Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2021: Test 3

Name: \qquad

Andrew ID: \qquad

Write your name and Andrew ID on every page.

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)
(a) Consider the following take-away game: There is a pile of n chips. A move consists of removing 2 or 3 chips. Determine the Sprague-Grundy numbers $g(n)$ for $n \geq 0$ and prove that they are what you claim.
(b) Consider the following position in the sum of 3 games described in (a). Determine whether it is an N or P position. There are 3 piles with $19,27,8$ chips.
Solution: (a) After looking at the first few numbers $0,0,1,1,2,0,0,1,1,2,2 \ldots$ one sees that

$$
g(n)=\left\lfloor\frac{n \bmod 5}{2}\right\rfloor .
$$

We verify this by induction. It is true for $n \leq 10$ by inspection. For $n>10$ we have that if $n=5 m+s$ then

$$
g(n)=\operatorname{mex}\{g(n-3), g(n-2)\}=\operatorname{mex}\{g(5 m+s-3), g(5 m+s-2)\}
$$

So, by induction

$$
g(n)= \begin{cases}\operatorname{mex}\{g(5(m-1)+2), g(5(m-1)+3)\}=\operatorname{mex}\{1,1\}=0 & s=0 \\ \operatorname{mex}\{g(5(m-1)+3), g(5(m-1)+4)\}=\operatorname{mex}\{1,2\}=0 & s=1 \\ \operatorname{mex}\{g(5(m-1)+4), g(5 m)\}=\operatorname{mex}\{2,0\}=1 & s=2 \\ \operatorname{mex}\{g(5 m), g(5 m+1)\}=\operatorname{mex}\{0,0\}=1 & s=3 \\ \operatorname{mex}\{g(5 m+1), g(5 m+2)\}=\operatorname{mex}\{0,1\}=2 & s=4\end{cases}
$$

The result follows by induction.
(b) $g(19) \oplus g(27) \oplus g(8)=2 \oplus 1 \oplus 1=2$, implying that this is an N position.

Q2: (33pts)

Consider the following game: player A goes first and colors an edge of K_{n} red. Then player B colors an uncolored edge blue. Then player A colors an uncolored edge red and so on. The game continues until one of the players has completed a monomchromatic triangle. Detemine the smallest n such that one of the players has a winning strategy.
Solution: If $n=4$ and player A colors $\{1,2\}$ red then player B can color $\{3,4\}$ blue. After this, we can assume that player colors $\{1,3\}$ red. This forces player B to color $\{2,3\}$ blue and this forces player A to color $\{3,4\}$ red and then player B finished the game by coloring $\{1,4\}$ blue. So there is a draw.
If $n=5$ and player A colors $\{1,2\}$ red then either (i) player B colors $\{1,3\}$ blue or (ii) $\{3,4\}$ blue. In case (i) player A colors $\{1,4\}$ red and player B is forced to color $\{2,4\}$ blue. After this, player A colors $\{1,5\}$ red and has a forced win because B has to close 2 triangles in the next move. In case (ii) player A colors $\{1,5\}$ red and then B must color $\{2,5\}$ blue and then A colors $\{1,3\}$ red and has a forced win.

Q3: (34pts)

Let X denote the set of 2-colorings of $D=[n]$ and let G be the group defined by all permutations of $[n]$. Suppose that G acts on X in the usual way i.e $\pi * c(x)=c\left(\pi^{-1}(x)\right)$ for any permutation π and coloring $c: D \rightarrow\{$ Red, Blue $\}$ and $x \in[n]$.
(a) Determine the structure of the orbits.
(b) How many orbits are there?
(c) Deduce that

$$
\sum_{\pi} 2^{\nu(\pi)}=(n+1)!
$$

where $\nu(\pi)$ is the number of cycles in the permutation π.

Solution:

(a), (b) The number of elements of each color will be preserved by a permutation. Conversely, if two colorings have the same number of reds and blues then one can obtain one from the other by a permutation. It follows that there are exactly $n+1$ orbits, corresponding to the number of red elements. (c) For this we apply the Burnside-Frobenius lemma. For a permutation π, $|\operatorname{Fix}(\pi)|=2^{\nu(\pi)}$. So,

$$
n+1=\frac{1}{n!} \sum_{\pi}|F i x(\pi)|=\frac{1}{n!} \sum_{\pi} 2^{\nu(\pi)}
$$

