Department of Mathematics
Carnegie Mellon University

21-301 Combinatorics, Fall 2020: Test 4

Name: ________________________________

Andrew ID: ________________________________

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
Q1: (25pts)
Let $G = (V, E)$ be a graph with m edges. Let \mathcal{C} denote the set of cycles of G. For $C \in \mathcal{C}$ we let $|C|$ denote the number of edges in C. Prove that

$$\sum_{C \in \mathcal{C}} \frac{1}{m|C|} \leq 1.$$

Solution: The set \mathcal{C} is a Sperner family. If $C_1, C_2 \in \mathcal{C}$ then $C_1 \nsubseteq C_2$. The inequality follows directly from the LYM inequality.
Q2: (25pts)

Let \(E = \{e_1, \ldots, e_m\} \) and suppose that \(S_j \subseteq E, j = 1, \ldots, n \) contains \(s_j \) elements. Suppose also that \(e_i, i = 1, \ldots, m \) occurs in \(r_i \) of the sets \(S_j \). Let \(S = \sum_{j=1}^n s_j = \sum_{i=1}^m r_i \) and \(M = \max\{r_1, \ldots, r_m, s_1, \ldots, s_n\} \). Show that if \(s > (n-1)M \) then there exist distinct \(e_t, t = 1, \ldots, n \) such that \(e_t \in S_t, t = 1, \ldots, n \).

(Hint: Hall’s theorem)

Solution: consider the bipartite graph \(\Gamma \) with vertices \(A = \{a_1, a_2, \ldots, a_n\} \) and \(B = \{b_1, b_2, \ldots, b_m\} \) where edge \((a_i, b_j)\) exists iff \(e_j \in S_i \). We have to prove that \(\Gamma \) contains a matching of \(A \) into \(B \). If there is no such matching, then there exists \(X \subseteq A \) such that \(|N(X)| < |X| \).

\[
\ell = \left| \bigcup_{i \in X} S_i \right| < k = |X|.
\]

This implies that there is an element \(e \in E \) that occurs in at least \(p \) of the sets \(S_i, i \in X \) where \(p\ell \geq \sum_{i \in X} s_j \). By assumption we have

\[
\sum_{i \in X} s_i + \sum_{i \not\in X} s_i > (n-1)M.
\]

Thus

\[
p\ell > (n-1)M - \sum_{i \not\in X} s_i \geq (n-1)M - (n-k)M = (k-1)M.
\]

Because \(\ell \leq k-1 \), this implies that \(p > M \), a contradiction.
Q3: (25pts)
Find the set of P-positions for the take-away games with subtraction sets

(a) $S = \{1, 3, 7\}$.

(b) $S = \{1, 4, 6\}$.

(Reminder: in a take-away game with subtraction set S, a player can only remove x from a pile, if $x \in S$.)

Suppose now that there are two piles and the rules for each pile are as above. Now find the P positions for the two pile game where in one pile S is as in (a) and the other pile is as in (b).

Solution: let g_a, g_b denote the SG-numbers for the two games. We have

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_a(n)$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$g_b(n)$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

An easy induction shows that

$$g_a(n) = n \mod 2 \text{ and } g_b(n) = \begin{cases} 0 & n = 0, 2 \mod 5. \\ 1 & n = 1, 3 \mod 5. \\ 2 & n = 4 \mod 5. \end{cases}$$

The P-position for the two-pile game are when $g_a(bn \oplus g_b(n)) = 0$ or

$$P = \{n : n \mod 10 \in \{0, 1, 2, 3, 4\}\}.$$
Q4: (25pts)
How many ways are there to arrange 4C’s, 4 G’s, 5 A’s and 8T’s under the condition that any arrangement and its reverse/inverse are to be considered the same.

Solution: The group G consists of $\{e, a\}$ where a is a reflection through the middle of the word. Now

$$|\text{Fix}(e)| = \frac{21!}{4!4!5!8!},$$
$$|\text{Fix}(a)| = \frac{10!}{2!2!2!4!}.$$

A sequence is in $\text{Fix}(a)$ if it is a palindrome i.e. looks the same backwards as forwards. It must have middle letter A. Then we arrange 2 C’s, 2 G’s, 2 A”s and 4 T’s in any order and then complete the sequence uniquely to a palindrome.

The total number of arrangements is $(|\text{Fix}(e)| + |\text{Fix}(a)|)/2.$