Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2023: Test 2

Name: \qquad

Andrew ID:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Let $G=(V, E)$ be a graph on n vertices, with minimum degree $d>1 . S \subseteq V$ is a 2-dominating set if $v \notin S$ implies that v has at least two neighbors in S. Show that G contains a 2 -dominating set of size at most $\frac{3 n \log d}{d}$.
(Hint: $p=\frac{\log d}{d}$.)
Solution: Place each vertex of V independently into $S_{1} \subseteq V$ with probability $p=\frac{\log d}{d}$. Let S_{2} be the set of vertices not in S_{1} with at most one neighbor in S_{1}. Then $S=S_{1} \cup S_{2}$ is a 2 -dominating set. We have

$$
\begin{aligned}
\mathbf{E}(|S|) & \leq n p+n(1-p)\left((1-p)^{d}+d p(1-p)^{d-1}\right) \\
& \leq n\left(\frac{\log d}{d}+e^{-\log d}+\log d \cdot e^{-\log d}\right) \\
& \leq \frac{3 n \log d}{d}
\end{aligned}
$$

Q2: (33pts)

Let $G=(V, E)$ be a graph with maximum degree $d>1$. Show that the vertices of G can be colored with $q \geq 10 d^{4}$ colors such that no color appears twice in the neighborhood of a vertex.
Solution: randomly color each vertex. Let \mathcal{E}_{v} denote the event that v 's neigborhood contains a repeated color. Then
$p=\operatorname{Pr}\left(\mathcal{E}_{v}\right) \leq \mathbf{E}$ (number of repeated colors in v 's neighborhood) $=\frac{\binom{d}{2}}{q} \leq \frac{d^{2}}{2 q}$.
Events $\mathcal{E}_{v}, \mathcal{E}_{w}$ are dependent only if they share a common vertex. Hence the dependency graph has maximum degree d^{2}. Now $4 d^{2} \cdot d^{2} / q<1$ and so the local lemma implies the result.

Q3: (34pts)
A family of sets $\mathcal{A} \subseteq\binom{[n]}{r}, r \geq 2$ satisfies,

$$
A, B \in \mathcal{A}, A \neq B \text { implies }|A \cap B| \leq 1
$$

Let $f(n, r)$ denote the maximum size of such a family.
(a) Prove that $f(n, r)=1$ for $r \leq n \leq 2 r-2$.
(b) Prove that $f(n, r) \leq \frac{n-1}{r-1}+f(n-1, r)$ for $n \geq 2 r-1$.
(c) Deduce that $f(n, r) \leq \frac{(n-r)(n+r-1)}{2(r-1)}+1$.
(This bound is not tight. Do not worry if you get something slightly better.)
Solution:
(a) This follows from the fact that if $|A|=|B|=r$ and $|A \cap B| \leq 1$ then $|A \cup B| \geq 2 r-1$.
(b) The set \mathcal{A} contains at most $\frac{n-1}{r-1}$ sets that contain n. This is because these sets form a disjoint family of $(r-1)$-sets. There are at most $f(n-1, r)$ sets in \mathcal{A} that do not contain n.
(c) It follows from (b) that

$$
f(n, r) \leq \frac{n-1}{r-1}+\frac{n-2}{r-1}+\cdots+\frac{r-1}{r-1}+1 \leq \frac{(n-r)(n+r-1)}{2(r-1)}+1
$$

