# Department of Mathematics Carnegie Mellon University 

21-301 Combinatorics, Fall 2021: Test 1

Name: $\qquad$

Andrew ID:

| Problem | Points | Score |
| :--- | :--- | :--- |
| 1 | 33 |  |
| 2 | 33 |  |
| 3 | 34 |  |
| Total | 100 |  |

## Q1: (33pts)

How many sequences $a_{1}, a_{2}, \ldots, a_{m} \in[n]$ satisfy $a_{i}-a_{i-1} \geq k$ for $2 \leq i \leq m$, where $k$ is a positive integer?
(Hint: consider the sequence $x_{i}=a_{i}-a_{i-1}, 1 \leq i \leq m+1$, where $a_{0}=0$ and $a_{m+1}=n$.)
Solution: following the hint we see that $x_{1}+\cdots+x_{m+1}=x_{m+1}-x_{0}=n$ and $x_{i} \geq k$ for $2 \leq i \leq m$. Then put $y_{i}=x_{i}-k, 2 \leq i \leq m, y_{1}=x_{1}-1, y_{m+1}=$ $x_{m+1}$ so that $y_{1}, \ldots, y_{m+1} \geq 0$ and $y_{1}+\cdots+y_{m+1}=n-(m-1) k-1$. There is a 1-1 correspondence between the $a_{i}$ 's and the $y_{i}$ 's and so the answer is $\binom{n-(m-1) k-1+m}{m}$.

## Q2: (33pts)

The sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ satisfies the following: $a_{0}=1, a_{1}=9$ and

$$
a_{n}=4 a_{n-1}-4 a_{n-2}
$$

for $n \geq 2$.
(a): Find the generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$.
(b): Find an expression for $a_{n}, n \geq 0$.

## Solution:

$$
\begin{aligned}
& \sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty}\left(4 a_{n-1}-4 a_{n-2}\right) x^{n} \\
& a(x)-9 x-1=4 x(a(x)-1)-4 x^{2} a(x) \\
& a(x)=\frac{5 x+1}{4 x^{2}-4 x+1}=\frac{5 x+1}{(1-2 x)^{2}} \\
& a(x)=\sum_{n=0}^{\infty}\binom{n+1}{1}(2 x)^{n}+5 x \sum_{n=0}^{\infty}\binom{n+1}{1}(2 x)^{n} \\
& a_{n}=(n+1) 2^{n}+5 n 2^{n-1}=2^{n}+7 n 2^{n-1}
\end{aligned}
$$

## Q3: (34pts)

$n$ children take off their jackets and shoes and put them into a pile on the floor and go and play. How many ways are there of giving to each of the children a pair of matching shoes and a jacket, so that no child gets his/her own jacket and shoes.
Solution: Suppose that child $i$ is given the jacket of child $\pi_{1}(i)$ and the shoes of child $\pi_{2}(i)$. Let

$$
A_{i}=\left\{\left(\pi_{1}, \pi_{2}\right): \pi_{1}(i)=\pi_{2}(i)=i\right\}
$$

for $i=1,2, \ldots, n$.
We need to compute $\left|\bigcap_{i=1}^{n} \bar{A}_{i}\right|$. Now if $|S|=k$ then $\left|A_{S}\right|=((n-k)!)^{2}$ since we have fixed $\pi_{1}(i), \pi_{2}(i)$ for $i \in S$ and the remaining values can be permuted arbitrarily. Thus

$$
\left|\bigcap_{i=1}^{n} \bar{A}_{i}\right|=\sum_{S \subseteq[N]}(-1)^{|S|}((n-|S|)!)^{2}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}((n-k)!)^{2} .
$$

