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BASIC COUNTING

Basic Counting



Let ¢(m, n) be the number of mappings from [n] to [m].

n

o(m,n)=m

Proof By induction on n.
d(m,0) =1=mP°.

¢(m7n+ 1) = m¢(m> n)
= mxm"
m™t1.

¢(m, n) is also the number of sequences x1 X - - - X, where
xie[ml,i=1,2,...,n.
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Let ¢/(n) be the number of subsets of [n].

P(n) =2".

Proof (1) By induction on n.
Y(0) =1 =20,

Pp(n+1)

= #{sets containing n+ 1} + #{sets not containing n+ 1}
= ¢(n) +¥(n)

— 2/7 + 2/’7

— 2/’1—&-1.
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There is a general principle that if there is a 1-1
correspondence between two finite sets A, B then |A| = |B].
Here is a use of this principle.

Proof (2).
For A C [n] define the map f4 : [n] — {0,1} by

W9=1a Yen

f4 is the characteristic function of A.
Distinct A’s give rise to distinct f4’s and vice-versa.

Thus v(n) is the number of choices for f4, which is 2" by
Theorem 1. O
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Let voqq(n) be the number of odd subsets of [n] and let
Yeven(N) be the number of even subsets.

¢odd(n) = weven(n) =21

Proof For A C [n— 1] define

,JA |A| is odd
AU {n} |A|is even

The map A — A’ defines a bijection between [n — 1] and the
odd subsets of [n]. So 2"~" = v (n—1) = 1o49(n). Futhermore,

Yeven(N) = 1¥(N) — Pogg(n) = 2" — on—1 _ on-1



Let ¢1_1(m, n) be the number of 1-1 mappings from [n] to [m].

n—1

¢1—1(m,n) = [ (m— ). (1)

i=0

Proof Denote the RHS of (1) by =(m, n). If m < nthen
¢1-1(m,n) = m(m,n) = 0. So assume that m > n. Now we use
induction on n.

If n = 0 then we have ¢1_1(m,0) = =(m,0) = 1.

In general, if n < mthen

¢1-1(m,n+1) (m—n)¢q_1(m,n)
(m—n)x(m,n)

m(m,n+1).



¢1_1(m, n) also counts the number of length n ordered
sequences distinct elements taken from a set of size m.

¢1-1(n,n)=n(n—1)---1=n!

is the number of ordered sequences of [n] i.e. the number of
permutations of [n].
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Binomial Coefficients

ny _ n ~n(n—1)---(n—k+1)
<k>_(n—k)!k!_ k(k—1)---1

Let X be a finite set and let

(f) denote the collection of k-subsets of X.

GI= (%)

Proof Let n=|X],

le)k()‘ =o¢1_1(nk)=n(n—1)---(n—k+1).



Let m, n be non-negative integers. Let Z, denote the
non-negative integers. Let

S(m,n):{(i1,i2,...,in)€Z£: i1+i2+---+i,,:m}.

m-+n—1

semmi= ("3 "),

Proof imagine m+ n— 1 points in a line. Choose positions
p1 < P2 < --- < pp_q and color these points red. Let
pPo =0, ph = m+ 1. The gap sizes between the red points

it:pf_pf—1 _17 t:1727"‘7n
form a sequence in S(m, n) and vice-versa. O
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|S(m, n)| is also the number of ways of coloring m
indistinguishable balls using n colors.

Suppose that we want to count the number of ways of coloring
these balls so that each color appears at least once i.e. to
compute |S(m, n)*| where, if N = {1,2,...,}

S(m,n)* =
{(it,ioy...yin) EN": iy + o+ -+ inp = m}
—{(y =1, —1,...in—1) € Z":
(=) + =1+ +(n—1)=m—n}

Thus,
« _ (M=n+n-—-1\ /m—1
sy = (") = (02):
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Seperated 1’s on a cycle

How many ways (patterns) are there of placing k 1’sand n — k
0’s at the vertices of a polygon with n vertices so that no two 1’s
are adjacent?

