a_1\leq a_2\leq\cdots\leq a_m$ . Thus there are  $\binom{(n-1)+(m+1)-1}{m}=\binom{n+m-1}{m}$  such sequences.

2. Suppose that a round table has 3n labelled seats. Suppose that n families arrive consisting of man/woman/child. They are to be seated round the table in triples: adult, child, adult. How many ways of seating the guests are there so that no family sits together as a complete triple of adult, child, adult.

**Solution:** This is a variation on the "Probléme des Ménages". Let  $A_i$  denote the set of seatings in which family i sit together. Then for |S| = k we have

$$|A_S| = 3k!2^k(2(n-k))!(n-k)!\binom{n}{k} = 3n!(2(n-k))!2^k$$

**Explanation:** 3 choices for where to place the "first" child. Given this, we choose k seats for children in  $\binom{n}{k}$  ways. Then we order the children of the k families in k! ways. Then we place their parents next to them in  $2^k$  ways. The we place the remaining children in (n-k)! ways and adults in (2(n-k))! ways.

Putting it all together we get that the number of seating arrangements is

$$3n! \sum_{k=0}^{n} (-1)^k \binom{n}{k} (2(n-k))! 2^k.$$

3. Suppose that we have 2n distinguishable balls. Suppose that there are n colors and that we have 2 balls of each color. How many ways are there of placing the balls into n distinguishable boxes, two balls per box, so that there are exactly k boxes containing balls of the same color?

**Solution:** Let  $A_i$  denote the set of allocations in which box i gets two balls of the same color. Arguing as in the notes on Scrambled Allocations, we see that if  $|S| = \ell$  then

$$|A_S| = \frac{(2(n-\ell))!}{2^{n-\ell}} \times \binom{n}{\ell} \times \ell!.$$

The extra factor  $\binom{n}{\ell} \times \ell!$  comes from allocating the colors to the boxes.

Applying the inclusion-exclusion formula for elements in exactly k of the  $A_i$ , we get the expression

$$\sum_{\ell=k}^{n} \binom{n}{\ell} (-1)^{\ell-k} \binom{\ell}{k} \frac{(2(n-\ell))!}{2^{n-\ell}} \binom{n}{\ell} \ell!.$$