Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2010: Test 4

Name:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

Let $k \ge 1$ be a positive integer. Consider the one pile take-away game G_k where a player is allowed to remove between 1 and k chips in a move. Show that the Grundy numbers g_k are given by $g_k(n) = n \mod (k+1)$. Suppose that 11,24 is the position in a game of $G_5 \oplus G_3$. Is this an N or P

position?

Solution We prove this by induction on n. This is true for n = 0. If $1 \le n \le k$ then using induction

$$g(n) = \max\{g(0), g(1), \dots, g(n-1)\} = \max\{0, 1, \dots, n-1\} = n = n \mod k+1.$$

If n > k then n = a(k+1) + b for integers $a \ge 1, 0 \le b \le k$. So,

$$\begin{split} g(n) &= \max\{g(n-k), g(n-k+1), \dots, g(n-1)\} \\ &= \max\{n-k \mod k+1, \dots, n-1 \mod k+1\} \\ &= \max\{b-k \mod k+1, \dots, b-1 \mod k+1\} \\ &= \max\{b+1 \mod k+1, \dots, k+1 \mod k+1, \dots, b+k \mod k+1\} \\ &= \max\{b+1, \dots, k, 0, 1, \dots, b-1\} \\ &= b \\ &= n \mod k+1 \end{split}$$

Q2: (33pts)

Prove that every partition matroid is also a transversal matroid.

Solution Suppose that the partition matroid \mathcal{M} is defined by the disjoint sets E_1, E_2, \ldots, E_m and that $I \subseteq E = \bigcup_i E_i$ is independent iff $|I \cap E_i| \leq k_i, i = 1, 2, \ldots, m$. Let G_i be the complete bipartite graph with vertex set K_i, E_i where $|K_i| = k_i$. Let $G = G_1 \cup G_2 \cup \cdots \cup G_m$. A matching of G is obtained by choosing at most k_i from each E_i and then joining each chosen vertex to a distinct vertex in K_i . So there is a 1-1 correspondence between matched subsetets of E and independent sets in \mathcal{M} .

Q3: (34pts) Let G = (V, E) be a connected graph and suppose that the edges E are colored Red and Blue. Let E_R denote the set of Red edges. Let $k \ge 1$ be an integer. Show that G contains a spanning tree with at least k Red edges if and only if for all $S \subseteq E$ we have

$$\min\{n - k - 1 + |\bar{S} \cap E_R|, |\bar{S}|\} \ge \kappa(S) - 1.$$
(1)

Here $\overline{S} = E \setminus S$ and $\kappa(S)$ is the number of components in the subgraph $G_S = (V, S)$.

Solution Suppose that |V| = n. We seek a set of edges E of size |n - 1 that is independent in the cycle matroid \mathcal{M}_1 of G and the partition matroid \mathcal{M}_2 where a set is independent iff it contains at most n - k - 1 Blue edges. Applying Edmond's theorem we see that this exists iff

$$\min_{S \subseteq E} \{ n - \kappa(S) + |\bar{S} \cap E_R) | + \min\{ n - k - 1, |\bar{S} \cap E_B| \} \} \ge n - 1.$$

(1) follows by subtracting $n - \kappa(S)$ from both sides.