Choose a vertex v of the polygon in n ways and then place a 1
there. For the remainder we must choose ay,...,ax > 1 such
that a; + - -- + ax = n— k and then go round the cycle
(clockwise) putting a; 0’s followed by a 1 and then a, O’s
followed by a 1 etc..
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Each pattern 7 arises k times in this way. There are k choices
of v that correspond to a 1 of the pattern. Having chosen v
there is a unique choice of ay, ao, . . ., ax that will now give .

There are (",*7") ways of choosing the a; and so the answer to

k—1
our question is
n(n-— k—1
k\ k-—1.
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Symmetry

Proof Choosing r elements to include is equivalent to
choosing n — r elements to exclude. O
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Pascal’s Triangle

(i)~ (d) = (k5 )

Proof A k + 1-subset of [n + 1] either
(i) includes n+ 1 —— (}) choices or

(ii) does not include n+ 1 — (') choices.
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Pascal’s Triangle
The following array of binomial coefficents, constitutes the
famous triangle:

1
11
121
1331
14641
15101051
161520156 1
172135352171
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(35 (-G

Proof 1: Induction on n for arbitrary k.
Base case: n= k; ({) = (1)
Inductive Step: assume true for n > k.

> (1) - (0

m=k m=Kk

= 1 + n+1 Induction
 \k+1 k

n+2 .
= <k+1>' Pascal’s triangle
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Proof 2: Combinatorial argument.
If S denotes the set of k + 1-subsets of [n+ 1] and S, is the
set of k + 1-subsets of [n + 1] which have largest element

m+ 1 then
® Sk, Ski1,...,Spis apartition of S.
® [Sk| + ISk41l + - +Snl = [S].
® |Sm| = (¥)-
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Vandermonde'’s Identity
= (N(2) =)
r)\k—r) k )
r=0

Proof  Split[m+ n]into A= [m] and B =[m+ n]\ [m]. Let
S denote the set of k-subsets of [m + n| and let
Sr={XeS: | XnA =r}. Then

@ Sy, Si,..., Sk is a partition of S.

© |Sol +[St|+ -+ Skl = [S].

° S = (7))

° |8 = ("")-

O
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Binomial Theorem

Proof Coefficient x" in (1 4+ x)(1 + x) --- (1 + x): choose x
from r brackets and 1 from the rest. O
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Applications of Binomial Theorem

(O (D) (D =trar=2n

LHS counts the number of subsets of all sizes in [n].
o x=-1:

| (5)- (D) (D)= -1=0
OG-0+

and number of subsets of even cardinality = number of
subsets of odd cardinality.

Basic Counting

o x=1:



" /n
Zk<k> — n2"1,
k=0

Differentiate both sides of the Binomial Theorem w.r.t. x.

n
n(1+x)"" = ;k(:) xk=1,

Now put x = 1.
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Grid path problems

A monotone path is made up of segments
(x,y) = (x+1y)or(x,y) = (x,y+1).

(a, b) — (c, d))= {monotone paths from (a, b) to (c, d)}.

We drop the (a, b) — for paths starting at (0, 0).
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(a.b)

(0,0)




We consider 3 questions: Assume a,b > 0.
1. How large is PATHS(a, b)?

2. Assume a < b. Let PATHS- (&, b) be the set of paths in
PATHS(a, b) which do not touch the line x = y except at (0, 0).
How large is PATHS-.(a, b)?

3. Assume a < b. Let PATHS-(a, b) be the set of paths in
PATHS(a, b) which do not pass through points with x > y.
How large is PATHS- (a, b)?
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1. STRINGS(a,b) = {x € {R,U}* : x has a R'sand b Us}. '

There is a natural bijection between PATHS(a, b) and
STRINGS(a, b):

Path moves to Right, add R to sequence.
Path goes up, add U to sequence.

So

PATHS(a, b)| = |STRINGS(a, b)| = <a Z b>

since to define a string we have state which of the a+ b places
contains an R.

