

Department of Mathematics
Carnegie Mellon University

21-301 Combinatorics, Fall 2025: Test 3

Name: _____

Andrew ID: _____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Prove that if we 2-color the edges of K_4 then there is a monochromatic copy of K_3 or a monochromatic copy of P_3 .

(K_3 is a triangle and $P_3 \neq K_3$ is a path with 3 edges.)

Construct an example of an edge colored K_4 where the red edges contain no K_3 and the blue edges contain no P_3 .

Solution: at least 2 of the edges incident with vertex 1 must have the same color. So assume that $\{1, 2\}$ and $\{1, 3\}$ are red. If $\{1, 4\}$ is red then either (i) $\{2, 3\}, \{2, 4\}, \{3, 4\}$ are blue, giving a blue K_3 or (ii) one of these edges, say $\{2, 3\}$ is red, but then there is a red P_3 , $(3, 2, 1, 4)$.

So, assume that $\{1, 4\}$ is blue. Now if $\{2, 3\}$ is red then there is a red K_3 , $\{1, 2, 3\}$. So assume that $\{2, 3\}$ is blue. If $\{4, 3\}$ is red then there is a red P_3 , $(4, 3, 1, 2)$ and if $\{4, 3\}$ is blue then there is a blue P_3 , $(1, 4, 3, 2)$.

For the second part, color $\{1, 2\}, \{1, 3\}, \{1, 4\}$ red and the rest blue.

Q2: (33pts)

Determine the Sprague-Grundy numbers for the take-away game where $S = \{1, 4\}$. Give an inductive proof of your claimed answer.

Solution: the first few numbers are

j	0	1	2	3	4	5	6	7	8	9	10
$g(j)$	0	1	0	1	2	0	1	0	1	2	0

This suggests that

$$g(n) = \begin{cases} 0 & n \pmod{5} = 0, 2. \\ 1 & n \pmod{5} = 1, 3. \\ 2 & n \pmod{5} = 4. \end{cases}$$

We verify this by induction on n , using the above table as a basis. Suppose that $n = 5m, m \geq 2$.

$$\begin{aligned} g(5m+1) &= \text{mex}\{g(5m), g(5m-3)\} = \text{mex}\{0, 0\} = 1. \\ g(5m+2) &= \text{mex}\{g(5m+1), g(5m-2)\} = \text{mex}\{0, 0\} = 0. \\ g(5m+3) &= \text{mex}\{g(5m+2), g(5m-1)\} = \text{mex}\{0, 2\} = 1. \\ g(5m+4) &= \text{mex}\{g(5m+3), g(5m)\} = \text{mex}\{1, 0\} = 2. \\ g(5m+5) &= \text{mex}\{g(5m+4), g(5m+1)\} = \text{mex}\{2, 1\} = 0. \end{aligned}$$

Q3: (34pts)

There are n projects and project j contributes p_j profit. Let $A = \{j : p_j > 0\}$ and $B = [n] \setminus A = \{j : p_j < 0\}$. There is a digraph $D = ([n], E)$ such that if $(i, j) \in E$ then to be feasible, project i must be completed before project j can be completed.

Consider the following network. Add edges $(s, a) : a \in A$ and $(b, t) : b \in B$ to D .

Add capacities to the network so that the capacity of an $s - t$ cut $S : \bar{S}$ is finite iff S is feasible, in which case the capacity is $\Phi(S) = \sum_{j \in A} p_j - \sum_{j \in S} p_j : S \subseteq [n]$. Why does this enable one to find the most profitable and feasible set of projects?

Solution: the edges $(s, p_j), j \in A$ are given capacity p_j . the edges $(p_j, t), j \in B$ are given capacity $-p_j$. The edges of D are given infinite capacity.

Consider the cut $(S \cup \{s\}) : (\bar{S} \cup \{t\})$. If there exists $v \in S, w \in \bar{S}$ such that $(v, w) \in E$ then the capacity of this cut is infinite. So assume now that $(v, w) \in E$ implies that either $v, w \in S$ or $v, w \in \bar{S}$. Then the capacity of this cut is

$$\left(\sum_{j \in A} p_j - \sum_{j \in S \cap A} p_j \right) + \left(\sum_{j \in S \cap B} (-p_j) \right) = \Phi(S).$$

The finiteness of the cut implies that this set of projects is feasible. The maximum flow from s to t is equal to the minimum over S of $\Phi(S)$. This equals $\sum_{j \in A} p_j$ minus the total profit if we carry out the projects in S . So to maximise profit, we find a minimum cut.