Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2023: Test 2

Name:_____

Andrew ID:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Let G = (V, E) be a graph on *n* vertices, with minimum degree d > 1. $S \subseteq V$ is a 2-dominating set if $v \notin S$ implies that v has at least two neighbors in S. Show that G contains a 2-dominating set of size at most $\frac{3n \log d}{d}$. (Hint: $p = \frac{\log d}{d}$.) Solution: Place each vertex of V independently into $S_1 \subseteq V$ with probability $p = \frac{\log d}{d}$. Let S_2 be the set of vertices not in S_1 with at most one neighbor in S_1 . Then $S = S_1 \cup S_2$ is a 2-dominating set. We have

$$\begin{aligned} \mathbf{E}(|S|) &\leq np + n(1-p)((1-p)^d + dp(1-p)^{d-1}) \\ &\leq n\left(\frac{\log d}{d} + e^{-\log d} + \log d \cdot e^{-\log d}\right) \\ &\leq \frac{3n\log d}{d}. \end{aligned}$$

Q2: (33pts)

Let G = (V, E) be a graph with maximum degree d > 1. Show that the vertices of G can be colored with $q \ge 10d^4$ colors such that no color appears twice in the neighborhood of a vertex.

Solution: randomly color each vertex. Let \mathcal{E}_v denote the event that v's neighborhood contains a repeated color. Then

 $p = \Pr(\mathcal{E}_v) \leq \mathbf{E}(\text{number of repeated colors in } v\text{'s neighborhood}) = \frac{\binom{d}{2}}{q} \leq \frac{d^2}{2q}.$

Events $\mathcal{E}_v, \mathcal{E}_w$ are dependent only if they share a common vertex. Hence the dependency graph has maximum degree d^2 . Now $4d^2 \cdot d^2/q < 1$ and so the local lemma implies the result.

Q3: (34pts)

A family of sets $\mathcal{A} \subseteq {\binom{[n]}{r}}, r \geq 2$ satisfies,

 $A, B \in \mathcal{A}, A \neq B$ implies $|A \cap B| \leq 1$.

Let f(n,r) denote the maximum size of such a family.

(a) Prove that f(n,r) = 1 for $r \le n \le 2r - 2$.

(b) Prove that $f(n,r) \leq \frac{n-1}{r-1} + f(n-1,r)$ for $n \geq 2r-1$. (c) Deduce that $f(n,r) \leq \frac{(n-r)(n+r-1)}{2(r-1)} + 1$.

(This bound is not tight. Do not worry if you get something slightly better.) Solution:

(a) This follows from the fact that if |A| = |B| = r and $|A \cap B| \leq 1$ then $|A \cup B| \ge 2r - 1.$

(b) The set \mathcal{A} contains at most $\frac{n-1}{r-1}$ sets that contain n. This is because these sets form a disjoint family of (r-1)-sets. There are at most f(n-1,r) sets in \mathcal{A} that do not contain n.

(c) It follows from (b) that

$$f(n,r) \le \frac{n-1}{r-1} + \frac{n-2}{r-1} + \dots + \frac{r-1}{r-1} + 1 \le \frac{(n-r)(n+r-1)}{2(r-1)} + 1.$$