'R, U}" = set of strings of R’s and U’s
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2. Every path in PATHS- (&, b) goes through (0,1). So

|PATHS- (a, b)| =
|PATHS((0,1) — (a, b))| — [PATHS«((0,1) — (a, b))|.
Now

|PATHS((0,1) — (a, b))| = <a+ b- 1)

a
and

|PATHS+((0,1) — (a,b))| =

|PATHS((1,0) — (a, b))| = <a:f; 1).
We explain the first equality momentarily. Thus
a+b-1 a+b-1
IPATHS . (a, b)| = < a >—< 2 1 >
_ b-afa+b
- a+b\ a )
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Suppose P € PATHS4((0,1) — (a, b)). We define
P’ € PATHS((1,0) — (a, b)) in such a way that
P — P’ is a bijection.

Let (c, c) be the first point of P, which lies on the line
L = {x =y} and let S denote the initial segment of P going
from (0,1) to (¢, ¢).

P’ is obtained from P by deleting S and replacing it by its
reflection S’ in L.

To show that this defines a bijection, observe that if
P’ € PATHS((1,0) — (a, b))

then a similarly defined reverse reflection yields a
P € PATHS%((0,1) — (a, b)).
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(a.b)

(0,0)




3. Suppose P € PATHS(a, b). We define
P’ € PATHS- (a,b+ 1) in such away that P — P" is a bijection.

Thus b 1 b+1
—a+1(/a+b+
PATH = )
| Sz(a.b)| a+b+1( a )
In particular
1 2a+ 1
|PATHS>(a, a)| = 2a+1< 2 )

B 1 2a
 a+1\a)’

The final expression is called a Catalan Number.
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The bijection

Given P we obtain P" by raising it vertically one position and
then adding the segment (0,0) — (0, 1).

More precisely, if P = (0,0), (x1, ¥1), (X2, ¥2), ..., (&, b) then
P" =(0,0),(0,1),(xy,y1 +1),...,(a,b+1).

This is clearly a 1 — 1 onto function between PATHS > (a, b) and
PATHS-(a,b+1).
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1 (a,b)

1
1
i
PlV
i
1
1
i
1
i
|

(0,0)
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Inclusion-Exclusion

2 sets:
|A1 U Az| = |Aq| + |A2| — |[A1 N Ay

Soif Aj,A> CAand A; = A\ A;, i = 1,2 then

|A1 N Ag| = |A] = |Ar] — |Ag| + |A1 N Ay

3 sets:
A NANAs| = |Al—|Ar] - |Ae| — |As]
+|A1 N Az| + |A1 N As| + |Az N Ag)
—|A1ﬂAgﬂA3|.
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General Case

Aq, Az, ..., Ay € Aand each x € A has a weight wy. (In our
examples wy = 1 for all x and so w(X) = |X|.)

For S C [N], As = NicsAiand w(S) = >, 5 Wx.
E.Q. Aps 7180 = As N A7 N Ags.
Ay = A,

Inclusion-Exclusion Formula:

(ﬂ A) > (=1)w(As).

SC[N]
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Simple example. How many integers in [1000] are not divisible
by 5,6 or 8 i.e. what is the size of A; N A> N A3 below? Here we
take wy = 1 for all x.

A=A, = {1,2.3,....} |A| = 1000
A = {5,10,15,....} |A¢| = 200
A, = {6,12,18,....} |As| = 166
As = {8.16,24,....} |As| = 125
Apay = {80,60,90,....} Ag1.2)| = 33
Aps = {40,80,120,....} Af1ay] =25
Apgy = {24,48,72,....} Ap.ay| = 41
Apzs = {120,240,360,...,} A1z =8
[AyNA,NAs| = 1000 — (200 + 166 + 125)

+(33+25+41)-8
= 600.
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Derangements

A derangement of [n] is a permutation 7 such that

r(iy#£i: i=1,2,...,n.

