Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2023: Test 1

Name:_____

Andrew ID:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Find a recurrence for the number of sequences in $\{a, b, c\}^n$ that do not contain *aaa* as a subsequence.

DO NOT SOLVE THE RECURRENCE.

Solution: Let B_n be the set of sequences in question. Let B_n^x , x = a, b, c be the sequences in B_n that begin with x. Then

$$|B_n| = |B_n^{(a)}| + |B_n^{(b)}| + |B_n^{(c)}| = |B_n^{(a)}| + 2|B_{n-1}|.$$

Similarly,

$$|B_n^{(a)}| = |B_n^{(aa)}| + |B_n^{(ab)}| + |B_n^{(ac)}| = |B_n^{(aa)}| + 2|B_{n-2}| = 2|B_{n-3}| + 2|B_{n-2}|.$$

So, the recurrence for $b_n = |B_n|$ is that

$$b_n = 2b_{n-1} + 2b_{n-2} + 2b_{n-3}.$$

Q2: (33pts)

The sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies the following: $a_0 = 1, a_1 = 9$ and

$$a_n = 6a_{n-1} - 9a_{n-2}$$

for $n \geq 2$.

- (a): Find the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$.
- (b): Find an expression for $a_n, n \ge 0$.

Solution: Multiplying the equation by x^n and summing over $n \ge 2$ we obtain

$$(a(x) - 9x - 1) - (6x(a(x) - 1) + (9x^2a(x))) = 0 \text{ or } a(x) = \frac{3x + 1}{(1 - 3x)^2}.$$

Now

$$\frac{3x}{(1-3x)^2} = \sum_{n=0}^{\infty} n3^n$$
 and $\frac{1}{(1-3x)^2} = \sum_{n=0}^{\infty} (n+1)3^n$.

 So

$$a_n = (2n+1)3^n.$$

Q3: (34pts)

A table has 4n seats. n families sit round the table, so that clockwise we have Man, Woman, Boy, Girl. How many ways are there of seating people so that no family sits completely together?

Solution: Let A_i be those sittings where family *i* sits together. Then if |S| = s,

$$|A_S| = \binom{n}{s} s!(n-s)!^4.$$

Explanation: $\binom{n}{s}$ choices of places to seat S and then s! orderings of the families and $(n-s)!^4$ ways of arranging the rest of the people. Thus, the number of possible seatings is

$$\sum_{s=0}^{n} (-1)^{s} {\binom{n}{s}}^{2} s! (n-s)!^{4}.$$