Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2010: Test 4

Name: \qquad

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)
Let $k \geq 1$ be a positive integer. Consider the one pile take-away game G_{k} where a player is allowed to remove between 1 and k chips in a move. Show that the Grundy numbers g_{k} are given by $g_{k}(n)=n \bmod (k+1)$.
Suppose that 11,24 is the position in a game of $G_{5} \oplus G_{3}$. Is this an N or P position?
Solution We prove this by induction on n. This is true for $n=0$. If $1 \leq n \leq k$ then using induction
$g(n)=\operatorname{mex}\{g(0), g(1), \ldots, g(n-1)\}=\operatorname{mex}\{0,1, \ldots, n-1\}=n=n \bmod k+1$.
If $n>k$ then $n=a(k+1)+b$ for integers $a \geq 1,0 \leq b \leq k$. So,

$$
\begin{aligned}
g(n) & =\operatorname{mex}\{g(n-k), g(n-k+1), \ldots, g(n-1)\} \\
& =\operatorname{mex}\{n-k \quad \bmod k+1, \ldots, n-1 \quad \bmod k+1\} \\
& =\operatorname{mex}\{b-k \quad \bmod k+1, \ldots, b-1 \quad \bmod k+1\} \\
& =\operatorname{mex}\{b+1 \quad \bmod k+1, \ldots, k+1 \quad \bmod k+1, \ldots, b+k \quad \bmod k+1\} \\
& =\operatorname{mex}\{b+1, \ldots, k, 0,1, \ldots, b-1\} \\
& =b \\
& =n \bmod k+1
\end{aligned}
$$

Q2: (33pts)

Prove that every partition matroid is also a transversal matroid.
Solution Suppose that the partition matroid \mathcal{M} is defined by the disjoint sets $E_{1}, E_{2}, \ldots, E_{m}$ and that $I \subseteq E=\bigcup_{i} E_{i}$ is independent iff $\left|I \cap E_{i}\right| \leq$ $k_{i}, i=1,2, \ldots, m$. Let G_{i} be the complete bipartite graph with vertex set K_{i}, E_{i} where $\left|K_{i}\right|=k_{i}$. Let $G=G_{1} \cup G_{2} \cup \cdots G_{m}$. A matching of G is obtained by choosing at most k_{i} from each E_{i} and then joining each chosen vertex to a distinct vertex in K_{i}. So there is a 1-1 correspondence between matched subsetets of E and independent sets in \mathcal{M}.

Q3: (34pts) Let $G=(V, E)$ be a connected graph and suppose that the edges E are colored Red and Blue. Let E_{R} denote the set of Red edges. Let $k \geq 1$ be an integer. Show that G contains a spanning tree with at least k Red edges if and only if for all $S \subseteq E$ we have

$$
\begin{equation*}
\min \left\{n-k-1+\left|\bar{S} \cap E_{R}\right|,|\bar{S}|\right\} \geq \kappa(S)-1 \tag{1}
\end{equation*}
$$

Here $\bar{S}=E \backslash S$ and $\kappa(S)$ is the number of components in the subgraph $G_{S}=(V, S)$.
Solution Suppose that $|V|=n$. We seek a set of edges E of size $\mid n-1$ that is independent in the cycle matroid \mathcal{M}_{1} of G and the partition matroid \mathcal{M}_{2} where a set is independent iff it contains at most $n-k-1$ Blue edges. Applying Edmond's theorem we see that this exists iff

$$
\left.\min _{S \subseteq E}\left\{n-\kappa(S)+\mid \bar{S} \cap E_{R}\right) \mid+\min \left\{n-k-1,\left|\bar{S} \cap E_{B}\right|\right\}\right\} \geq n-1
$$

(1) follows by subtracting $n-\kappa(S)$ from both sides.

