Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2021: Test 2

Name:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)
Given a graph $G=(V, E)$ with maximum degree k and a partition of V into sets $V_{1}, V_{2}, \ldots, V_{m}$ of size $10 k$, show that there is an independent set in G with one vertex from each set in the partition.
(An independent set S, is a subset of the vertices that contains no edges.)
Solution: let $v_{1}, v_{2}, \ldots, v_{m}$ be chosen randomly from $V_{1}, V_{2}, \ldots, V_{m}$ respectively. For each edge $e=\{x, y\}$ with x, y in distinct parts, let \mathcal{E}_{e} be the event that x, y are both chosen. Then, $p=\operatorname{Pr}\left(\mathcal{E}_{e}\right)=1 /(10 k)^{2}$. If $x \in V_{i}$ and $y \in V_{j}$ then \mathcal{E}_{e} is independent of \mathcal{E}_{f}, unless $f \cap\left(V_{i} \cup V_{j}\right) \neq \emptyset$. This means that the dependency graph has maximum degree $d \leq 2 k \times 10 k$. The result now follows from the symmetric local lemma.

Q2: (33pts)
Let $1 \leq k \leq n / 2$ and let \mathcal{F} be a Sperner family consisting of sets of size at most K. Show that $|\mathcal{F}| \leq\binom{ n}{k}$.
Solution: let f_{i} denote the number of sets in \mathcal{F} of size i. Then the LYM inequality implies that

$$
\sum_{i=1}^{k} \frac{f_{i}}{\binom{n}{i}} \leq 1
$$

Now we have $\binom{n}{i} \leq\binom{ n}{k}$ for $i \leq k$ and so

$$
\sum_{i=1}^{k} \frac{f_{i}}{\binom{n}{k}} \leq 1
$$

giving us the result.

Q3: (34pts)

We are given 5 integer points $P_{i}=\left(x_{i}, y_{i}\right), i=1,2, \ldots, 5$ in the plane. Show that there is a pair i, j such that their midpoint $\left(P_{i}+P_{j}\right) / 2$ is also integer. ((a, b) is an integer point if a, b are integers.)
Solution: $\left(P_{i}+P_{j}\right) / 2$ is an integer point if x_{i} has the same parity as x_{j} and y_{i} has the same parity as y_{j}. Now there are only 4 possible parity pairs for an integer point P, viz. (ODD,ODD), (ODD,EVEN),(EVEN,ODD),(EVEN,EVEN). So, by the pigeon-hole principle there are two points with the same parity pair.

