Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2020: Test 3

Name:_____

Andrew ID:_____

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)

A set A of $\{0, 1\}$ strings of length n is said to be (n, k)-universal if for any subset of k coordinates $S = \{i_1, i_2, \ldots, i_k\}$ the projection

$$A_S = \{(a_{i_1}, a_{i_2}, \dots, a_{i_k}) : (a_1, a_2, \dots, a_n) \in A\}$$

contains all possible 2^k strings of length k. Show that if $\binom{n}{k} 2^k (1 - 2^{-k})^r < 1$ then there is an (n, k)-universal set of size r.

Solution: Let A be a set of r random strings. If A is not (n, k)-universal then there exists a set S of size k and an $x \in \{0, 1\}^k$ that is not the projection of a string in A. Let $\mathcal{E}_{S,x}$ denote this event. The union bound implies that the probability of this is at most

$$\sum_{S} \sum_{x} \Pr(\mathcal{E}_{S,x}) = \binom{n}{k} 2^k \left(1 - \frac{1}{2^k}\right)^r < 1.$$

This implies the existence of an (n, k)-universal set of size r. by assumption.

Q2: (33pts)

Let G = (V, E) be a graph of maximum degree d. Let V_1, V_2, \ldots, V_r be a partition of V such that $|V_i| \ge 10d$ for $i = 1, 2, \ldots, r$. Use the local lemma to show that G contains a set S such that (i) $|S \cap V_i| = 1$ for $i = 1, 2, \ldots, r$ and (ii) S is independent, i.e. contains no edges of G.

Solution: We can remove vertices from each V_i if needed and so we can assume w.l.o.g. that $|V_i| = 10d$ for i = 1, 2, ..., r. Choose v_i randomly from V_i for i = 1, 2, ..., r and let $S = \{v_1, v_2, ..., v_r\}$. For an edge $e = \{x, y\} \in E$ we let \mathcal{E}_e be the event that both $x, y \in S$. Thus $\Pr(\mathcal{E}_e) \leq p = \frac{1}{100d^2}$. An event \mathcal{E}_e depends only on events \mathcal{E}_f for which e and f shae a common vertex. Thus the dependency graph has degree at most $20d^2$. So, $4dp \leq \frac{80d^2}{100d^2} < 1$.

Q3: (34pts)

The sequence $a_0, a_1, \ldots, a_n, \ldots$ satisfies the following: $a_0 = 1, a_1 = 4$ and

$$a_n - 4a_{n-1} + 4a_{n-2} = 0$$

for $n \ge 2$. Determine the generating function $a(x) = \sum_{n=0}^{\infty} a_n x^n$ and hence find a_n . Solution

$$0 = \sum_{n=2}^{\infty} (a_n - 4a_{n-1} + 4a_{n-2})x^n$$

= $(a(x) - 1 - 4x) - 4x(a(x) - 1) + 4x^2a(x)$
= $a(x)(1 - 4x + 4x^2) - 1.$

 So

$$a(x) = \frac{1}{1 - 4x + 4x^2}$$

= $\frac{1}{(1 - 2x)^2}$
= $\sum_{n=0}^{\infty} (n+1)2^n x^n$.