1. Find the set of \(P \)-positions for the take-away games with subtraction sets

(a) \(S = \{1, 3, 7\} \).
(b) \(S = \{1, 4, 6\} \).

Suppose now that there are two piles and the rules for each pile are as above. Now find the \(P \) positions for the two pile game where in one pile \(S \) is as in (a) and the other pile is as in (b).

Solution:

(a) The first few numbers are

\[
\begin{array}{cccccccccccc}
 j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 g_1(j) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

It is apparent that \(g_1(j) = j \mod 2 \) and this follows by an easy induction: If \(j \) is even then \(j - x, x \in S \) is odd and if \(j \) is odd then \(j - x, x \in S \) is even.

(b) The first few numbers are

\[
\begin{array}{cccccccccccc}
 j & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
 g_2(j) & 0 & 1 & 0 & 1 & 2 & 0 & 1 & 0 & 1 & 2 & 0 & 1 & 0 & 1 & 2 \\
\end{array}
\]

So, we see that the pattern 0 1 0 1 2 repeats itself. Again, induction can be used to verify that this continues indefinitely.

(c) The \(P \)-positions are those \(j, k \) for which \(g_1(j) \oplus g_2(k) = 0 \).
Thus

\[
P = \{(j = 0 \mod 2 \text{ and } k = 0, 2 \mod 5) \text{ or } (j = 1 \mod 2 \text{ and } k = 1, 3 \mod 5)\}.
\]

2. Consider the following game: There is a pile of \(n \) chips. A move consists of removing any \emph{proper} factor of \(n \) chips from the pile. (For the purposes of this question, a proper factor of \(n \), is any factor, including 1, that is strictly less than \(n \).) The player to leave a pile with one chip wins. Determine the \(N \) and \(P \) positions and a winning strategy from an \(N \) position.

Solution: \(n \) is a \(P \)-position iff it is odd. If \(n \) is even then the next player can simply remove one chip. If \(n \) is odd, then any factor of \(n \) is also odd.

3. In a take-away game, the set \(S \) of the possible numbers of chips to remove is finite. Show that the Sprague-Grundy numbers satisfy \(g(n) \leq |S| \) where \(n \) is the number of chips remaining.

Solution: Observe that for any finite set \(A \), \(\text{mex}(A) \leq |A| \) since \(\text{mex}(A) > |A| \) implies that \(A \subseteq \{0, 1, 2, \ldots, |A|\} \) which is obviously impossible. In the take-away game \(g(n) \) is the mex of a set of size at most \(|S| \) and the result follows.