We must express the set of derangements D, of [n] as the
intersection of the complements of sets.
We let A; = {permutations 7 : =(/) = i/} and then

n JR—
A
i=1

|Dn\ =
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We must now compute |Ag| for S C [n].

|A1| = (n—1)!: after fixing 7(1) = 1 there are (n — 1)! ways of
permuting 2,3, ..., n.

|Ag1 23| = (n—2)!: after fixing 7(1) = 1,7(2) = 2 there are
(n—2)! ways of permuting 3,4,...,n.

In general
[As| = (n—[S])!
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Dol = D (=1)®(n—|S))

When nis large,
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Proof of inclusion-exclusion formula

9. . — 1 xeA
X 0 X¢A,’

1 xeMLyA

(1 —=0x1)(1 —0x2)---(1 —0Oxn) = { 0 otherwise

N
w<ﬂA,~> = > w(1=0c1)(1 = x2) - (1= Ox )

i=1 XEA
= D we > ()]0
XA SC[N] ieS
SPGB | ¥
SC[N] X€A ieS
= > (-1)w(As).
SCIN]
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Euler’s Function ¢(n).

Let ¢(n) be the number of positive integers x < n which are
mutually prime to ni.e. have no common factors with n, other
than 1.

»(12) = 4.

Let n = p{"' p32p{? - - - p* be the prime factorisation of n.

Ai={x € [n]: p;divides x}, 1<i<k.
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Ag| = S C [K].
sl s [K]
i€eS
on) = > (~nisi
SC[K] HP:
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Surjections

Fix n,m. Let
A={f:[n] — [m]}

Thus |A| = m". Let
F(n,m)={fe A: fisonto[m]}.

How big is F(n, m)?
Let
Ai={feF: f(x)#i Vx € [n]}.

Then
m
F(n,m)=()A.
i=1
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For S C [m]

As = {feA: f(x)¢ S, Vxe[n]}.
= {f:[n] —[m]\ S}.

So
A = (m—[S)".

Hence

F(n.m) = > (=1)¥(m—|s|)"

SC[m]

= S (1) (Z’) (m— k)",
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Scrambled Allocations

We have nboxes By, Bo, ..., B, and 2n distinguishable balls
bi,bo, ..., bop.

An allocation of balls to boxes, two balls to a box, is said to be
scrambled if there does not exist i such that box B; contains
balls bo;_1, bsj. Let o, be the number of scrambled allocations.

Let A; be the set of allocations in which box B; contains
boi_1, boj. We show that

PRCLEIEN]

Inclusion-Exclusion then gives
n
k(M (2(n—k))!
on=> (1) <k> onk
k=0
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First consider Ay:

Each permutation 7 of [2n] yields an allocation of balls, placing
br(2i-1), br(2i) into box By, for i = 1,2,..., n. The order of balls
in the boxes is immaterial and so each allocation comes from
exactly 2" distinct permutations, giving

(2n)!

To get the formula for |Ag| observe that the contents of 2|S|
boxes are fixed and so we are in essence dealing with n — |S]|
boxes and 2(n — |S|) balls.
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The weight of elements in exactly k sets:
Observe that

[T0i[J(1—6x)=1iffxc AL ic Sandx ¢ A;,i ¢ S.
€S ¢S
W is the total weight of elements in exactly k of the A;:

Wk = Z Wy Z ng,iH(1 - Hx,i)

X€A  |S|=kieS ¢S

= Z Z WXHGX,/H(1 - 9x,i)

|S|=k xcA i€S i¢S

= Z ZZWX(—1)IT\S|H9x,i

|S|=k TOS x€A ieT

=Y (=) M Slw(ar).

|S|=k T2S
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As an example. Let D, x denote the number of permutations 7
of [n] for which there are exactly k indices i for which 7 (/) = i.
Then

Do =3 (7)) oo

{=k

1 n! _ 12
_Z_Zkﬁ'(n—ﬁ)!(_1)£ T
R (1)K
- k!eg; (¢ —k)!
SR ()

k! pre r!

n!
~ ekl

when nis large and k is constant.
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