# Department of Mathematics Carnegie Mellon University 

21-301 Combinatorics, Fall 2020: Test 4

Name: $\qquad$

Andrew ID:

| Problem | Points | Score |
| :--- | :--- | :--- |
| 1 | 25 |  |
| 2 | 25 |  |
| 3 | 25 |  |
| 4 | 25 |  |
| Total | 100 |  |

Q1: (25pts)
Let $G=(V, E)$ be a graph with $m$ edges. Let $\mathcal{C}$ denote the set of cycles of $G$. For $C \in \mathcal{C}$ we let $|C|$ denote the number of edges in $C$. Prove that

$$
\sum_{C \in \mathcal{C}} \frac{1}{\binom{m}{|C|}} \leq 1
$$

Solution: The set $\mathcal{C}$ is a Sperner family. If $C_{1}, C_{2} \in \mathcal{C}$ then $C_{1} \nsubseteq C_{2}$. The inequality follows directly from the LYM inequality.

Q2: (25pts)
Let $E=\left\{e_{1}, \ldots, e_{m}\right\}$ and suppose that $S_{j} \subseteq E, j=1, \ldots, n$ contains $s_{j}$ elements. Suppose also that $e_{i}, i=1, \ldots, m$ occurs in $r_{i}$ of the sets $S_{j}$. Let $S=\sum_{j=1}^{n} s_{j}=\sum_{i=1}^{m} r_{i}$ and $M=\max \left\{r_{1}, \ldots, r_{m}, s_{1}, \ldots, s_{n}\right\}$. Show that if $S>(n-1) M$ then there exist distinct $e_{i t}, t=1, \ldots, n$ such that $e_{i_{t}} \in S_{t}, t=1, \ldots, n$.
(Hint: Hall's theorem)
Solution: consider the bipartite graph $\Gamma$ with vertices $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ where edge $\left(a_{i}, b_{j}\right)$ exists iff $e_{j} \in S_{i}$. We have to prove that $\Gamma$ contains a matching of $A$ into $B$. If there is no such matching, then there exists $X \subseteq A$ such that $|N(X)|<|X|$.

$$
\ell=\left|\bigcup_{i \in X} S_{i}\right|<k=|X| .
$$

This implies that there is an element $e \in E$ that occurs in at least $p$ of the sets $S_{i}, i \in X$ where $p \ell \geq \sum_{i \in X} s_{j}$. By assumption we have

$$
\sum_{i \in X} s_{i}+\sum_{i \notin X} s_{i}>(n-1) M .
$$

Thuis

$$
p \ell>(n-1) M-\sum_{i \notin X} s_{i} \geq(n-1) M-(n-k) M=(k-1) M .
$$

Because $\ell \leq k-1$, this implies that $p>M$, a contradiction.

Q3: (25pts)
Find the set of $P$-positions for the take-away games with subtraction sets
(a) $S=\{1,3,7\}$.
(b) $S=\{1,4,6\}$.
(Reminder: in a take-away game with subtraction set $S$, a player can only remove $x$ from a pile, if $x \in S$.)
Suppose now that there are two piles and the rules for each pile are as above. Now find the $P$ positions for the two pile game where in one pile $S$ is as in (a) and the other pile is as in (b)

Solution: let $g_{a}, g_{b}$ denote the SG-numbers for the two games. We have

$$
\begin{array}{ccccccccccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
g_{a}(n) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
g_{b}(n) & 0 & 1 & 0 & 1 & 2 & 0 & 1 & 0 & 1 & 2 & 0 & 1 & 0 & 1 & 2 & 0
\end{array}
$$

An easy induction shows that

$$
g_{a}(n)=n \quad \bmod 2 \text { and } g_{b}(n)= \begin{cases}0 & n=0,2 \quad \bmod 5 \\ 1 & n=1,3 \bmod 5 . \\ 2 & n=4 \quad \bmod 5\end{cases}
$$

The $P$-posiitons for the two-pile game are when $g_{a}\left(b n \oplus g_{b}(n)=0\right.$ or

$$
P=\{n: n \bmod 10 \in\{0,1,2,3,4\}\} .
$$

## Q4: (25pts)

How many ways are there to arrange 4C's, 4 G's, 5 A's and 8T's under the condition that any arrangement and its reverse/inverse are to be considered the same.
Solution: The group $G$ consists of $\{e, a\}$ where $a$ is a reflection through the middle of the word. Now

$$
\begin{aligned}
|F i x(e)| & =\frac{21!}{4!4!5!8!} . \\
|F i x(a)| & =\frac{10!}{2!2!2!4!}
\end{aligned}
$$

A sequence is in $\operatorname{Fix}(a)$ if it is a palindrome i.e. looks the same backwards as forwards. It must have middle letter A. Then we arrange 2 C's, 2 G's, 2 A"s and 4 T's in any order and then complete the sequence uniquely to a palindrome.
The total number of arrangements is $(|F i x(e)|+|F i x(a)|) / 2$.

