Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2023: Test 1

Name: \qquad

Andrew ID:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Find a recurrence for the number of sequences in $\{a, b, c\}^{n}$ that do not contain aaa as a subsequence.
DO NOT SOLVE THE RECURRENCE.
Solution: Let B_{n} be the set of sequences in question. Let $B_{n}^{x}, x=a, b, c$ be the sequences in B_{n} that begin with x. Then

$$
\left|B_{n}\right|=\left|B_{n}^{(a)}\right|+\left|B_{n}^{(b)}\right|+\left|B_{n}^{(c)}\right|=\left|B_{n}^{(a)}\right|+2\left|B_{n-1}\right|
$$

Similarly,

$$
\left|B_{n}^{(a)}\right|=\left|B_{n}^{(a a)}\right|+\left|B_{n}^{(a b)}\right|+\left|B_{n}^{(a c)}\right|=\left|B_{n}^{(a a)}\right|+2\left|B_{n-2}\right|=2\left|B_{n-3}\right|+2\left|B_{n-2}\right| .
$$

So, the recurrence for $b_{n}=\left|B_{n}\right|$ is that

$$
b_{n}=2 b_{n-1}+2 b_{n-2}+2 b_{n-3} .
$$

Q2: (33pts)

The sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ satisfies the following: $a_{0}=1, a_{1}=9$ and

$$
a_{n}=6 a_{n-1}-9 a_{n-2}
$$

for $n \geq 2$.
(a): Find the generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
(b): Find an expression for $a_{n}, n \geq 0$.

Solution: Multiplying the equation by x^{n} and summing over $n \geq 2$ we obtain

$$
(a(x)-9 x-1)-\left(6 x(a(x)-1)+\left(9 x^{2} a(x)\right)=0 \text { or } a(x)=\frac{3 x+1}{(1-3 x)^{2}}\right.
$$

Now

$$
\frac{3 x}{(1-3 x)^{2}}=\sum_{n=0}^{\infty} n 3^{n} \text { and } \frac{1}{(1-3 x)^{2}}=\sum_{n=0}^{\infty}(n+1) 3^{n}
$$

So

$$
a_{n}=(2 n+1) 3^{n} .
$$

Q3: (34pts)
A table has $4 n$ seats. n families sit round the table, so that clockwise we have Man, Woman, Boy, Girl. How many ways are there of seating people so that no family sits completely together?
Solution: Let A_{i} be those sittings where family i sits together. Then if $|S|=s$,

$$
\left|A_{S}\right|=\binom{n}{s} s!(n-s)!^{4}
$$

Explanation: $\binom{n}{s}$ choices of places to seat S and then s ! orderings of the families and $(n-s)!^{4}$ ways of arranging the rest of the people. Thus, the number of possible seatings is

$$
\sum_{s=0}^{n}(-1)^{s}\binom{n}{s}^{2} s!(n-s)!^{4}
$$

