Department of Mathematics Carnegie Mellon University

21-301 Combinatorics, Fall 2020: Test 3

Name: \qquad

Andrew ID:

Problem	Points	Score
1	33	
2	33	
3	34	
Total	100	

Q1: (33pts)
A set A of $\{0,1\}$ strings of length n is said to be (n, k)-universal if for any subset of k coordinates $S=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ the projection

$$
A_{S}=\left\{\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right):\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A\right\}
$$

contains all possible 2^{k} strings of length k. Show that if $\binom{n}{k} 2^{k}\left(1-2^{-k}\right)^{r}<1$ then there is an (n, k)-universal set of size r.
Solution: Let A be a set of r random strings. If A is not (n, k)-universal then there exists a set S of size k and an $x \in\{0,1\}^{k}$ that is not the projection of a string in A. Let $\mathcal{E}_{S, x}$ denote this event. The union bound implies that the probability of this is at most

$$
\sum_{S} \sum_{x} \operatorname{Pr}\left(\mathcal{E}_{S, x}\right)=\binom{n}{k} 2^{k}\left(1-\frac{1}{2^{k}}\right)^{r}<1
$$

This implies the existence of an (n, k)-universal set of size r. by assumption.

Q2: (33pts)

Let $G=(V, E)$ be a graph of maximum degree d. Let $V_{1}, V_{2}, \ldots, V_{r}$ be a partition of V such that $\left|V_{i}\right| \geq 10 d$ for $i=1,2, \ldots, r$. Use the local lemma to show that G contains a set S such that (i) $\left|S \cap V_{i}\right|=1$ for $i=1,2, \ldots, r$ and (ii) S is independent, i.e. contains no edges of G.
Solution: We can remove vertices from each V_{i} if needed and so we can assume w.l.o.g. that $\left|V_{i}\right|=10 d$ for $i=1,2, \ldots, r$. Choose v_{i} randomly from V_{i} for $i=1,2, \ldots, r$ and let $S=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$. For an edge $e=\{x, y\} \in E$ we let \mathcal{E}_{e} be the event that both $x, y \in S$. Thus $\operatorname{Pr}\left(\mathcal{E}_{e}\right) \leq p=\frac{1}{100 d^{2}}$. An event \mathcal{E}_{e} depends only on events \mathcal{E}_{f} for which e and f shae a common vertex. Thus the dependency graph has degree at most $20 d^{2}$. So, $4 d p \leq \frac{80 d^{2}}{100 d^{2}}<1$.

Q3: (34pts)

The sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ satisfies the following: $a_{0}=1, a_{1}=4$ and

$$
a_{n}-4 a_{n-1}+4 a_{n-2}=0
$$

for $n \geq 2$.
Determine the generating function $a(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and hence find a_{n}. Solution

$$
\begin{aligned}
0 & =\sum_{n=2}^{\infty}\left(a_{n}-4 a_{n-1}+4 a_{n-2}\right) x^{n} \\
& =(a(x)-1-4 x)-4 x(a(x)-1)+4 x^{2} a(x) \\
& =a(x)\left(1-4 x+4 x^{2}\right)-1
\end{aligned}
$$

So

$$
\begin{aligned}
a(x) & =\frac{1}{1-4 x+4 x^{2}} \\
& =\frac{1}{(1-2 x)^{2}} \\
& =\sum_{n=0}^{\infty}(n+1) 2^{n} x^{n} .
\end{aligned}
$$

