Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2023: Test 4

Name: \qquad

Andrew ID:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)
Find the set of P-positions for the take-away games with subtraction sets
$R_{1}: S=\{2,4\}$.
$R_{2}: S=\{1,3\}$.
Suppose now that there are two piles, pile one has 13 chips and pile two has 10 chips and the rule for pile i is $R_{i}, i=1,2$. Is this a P or N position?
Solution:let g_{1}, g_{2} denote the SG-numbers for the two games. We have

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
$g_{1}(n)$	0	1	1	2	2	0	0	1	1	2	2	0	0	1	1	2	2	0
$g_{2}(n)$	0	1	0	1	2	0	1	0	1	2	0	1	0	1	2	0		

An easy induction shows that

$$
g_{1}(n)=\left\{\begin{array}{lll}
0 & n=0 \text { or } 5 & \bmod 6 \\
1 & n=1 \text { or } 2 & \bmod 6 \\
2 & n=3 \text { or } 4 & \bmod 6
\end{array} \text { and } g_{2}(n)=n \bmod 2 .\right.
$$

The P-positions for the two-pile game are when $g_{1}(n) \oplus g_{2}(n)=0$. We must compute $g_{1}(13) \oplus g_{2}(10)=1 \oplus 0 \neq 0$. So this is an N-position.

Q2: (33pts)

How many ways are there of coloring the faces of the $2 \times n$ grid when (i) there are two colors, (ii) n is even and (iii) the group acting is $e, a, b . c . e$ is the identity, a, b are reflections about the horizontal and vertical middle lines respectively and c is a rotation through 180°.

Solution: we have

$$
\begin{array}{ccccc}
g & e & a & b & c \\
\mid \text { Fix }(g) \mid & 2^{2 n} & 2^{n} & 2^{n} & 2^{n}
\end{array}
$$

So the total number of colorings is

$$
\frac{2^{2 n}+3 \times 2^{n}}{4}
$$

Q3: (34pts)

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and let $X_{1}, X_{2}, \ldots, X_{M}, Y_{1}, Y_{2}, \ldots, Y_{N}$ be subsets of A. A set of triples $\left\{\left(i_{s}, j_{s}, k_{s}\right), s=1,2, \ldots, m\right\}$ is suitable if (i) $i_{s} \neq i_{t}, j_{s} \neq$ $j_{t}, k_{s} \neq k_{t}$ for $s \neq t$ and (ii) $a_{i_{s}} \in X_{j_{s}} \subseteq Y_{k_{s}}$ for $s=1,2, \ldots, m$.
For $S \subseteq[m]$, let $N_{1}(S)=\left\{j \in[M]: a_{i} \in X_{j}\right.$ for some $\left.i \in S\right\}$.
For $T \subseteq[M]$, let $N_{2}(T)=\left\{j \in[N]: X_{i} \subseteq Y_{j}\right.$ for some $\left.i \in T\right\}$.
(a) Show that if there is a suitable set of triples then

$$
\begin{equation*}
\left|N_{1}(S)\right|+\left|N_{2}(T)\right| \geq|S|+|T| \text { for all } S \subseteq[m], T \subseteq N_{1}(S) \tag{1}
\end{equation*}
$$

(b) Use the Max-Flow Min-Cut theorem to show that if (1) holds, then there is a suitable set of triples.
(Hint:

(You can also prove this via the use of Hall's Theorem.)
Solution: (a) if there is a suitable set $\left\{\left(i_{s}, j_{s}, k_{s}\right), s=1,2, \ldots, m\right\}$ then for $S \subseteq[m], T \subseteq N_{1}(S)$ we have that (i) $N_{1}(S) \supseteq\left\{j_{s}: i_{s} \in S\right\}$ so that $\left|N_{1}(S)\right| \geq|S|$ and (ii) $N_{2}(T) \supseteq\left\{k_{s}: j_{s} \in T\right\}$ so that $\left|N_{2}(T)\right| \geq|T|$.
(b) We set up a network with $2+m+2 M+N$ vertices,

$$
a_{1}, \ldots, a_{m}, X_{1}, X_{1}^{\prime} \ldots, X_{M}, X_{M}^{\prime}, Y_{1}, \ldots, Y_{N}, s, t
$$

We put an edge of capacity 1 between s and $a_{i}, i \in[m]$ and between $Y_{j}, j \in$ $[N]$ and t and between X_{i} and X_{i}^{\prime} for $i \in[M]$. Then we add an edge of infinite capacity between a_{i} and X_{j} and between X_{j}^{\prime} and Y_{k}, for all i, j, k. Consider the capacity of an $s-t$ cut $X: \bar{X}$. Let $S=X \cap A$ and note that if X does not contain $N_{1}(S)$ then the cut has infinite capacity. So assume $N_{1}(S) \subseteq X$. Now let $T=X \cap\left\{X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right\}$ and analogously, we can assume that $N_{2}(T) \subseteq X$. If X contains $x \in\left\{X_{1}, \ldots, X_{M}\right\} \backslash N_{1}(S)$ then we can remove it without changing the cut capacity. Similarly, if X contains $x^{\prime} \in\left\{X_{1}^{\prime}, \ldots, X_{M}^{\prime}\right\}$ such that $x \notin N_{1}(S)$ then we can remove it without increasing cut capacity.

The capacity of such a cut is

$$
m-|S|+\left|N_{1}(S)\right|-|T|+\left|N_{2}(T)\right| \geq m
$$

as desired.
As an alternative proof: putting $T=\emptyset$ in (1) and applying Hall's theorem we see that there is a matching of A into $\left\{X_{1}, \ldots, X_{M}\right\}$. Suppose w.l.o.g. that this matching is $\left\{\left(a_{i}, X_{i}\right): i \in[m]\right\}$. Putting $S=\emptyset$ in (1) and applying Hall's theorem we see that there is a matching of $\left\{X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right\}$ into $\left\{Y_{1}, \ldots, Y_{M}\right\}$. Again, w.l.o.g. we can assume that this matching is $\left\{\left(X_{i}^{\prime}, Y_{i}\right): \in[m]\right\}$. In which case, $\left\{\left(i, X_{i}, Y_{i}\right): i \in[m]\right\}$ is a suitable set of triples.

